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Abstract

The Variational Autoencoder (VAE) is a powerful archi-

tecture capable of representation learning and generative

modeling. When it comes to learning interpretable (disen-

tangled) representations, VAE and its variants show unpar-

alleled performance. However, the reasons for this are un-

clear, since a very particular alignment of the latent embed-

ding is needed but the design of the VAE does not encourage

it in any explicit way. We address this matter and offer the

following explanation: the diagonal approximation in the

encoder together with the inherent stochasticity force local

orthogonality of the decoder. The local behavior of promot-

ing both reconstruction and orthogonality matches closely

how the PCA embedding is chosen. Alongside providing an

intuitive understanding, we justify the statement with full

theoretical analysis as well as with experiments.

1. Introduction

The Variational Autoencoder (VAE) [24, 36] is one of

the foundational architectures in modern-day deep learn-

ing. It serves both as a generative model as well as a repre-

sentation learning technique. The generative model is pre-

dominantely exploited in computer vision [25, 15, 22, 16]

with notable exceptions such as generating combinatorial

graphs [26]. As for representation learning, there is a vari-

ety of applications, ranging over image interpolation [19],

one-shot generalization [35], language models [43], speech

transformation [3], and more. Aside from direct applica-

tions, VAEs embody the success of variational methods in

deep learning and have inspired a wide range of ongoing

research [23, 44].

Recently, unsupervised learning of interpretable latent

representations has received a lot of attention. Interpretabil-

ity of the latent code is an intuitively clear concept. For

instance, when representing faces one latent variable would

solely correspond to the gender of the person, another to

skin tone, yet another to hair color and so forth. Once such

∗These authors contributed equally to this work.

Figure 1. Latent traversal over a single latent coordinate on an ex-

emplary image from the CelebA dataset [28] for a trained β-VAE.

The latent coordinate clearly isolates the azimuth angle. Provided

by courtesy of the authors of [17].

a representation is found it allows for interpretable latent

code manipulation, which is desirable in a variety of ap-

plications; recently, for example, in reinforcement learning

[39, 18, 11, 41, 34].

The term disentanglement [10, 2, 29] offers a more for-

mal approach. A representation is considered disentangled

if each latent component encodes precisely one “aspect” (a

generative factor) of the data. Under the current disentan-

glement metrics [17, 21, 6, 29], VAE-based architectures

(β-VAE [17], TCVAE [6], FactorVAE [21]) dominate the

benchmarks, leaving behind other approaches such as Info-

GAN [7] and DCIGN [25]. Exemplarily, a latent traversal

for a β-VAE is shown in Fig. 1 in which precisely one gen-

erative factor is isloated (face azimuth).

The success of VAE-based architectures on disentangle-

ment tasks comes with a certain surprise. One surprising

aspect is that VAEs have been challenged on both of its own

design functionalities, as generative models [14, 12] and as

log-likelihood optimizers [30, 33]. Yet, no such claims are

made in terms of disentanglement. Another surprise stems

from the fact that disentanglement requires the following

feature: the representative low-dimensional manifold must

be aligned well with the coordinate axes. However, the de-

sign of the VAE does not suggest any such mechanism. On

the contrary, the idealized log-likelihood objective is, for

example, invariant to rotational changes in the alignment.

Such observations have planted a suspicion that the in-

ner workings of the VAE are not sufficiently understood.

Several recent works approached this issue [5, 40, 8, 1, 12,

31, 9]. However, a mechanistic explanation for the VAE’s

unexpected ability to disentangle is still missing.

In this paper, we isolate an internal mechanism of the

VAE (also β-VAE) responsible for choosing a particular la-

tent representation and its alignment. We give theoretical
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analysis covering also the nonlinear case and explain the

discovered dynamics intuitively. We show that this mecha-

nism promotes local orthogonality of the embedding trans-

formation and clarify how this orthogonality corresponds to

good disentanglement. Further, we uncover strong resem-

blance between this mechanism and the classical Principle

Components Analysis (PCA) algorithm. We confirm our

theoretical findings in experiments.

Our theoretical approach is particular in the following

ways: (a) we base the analysis on the implemented loss

function in contrast to the typically considered idealized

loss, and (b) we identify a specific regime, prevalent in prac-

tice, and utilize it for a vital simplification. This simplifica-

tion is the crucial step in enabling formalization.

The results, other than being significant on their own,

also provide a solid explanation of “why β-VAEs disentan-

gle”.

2. Background

Let us begin with reviewing the basics of VAE, PCA, and

of the Singular Value Decomposition (SVD), along with a

more detailed overview of disentanglement.

2.1. Variational Autoencoders

Let {xi}Ni=1 be a dataset consisting of N i.i.d. sam-

ples x
i ∈ X = R

n of a random variable x. An autoen-

coder framework operates with two mappings, the encoder

Encϕ : X → Z and the decoder Decθ : Z → X , where

Z = R
d is called the latent space. In case of the VAE, both

mappings are probabilistic and a fixed prior distribution

p(z) over Z is assumed. Since the distribution of x is also

fixed (actual data distribution q(x)), the mappings Encϕ
and Decθ induce joint distributions q(x, z) = qϕ(z|x)q(x)
and p(x, z) = pθ(x|z)p(z), respectively (omitting the de-

pendencies on parameters θ and ϕ). The idealized VAE ob-

jective is then the marginalized log-likelihood

N
∑

i=1

log p(xi). (1)

This objective is, however, not tractable and is approxi-

mated by the evidence lower bound (ELBO) [24]. For a

fixed x
i the log-likelihood log p(xi) is lower bounded by

E
z∼q(z|xi)

log p(xi | z)−DKL(q(z | xi) ‖ p(z)) , (2)

where the first term corresponds to the reconstruction loss

and the second to the KL divergence between the latent rep-

resentation q(z | x
i) and the prior distribution p(z). A

variant, the β-VAE [17], introduces a weighting β on the

KL term for regulating the trade-off between reconstruction

(first term) and the proximity to the prior. Our analysis will

automatically cover this case as well.

Finally, the prior p(z) is set to N (0, I) and the encoder

is assumed to have the form

Encϕ(x) ∼ qϕ(z|x) = N
(

µϕ(x), diag σ
2
ϕ(x)

)

, (3)

where µϕ and σϕ are deterministic mappings depending

on parameters ϕ. Note particularly, that the covariance

matrix is enforced to be diagonal. This turns out to be

highly significant for the main result of this work. The KL-

divergence in (2) can be computed in closed form as

LKL =
1

2

d
∑

j=1

(

µ2
j (x

i) + σ2
j (x

i)− log σ2
j (x

i)− 1
)

. (4)

In practical implementations, the reconstruction term from

(2) is approximated with either a square loss or a cross-

entropy loss.

2.2. Disentanglement

In the context of learning interpretable representations

[2, 17, 5, 40, 38] it is useful to assume that the data orig-

inates from a process with some generating factors. For

instance, for images of faces this could be face azimuth,

skin brightness, hair length, and so on. Disentangled repre-

sentations can then be defined as ones in which individual

latent variables are sensitive to changes in individual gen-

erating factors, while being relatively insensitive to other

changes [2]. Although quantifying disentanglement is non-

trivial, several metrics have been proposed [21, 17, 6].

Note also, that disentanglement is impossible without

first learning a sufficiently expressive latent representation

capable of good reconstruction.

In an unsupervised setting, the generating factors are of

course unknown and the learning has to resort to statisti-

cal properties. Linear dimensionality reduction techniques

demonstrate the two basic statistical approaches. Principle

Components Analysis (PCA) greedily isolates sources of

variance in the data, while Independent Component Anal-

ysis (ICA) recovers a factorized representation, see [37] for

a recent review.

One important point to make is that disentanglement is

sensitive to rotations of the latent embedding. Following

the example above, let us denote by a, s, and h, continuous

values corresponding to face azimuth, skin brightness, and

hair length. Then, if we change the ideal latent representa-

tion as follows




a
s
h



 7→





0.75a+ 0.25s+ 0.61h
0.25a+ 0.75s− 0.61h

−0.61a+ 0.61s+ 0.50h



 , (5)

we obtain a representation that is equally expressive in

terms of reconstruction (in fact we only multiplied with a

3D rotation matrix) but individual latent variables entirely

lost their interpretable meaning.
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2.3. PCA and Latent Representations

Let us examine more closely how PCA chooses the

alignment of the latent embedding and why it matters.

It is well known [4] that for a linear autoencoder with

encoder Y ′ ∈ R
d×n, decoder Y ∈ R

n×d, and square error

as reconstruction loss, the objective

min
Y,Y ′

∑

x
i∈X

‖xi − Y Y ′
x
i‖2 (6)

is minimized by the PCA decomposition. Specifically, by

setting Y ′ = Pd, and Y = P⊤
d , for Pd = Id×nP ∈ R

d×n,

where P ∈ R
n×n is an orthogonal matrix formed by the n

normalized eigenvectors (ordered by the magnitudes of the

corresponding eigenvalues) of the sample covariance matrix

of X and Id×n ∈ R
d×n is a trivial projection matrix.

However, there are many minimizers of (6) that do not

induce the same latent representation. In fact, it suffices to

append Y ′ with some invertible transformations (e.g. rota-

tions and scaling) and prefix Y with their inverses. This ge-

ometrical intuition is well captured using the singular value

decomposition (SVD), see also Figure 2.

Theorem 1 (SVD rephrased, [13]). Let M : Rn → R
d be a

linear transformation (matrix). Then there exist

• U : Rn → R
n, an orthogonal transformation (matrix)

of the input space,

• Σ: Rn → R
d a “scale-and-embed” transformation

(induced by a diagonal matrix),

• V : Rd → R
d, an orthogonal transformation (matrix)

of the output space

such that M = V ΣU⊤.

Remark 1. For the sake of brevity, we will refer to orthogo-

nal transformations (with slight abuse of terminology) sim-

ply as rotations.

Example 1 (Other minimizers of the PCA objective). De-

fine Y and Y ′ with their SVDs as Y = P⊤ΣQ and its pseu-

doinverse Y ′ = Y † = Q⊤Σ†P and see that

Y Y ′ = P⊤ΣQQ⊤Σ†P = P⊤Id×nIn×dP = P⊤
d Pd (7)

so they are indeed also minimizers of the objective (6) irre-

spective of our choice of Q and Σ.

It is also straightforward to check that the only choices

of Q, which respect the coordinate axes given by PCA, are

for |Q| to be a permutation matrix.

The take-away message (valid also in the non-linear

case) from this example is:

Different rotations of the same latent space are equally

suitable for reconstruction.

Following the PCA example, we formalize which linear

mappings have the desired “axes-preserving” property.

Proposition 1 (Axes-preserving linear mappings). Assume

M ∈ R
n×d with d < n has d distinct nonzero singular

values. Then the following statements are equivalent:

(a) The columns of M are (pairwise) orthogonal.

(b) In every SVD of M as M = UΣV ⊤, |V | is a permu-

tation matrix.

We strongly suggest developing a geometrical under-

standing for both cases (a) and (b) via Figure 2. For an

intuitive understanding of the formal requirement of distinct

eigenvalues, we refer to Supp. C.2.

Take into consideration that once the encoder preserves

the principle directions of the data, this already ensures an

axis-aligned embedding. The same is true also if the de-

coder is axes-preserving, provided the reconstruction of the

autoencoder is accurate.

2.4. Related work

Due to high activity surrounding VAEs, additional care is

needed when it comes to evaluating novelty. To the best of

our knowledge, two recent works address related questions

and require special attention.

The authors of [5] also aim to explain good performance

of (β–)VAE in disentanglement tasks. A compelling in-

tuitive picture of the underlying dynamics is drawn and

supporting empirical evidence is given. In particular, the

authors hypothesize that “β–VAE finds latent components

which make different contributions to the log-likelihood

term of the cost function [reconstruction loss]”, while sus-

pecting that the diagonal posterior approximation is respon-

sible for this behavior. Our theoretical analysis confirms

both conjectures (see Section 4).

Concurrent work [40] develops ISA-VAE; another VAE-

based architecture suited for disentanglement. Some parts

of the motivation overlap with the content of our work.

First, rotationally nonsymmetric priors are introduced for

reasons similar to the content of Section 3.1. And second,

both orthogonalization and alignment with PCA directions

are empirically observed for VAEs applied to toy tasks.

3. Results

3.1. The problem with loglikelihood

The message from Example 1 and from the discussion

about disentanglement is clear: latent space rotation mat-

ters. Let us look how the idealized objectives (1) and (2)

handle this.

For a fixed rotation matrix U we will be comparing

a baseline encoder-decoder pair (Encϕ,Decθ) with a pair
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Figure 2. Geometric interpretation of the singular value decomposition (SVD). Sequential illustration of the effects of applying the corre-

sponding SVD matrices of the encoder transformation V Σ†U⊤ (left to right) and decoder UΣV ⊤ (right to left). We notice that steps (i)

and (ii) of the encoder preserve the principle directions of the data. Step (iii), however, causes misalignment. In that regard, good encoders

are the ones for which step (iii) is trivial. The same argument works for the decoder (in reverse order). This condition is equivalent (for

non-degenerate transformations) to UΣV ⊤ having orthogonal columns (See Proposition 1, where this is phrased for the decoder).

(Encϕ,U
,Decθ,U ) defined as

Encϕ,U
(x) = U Encϕ(x), (8)

Decθ,U (z) = Decθ(U
⊤
z). (9)

The shortcomings of idealized losses are summarized in

the following propositions.

Proposition 2 (Log-likelihood rotation invariance). Let ϕ,

θ be any choice of parameters for encoder-decoder pair

(Encϕ,U
,Decθ,U ). Then, if the prior p(z) is rotationally

symmetric, the value of the log-likelihood objective (1) does

not depend on the choice of U .

Note that the standard prior N (0, I) is rotationally sym-

metric. This deficiency is not salvaged by the ELBO ap-

proximation.

Proposition 3 (ELBO rotation invariance). Let ϕ, θ
be any choice of parameters for encoder-decoder pair

(Encϕ,U
,Decθ,U ). Then, if the prior p(z) is rotationally

symmetric, the value of the ELBO objective (2) does not de-

pend on the choice of U .

We do not claim novelty of these propositions, however

we are not aware of their formalization in the literature. The

proofs can be found in Supplementary Material (Suppl. A).

An important point now follows:

Log-likelihood based methods (with rotationally

symmetric priors) cannot claim to be designed to

produce disentangled representations.

However, enforcing a diagonal posterior of the VAE en-

coder (3) disrupts the rotational symmetry and conse-

quently the resulting objective (4) escapes the invariance

arguments. Moreover, as we are about to see, this diag-

onalization comes with beneficial effects regarding disen-

tanglement. We assume this diagonalization was primarily

introduced for different reasons (tractability, computational

convenience), hence the “by accident” part of the title.

3.2. Reformulating VAE loss

The fact that VAEs were not meant to promote orthog-

onality reflects in some technical challenges. For one, we

cannot follow a usual workflow of a theoretical argument;

set up an idealized objective and find suitable approxima-

tions which allow for stochastic gradient descent (a top-

down approach). We need to do the exact opposite, start

with the implemented loss function and find the right sim-

plifications that allow isolating the effects in question while

preserving the original training dynamics (a bottom-up ap-

proach). This is the main content of this section.

First, we formalize the typical situation in which VAE

architectures “shut down” (fill with pure noise) a subset of

latent variables and put high precision on the others.

Definition 1. We say that parameters ϕ, θ induce a polar-

ized regime if the latent coordinates {1, 2, . . . , d} can be

partitioned as Va∪Vp (sets of active and passive variables)

such that

(a) µ2
j (x) ≪ 1 and σ2

j (x) ≈ 1 for j ∈ Vp,

(b) σ2
j (x) ≪ 1 for j ∈ Va,

(c) The decoder ignores the passive latent components,

i.e.
∂Decθ(z)

∂zj
= 0 ∀j ∈ Vp.

The polarized regime simplifies the loss LKL from (4);

part (a) ensures zero loss for passive variables and part (b)

implies that σ2
j (x) ≪ − log(σ2

j (x)). All in all, the per-

sample-loss reduces to

L≈KL(x
i) =

1

2

∑

j∈Va

(

µ2
j (x

i)− log(σ2
j (x

i))− 1
)

. (10)

We will assume the VAE operates in the polarized

regime. In Section 5.2, we show on multiple tasks and

datasets that the two objectives align very early in the train-

ing. This behavior is well-known to practitioners.
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Also, we approximate the reconstruction term in (2), as

it is most common, with a square loss

Lrec(x
i) = E ‖Decθ(Encϕ(x

i))− x
i‖2 (11)

where the expectation is over the stochasticity of the en-

coder. All in all, the loss we will analyze has the form

∑

x
i∈X

Lrec(x
i) + L≈KL(x

i). (12)

Moreover, the reconstruction loss can be further decom-

posed into two parts; deterministic and stochastic. The for-

mer is defined by

Lrec(x
i) = ‖Decθ(µ(x

i))− x
i‖2 (13)

and captures the square loss of the mean encoder. Whereas

the stochastic loss

L̂rec(x
i) = E ‖Decθ(µ(x

i))−Decθ(Encϕ(x
i))‖2 (14)

is purely induced by the noise injected in the encoder.

Proposition 4. If the stochastic estimate Decθ(Encϕ(x
i))

is unbiased around Decθ(µ(x
i)), then

Lrec(x
i) = Lrec(x

i) + L̂rec(x
i). (15)

This decomposition resembles the classical bias-

variance decomposition of the square error [20].

3.3. The main result

Now, we finally give theoretical evidence for the central

claim of the paper:

Optimizing the stochastic part of the reconstruction

loss promotes local orthogonality of the decoder.

On that account, we set up an optimization problem

which allows us to optimize the stochastic loss (14) inde-

pendently of the other two. This will isolate its effects on

the training dynamics.

In order to make statements about local orthogonality,

we introduce for each x
i the Jacobian (linear approxima-

tion) Ji of the decoder at point µ(xi), i.e.

Ji =
∂Decθ(µ(x

i))

∂µ(xi)
.

Since, according to (3), the encoder can be written as

Encϕ(x
i) = µ(xi) + ε(xi) with

ε(xi) ∼ N
(

0, diag σ2(xi)
)

, (16)

we can approximate the stochastic loss (14) with

E
ε(xi)

∥

∥Decθ(µ(x
i))−

(

Decθ(µ(x
i)) + Jiε(x

i)
)∥

∥

2

= E
ε(xi)

‖Jiε(xi)‖2, (17)

Although we aim to fix the deterministic loss (13), we

do not need to freeze the mean encoder and the decoder

entirely. Following Example 1, for each Ji and its SVD

Ji = UiΣiV
⊤
i , we are free to modify Vi as long we corre-

spondingly (locally) modify the mean encoder.

Then we state the optimization problem as follows:

min
Vi,σ

i
j
>0

∑

x
i∈X

log E
ε(xi)

‖Jiε(xi)‖2 (18)

s. t.
∑

x
i∈X

L≈KL(x
i) = C, (19)

where ε(xi) are sampled as in (16).

A few remarks are now in place.

• This optimization is not over network parameters,

rather directly over the values of all Vi, σ
i
j (only con-

strained by (19)).

• Both the objective and the constraint concern global

losses, not per sample losses.

• Indeed, none of Vi, σ
i
j interfere with the rest of the

VAE objective (12).

The presence of the (monotone) log function has one main

advantage; we can describe all global minima of (18) in

closed form. This is captured in the following theorem, the

technical heart of this work.

Theorem 2 (Main result). The following holds for opti-

mization problem (18, 19):

(a) Every local minimum is a global minimum.

(b) In every global minimum, the columns of every Ji are

orthogonal.

The full proof as well as an explicit description of the

minima is given in Suppl. A.1. However, an outline of the

main steps is given in the next section on the example of a

linear decoder.

The presence of the log term in (18) admittedly makes

our argument indirect. There are, however, a couple of

points to make. First, as was mentioned earlier, encourag-

ing orthogonality was not a design feature of the VAE. In

this sense, it is unsurprising that our results are also mildly

indirect.

Also, and more importantly, the global optimality of

Theorem 2 also implies that, locally, orthogonality is en-

couraged even for the pure (without logarithm) stochastic

loss.

Corollary 1. For fixed x
i ∈ X consider a subproblem of

(18) defined as

min
Vi,σ

i
j
>0

E
ε(xi)

‖Jiε(xi)‖2 (20)

s. t. L≈KL(x
i) = Ci. (21)
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Also then, the result on the structure of local (global) min-

ima holds:

(a) Every local minimum is a global minimum.

(b) In every global minimum, the columns of every Ji are

orthogonal.

All in all, Theorem 2 justifies the central message of the

paper stated at the beginning of this section. The analogy

with PCA is now also clearer. Locally, VAEs optimize a

tradeoff between reconstruction and orthogonality.

This result is unaffected by the potential β term in Equa-

tion (2), although an appropriate β might be required to en-

sure the polarized regime.

4. Proof outline

In this section, we sketch the key steps in the proof of

Theorem 2 and, more notably, the intuition behind them.

The full proof can be found in Suppl. A.1.

We will restrict ourselves to a simplified setting. Con-

sider a linear decoder M with SVD M = UΣV T , which

removes the necessity of local linearization. This reduces

the objective (18) from a “global” problem over all exam-

ples xi to an objective where we have the same subproblem

for each x
i.

As in optimization problem (18, 19), we resort to fixing

the mean encoder (imagine a well performing one).

In the next paragraphs, we separately perform the opti-

mization over the parameters σ and the optimization over

the matrix V .

4.1. Weighting precision

For this part, we fix the decoder matrix M and optimize

over values σ2 = (σ2
1 , . . . , σ

2
d). The simplified objective is

min
σ

E
ε∼N (0,diag(σ2))

‖Mε‖2 (22)

s. t.
∑

j

− log σ2
j = C, (23)

where the ‖µ‖2 terms from (10) disappear since the mean

encoder is fixed.

The values − log(σj) can now be thought of as preci-

sions allowed for different latent coordinates. The log func-

tions even suggests thinking of the number of significant

digits. Problem (22) then asks to distribute the “total pre-

cision budget“ so that the deviation from decoding “uncor-

rupted” values is minimal.

We will now solve this problem on an example linear

decoder M1 : R
2 → R

3 given by

M1 :

(

x
y

)

7→





4x+ y
−3x+ y
5x− y



 . (24)

Already here we see, that the latent variable x seems more

influential for the reconstruction. We would expect that x
receives higher precision than y.

Now, for ε = (εx, εy), we compute

‖M1ε‖2 = ‖4εx + εy‖2 + ‖−3εx + εy‖2 + ‖5εx − εy‖2

and after taking the expectation, we can use the fact that ε

has zero mean and write

E ‖M1ε‖2 =

var(4εx + εy) + var(−3εx + εy) + var(5εx − εy).

Finally, we use that for uncorrelated random variables A
and B we have var(A + cB) = varA + c2 varB. After

rearranging we obtain

E ‖M1ε‖2 = σ2
x(4

2+ (−3)2 + 52)+σ2
y(1

2 + 12+ (−1)2)

= 50σ2
x + 3σ2

y,

where σ = (σ2
x, σ

2
y). Note that the coefficients are the

squared norms of the column vectors of M1.

This turns the optimization problem (22) into a simple

exercise, particularly after realizing that (23) fixes the value

of the product σxσy . Indeed, we can even set a2 = 50σx

and b2 = 3σy in the trivial inequality a2 + b2 ≥ 2ab and

find that

E ‖M1ε‖2 = 50σ2
x + 3σ2

y ≥ 2 ·
√
50 · 3 · e−C ≈ 24.5e−C ,

(25)

with equality achieved when σ2
x/σ

2
y = 3/50. This also im-

plies that the precision − log σ2
x on variable x will be con-

siderably higher than for y, just as expected.

Two remarks regarding the general case follow.

• The full version of inequality (25) relies on the con-

cavity of the log function; in particular, on (a version

of) Jensen’s inequality.

• The minimum value of the objective depends on the

product of the column norms. This also carries over to

the unsimplified setting.

4.2. Isolating sources of variance

Now that we can find optimal values of precision, the fo-

cus changes on optimally rotating the latent space. In order

to understand how such rotations influence the minimum

of objective (22), let us consider the following example in

which we again resort to decoder matrix M2 : R
2 → R

3.

Imagine, the encoder alters the latent representation by

a 45◦ rotation. Then we can adjust the decoder M1 by first

undoing this rotation. In particular, we set M2 = M1R
⊤
45◦ ,

where Rθ is a 2D rotation matrix, rotating by angle θ. We

have

M2 :

(

x′

y′

)

7→





1
2

√
2(3x′ + 5y′)√
2(−2x′ − y′)√
2(3x′ + 2y′)
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Product Vol

Figure 3. 2D illustration of orthogonality in MV ⊤. The vec-

tors w1, w2 are the columns of MV ⊤. Minimizing the product

‖w1‖‖w2‖ while maintaining the volume ‖w1‖‖w2‖ cos(α) re-

sults in w1 ⊥ w2.

and performing analogous optimization as before gives

E ‖M2ε‖2=
61

2
σ2
x+

45

2
σ2
y ≥ 2

√

61 · 45
4

e−C≈52.4e−C .

(26)

We see that the minimal value of the objective is more

than twice as high, a substantial difference. On a high level,

the reason M1 was a better choice of a decoder is that the

variables x and y had very different impact on the recon-

struction. This allowed to save some precision on variable

y, as it had smaller effect, and use it on x, where it is more

beneficial.

For a higher number of latent variables, one way to

achieve a “maximum stretch” among the impacts of latent

variables, is to pick them greedily, always picking the next

one so that its impact is maximized. This is, at heart, the

greedy algorithm for PCA.

Let us consider a slightly more technical statement. We

saw in (25) and (26) that after finding optimal values of σ

the remaining objective is the product of the column norms

of matrix M . Let us denote such quantity by colΠ(M) =
∏

j ‖M·j‖. Then for a fixed matrix M , we optimize

min
V

colΠ(MV ⊤) (27)

over orthogonal matrices V .

This problem can be interpreted geometrically. The col-

umn vectors of MV ⊤ are the images of base vectors ej .

Consequently, the product gives an upper bound on the vol-

ume (the image of the unit cube)

∏

j

‖MV ⊤ej‖ ≥ Vol({MV ⊤x : x ∈ [0, 1]d}) . (28)

However, as orthogonal matrices V are isometries, they do

not change this volume. Also, the bound (28) is tight pre-

cisely when the vectors MV ⊤ej are orthogonal. Hence,

the only way to optimize colΠ(MV ⊤) is by tightening the

bound, that is by finding V for which the column vectors

of MV ⊤ are orthogonal, see Figure 3 for an illustration.

In this regards, it is important that M performs a different

scaling along each of the axis (using Σ), which allows for

changing the angles among the vectors MV ⊤ej (cf. Figure

2).

Table 1. Percentage of training time where ∆KL < 3% (Eq. (30))

continuously until the end. Reported for β-VAE with low (dataset

dependent) and high (10) latent dimension.

β-VAE (dep.) β-VAE (10)

dSprites 97.8% 90.6%
fMNIST 99.8% 97.7%
MNIST 99.8% 99.5%
Synth. Lin. 99.8% 96.7%
Synth. Non-Lin. 99.9% 98.5%

5. Experiments

We performed several experiments with different archi-

tectures and datasets to validate our results empirically. We

show the prevalence of the polarized regime, the strong or-

thogonal effects of the (β-)VAE, as well as the links to dis-

entanglement.

5.1. Setup

Architectures. We evaluate the classical VAE, β-VAE, a

plain autoencoder, and β-VAEΣ, where the latter removes

the critical diagonal approximation (3) and produces a full

covariance matrix Σ(xi) for every sample. The resulting

KL term of the loss is changed accordingly (see Suppl. B.3

for details).

Datasets. We evaluate on the well-known datasets dSprites

[32], MNIST [27] and FashionMNIST [42], as well as on

two synthetic ones. For both synthetic tasks the input data

X is generated by embedding a unit square V = [0, 1]2

into a higher dimension. The latent representation is then

expected to be disentangled with respect to axes of V . In

one case (Synth. Lin.) we used a linear transformation

flin : R
2 → R

3 and in the other one a non-linear (Synth.

Non-Lin.) embedding fnon−lin : R
2 → R

6. The exact

choice of transformations can be found in Suppl. B. Fur-

ther information regarding network structures and training

parameters is also provided in Suppl. B.4.

Disentanglement metric. For quantifying the disentangle-

ment of a representation, the so called Mutual Information

Gap (MIG) was introduced in [6]. As MIG is not well de-

fined for continuous variables, we use an adjusted definition

comprising both continuous and discrete variables, simply

referred to as Disentanglement score. Details are described

in Suppl. B.1. Just as in the case of MIG, the Disentangle-

ment score is a number between 0 and 1, where higher value

means stronger disentanglement.

Orthogonality metric. For measuring the practical effects

of Theorem 2, we introduce a measure of non-orthogonality.

As argued in Proposition 1 and Figure 2, for a good de-

coder M and its SVD M = UΣV ⊤, the matrix V should be

trivial (a signed permutation matrix). We measure the non-

triviality with the Distance to Orthogonality (DtO) defined

as follows. For each x
i, i = 1, . . . , N , employing again the
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Table 2. Results for the distance to orthogonality DtO of the decoder (Equation 29) and disentanglement score for different architectures

and datasets. Lower DtO values are better and higher Disent. values are better. Random decoders provide a simple baseline for the numbers.

β-VAE VAE AE β-VAEΣ Random Decoder

dSprites Disent. ↑ 0.33± 0.15 0.21± 0.10 0.09± 0.04 0.12± 0.06
DtO ↓ 0.76± 0.08 1.08± 0.15 1.62± 0.03 1.73± 0.14 1.86± 0.11

Synth. Lin. Disent. ↑ 0.99± 0.01 – 0.71± 0.19 0.71± 0.31
DtO ↓ 0.00± 0.00 – 0.33± 0.18 0.34± 0.35 0.79± 0.21

Synth. Non-Lin. Disent. ↑ 0.73± 0.16 – 0.59± 0.30 0.42± 0.24
DtO ↓ 0.18± 0.02 – 0.54± 0.13 0.55± 0.02 0.89± 0.16

MNIST DtO ↓ – 1.59± 0.08 1.83± 0.05 1.93± 0.08 2.11± 0.11
fMNIST DtO ↓ – 1.36± 0.05 1.87± 0.03 2.02± 0.08 2.11± 0.11

Jacobian Ji of the decoder at xi and its SVD Ji = UiΣiV
⊤
i

and define

DtO =
1

N

N
∑

i=1

‖Vi − P (Vi)‖F , (29)

where ‖ · ‖F is the Frobenius norm and P (Vi) is a signed

permutation matrix that is closest to V (in L1 sense). Find-

ing the nearest permutation matrix is solved to optimality

via mixed-integer linear programming (see Suppl. B.2).

5.2. Polarized regime

In Section 3.2, we assumed VAEs operate in a polarized

regime and approximated LKL, the KL term of the imple-

mented objective (4), with L≈KL (10). In Table 1 we show

that the polarized regime is indeed dominating the training

in all examples after a short initial phase. We report the

fraction of the training time in which the relative error

∆KL =
|LKL − L≈KL|

LKL

(30)

stays below 3% continuously until the end (evaluated ev-

ery 500 batches). Active variables can be selected by
√

var (µj (xi)) > 0.5.

0.1 0.2 0.3 0.4 0.5
Disentanglement Score

0.7

0.8

0.9

1.0

1.1

1.2

Dt
O

10
30
50

Figure 4. Alignment of the latent representation (low DtO, (29))

results in better disentanglement (higher score). Each datapoint

corresponds to an independent run with 10, 30, or 50 epochs.

5.3. Orthogonality and Disentanglement

Now, we provide evidence for Theorem 2 by investigat-

ing the DtO (29) for a variety of architectures and datasets,

see Table 2. The results clearly support the claim that the

VAE based architectures indeed strive for local orthogo-

nality. By generalizing the β-VAE architecture, such that

the approximate posterior is any multivariate Gaussian (β-

VAEΣ), the objective becomes rotationally symmetric (just

as the idealized objective). As such, no specific alignment

is prioritized. The simple autoencoders also do not favor

particular orientations of the latent space.

Another important observation is the clear correlation

between DtO and the disentanglement score. We show this

in Figure 4 where different restarts of the same β-VAE ar-

chitecture on the dSprites dataset are displayed. We used the

state-of-the-art value β = 4 [17]. Additional experiments

are reported in Suppl. C.

6. Discussion

We isolated the mechanism of VAE that leads to local or-

thogonalization and, in effect, to performing local PCA. Ad-

ditionally, we demonstrated the functionality of this mecha-

nism in intuitive terms, in formal terms, and also in experi-

ments. We also explained why this behavior is desirable for

enforcing disentangled representations.

Our insights show that VAEs make use of the differences

in variance to form the representation in the latent space

– collapsing to PCA in the linear case. This does not di-

rectly encourage factorized latent representations. With this

in mind, it makes perfect sense that recent improvements of

(β-)VAE [6, 21, 40] incorporate additional terms promoting

precisely independence.

It is also unsatisfying that VAEs promote orthogonality

somewhat indirectly. It would seem that designing archi-

tectures allowing explicit control over this feature would be

beneficial.
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