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Abstract

Recently, a generative adversarial network (GAN)-based

method employing the coarse-to-fine network with the con-

textual attention module (CAM) has shown outstanding re-

sults in image inpainting. However, this method requires

numerous computational resources due to its two-stage pro-

cess for feature encoding. To solve this problem, in this pa-

per, we present a novel network structure, called PEPSI:

parallel extended-decoder path for semantic inpainting.

PEPSI can reduce the number of convolution operations by

adopting a structure consisting of a single shared encoding

network and a parallel decoding network with coarse and

inpainting paths. The coarse path produces a preliminary

inpainting result with which the encoding network is trained

to predict features for the CAM. At the same time, the in-

painting path creates a higher-quality inpainting result us-

ing refined features reconstructed by the CAM. PEPSI not

only reduces the number of convolution operation almost

by half as compared to the conventional coarse-to-fine net-

works but also exhibits superior performance to other mod-

els in terms of testing time and qualitative scores.

1. Introduction

Image inpainting techniques have been widely re-

searched [1–3, 5, 6, 10, 13, 16, 17, 19, 21, 25, 26, 28] for re-

moving an unwanted object or synthesizing missing parts

of an image in various applications such as photo edit-

ing, image-based rendering, and computational photogra-

phy [15, 20, 28]. Image inpainting methods can be divided

into two groups [28]. The diffusion-based and patch-based

methods belong to the first group. The diffusion-based

method propagates the pixel information from the existing

regions of an image, i.e. background regions, to the missing

regions, i.e. hole regions [2,5,19,28]. This method performs

well on plain textures and small holes but often fails to fill

in the complex hole region such as face and objects with the

non-repetitive structures. In contrast to the diffusion-based

method, the patch-based method samples patches from the

background region and then pastes them into the hole re-

gion [22, 28]. Barnes et al. [1] proposed a fast approxi-

mate nearest neighbor patch search algorithm, called Patch-

Match, which has shown notable results for image editing

applications including image inpainting. PatchMatch, how-

ever, smoothly fills in the hole region without considering

the visual semantics or the global structure of an image.

The second group is a generation-based method which

applies the deep convolutional neural network (CNN) to

predict structures for the hole regions [13, 16, 24]. Thanks

to a decade of advances in CNNs, image inpainting meth-

ods adopting an encoder-decoder structure have achieved a

significant progress [13, 24]. However, these methods of-

ten create an image with artifacts such as a blurry image

and a distorted image. To cope with this problem, Pathak et

al. [21] introduced a method called context encoder adopt-

ing the generative adversarial network (GAN) [7]. In this

method, they utilize a combined loss, the l2 pixel-wise re-

construction loss and adversarial loss, which helps the net-

works to generate a more natural image by minimizing

the difference between the reference and inpainted image.

However, this method has a limitation that it can fill only

square holes at the center of an image.

Iizuka et al. [10] proposed an improved network struc-

ture which can extract features in wider receptive fields by

employing the dilated convolution layers to complete hole

regions effectively. In addition, they use two sibling dis-

criminators: global and local discriminators. The local dis-

criminator focuses on the inpainted region to distinguish lo-

cal texture consistency while the global discriminator in-

spects if the result is coherent in a whole image. Yu et

al. [28] have extended this work by using the coarse-to-

fine network and the contextual attention module (CAM).

The CAM learns the relation among background and fore-

ground feature patches by computing the cosine similar-

ity. To collect the background features involved with the

missing region, this method needs the features at the miss-

ing region encoded from roughly completed images. Thus,

they designed two-stage coarse-to-fine networks to produce

an intermediate result of a roughly restored image. This
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Figure 1. An architecture of PEPSI. The coarse path and inpainting path share their weights to improve each other. The coarse path is

trained only with the ℓ1 reconstruction loss while the inpaiting path is trained with both of ℓ1 and adversarial loss

method shows a remarkable performance as compared with

recent state-of-the-art inpainting methods; however, it re-

quires considerable computational resources due to use of

the two-stage network structure.

In this paper, we propose a novel parallel network called

PEPSI: parallel extended-decoder path for semantic inpaint-

ing, which has the small number of operation by employing

a single-stage encoder-decoder network to solve this prob-

lem. As shown in Figure 1, PEPSI extracts features via a

single encoding network and generates a high-quality in-

painted result via a single decoding network. To make a

single shared encoding network handle two different tasks,

feature generation both for a roughly completed result and

for a high-quality result, we propose a joint learning method

using a parallel decoding network which has coarse and in-

painting paths. The coarse path produces a roughly com-

pleted result with which the encoding network is trained to

predict features for the CAM. At the same time, the inpaint-

ing path creates a higher-quality inpainting result using the

refined features reconstructed by the CAM. We also mod-

ify the CAM to use Euclidean distance instead of the cosine

similarity to learn the relationship of patches more suitably.

We conduct extensive experiments to demonstrate that

our method outperforms conventional methods on various

dataset such as Celeb-a [11, 18], place2 [30], and Image-

net [14]. We use both of the random square mask and free-

form mask mimicking human brushings. The experimen-

tal results indicate that the proposed method not only ex-

hibits superior performance compared to the conventional

ones but also significantly reduces the computational time.

In summary, in this paper we present:

• A novel generative network that improves the inpaint-

ing performance while reducing the number of compu-

tational resources by unifying cascade network of the

coarse-to-fine network and modifying the CAM.

• A novel discriminator distinguishing image regions

separately which is more suitable in real user appli-

cations.

2. Preliminaries

2.1. Generative adversarial networks

The GAN was first introduced by Goodfellow et al. [7]

for the image generation. In the GAN, two networks are

simultaneously trained: a generative network, G, is trained

to create a new image which is indistinguishable from real

images, whereas a discriminative network, D is trained to

differentiate between real and generated images. This re-

lation can be considered as a two-player min-max game in

which G and D compete. To this end, the G (D) tries to

minimize (maximize) the loss function, i.e. adversarial loss,

as follows:

min
G

max
D

Ex∼Pdata(x)[logD(x)]

+ Ez∼Pz(z)
[log(1−D(G(z)))], (1)

where z and x denote a random noise vector and a real im-

age sampled from the noise Pz(z) and real data distribution

Pdata(x), respectively. Recently, the GAN have been ap-

plied to several semantic inpainting techniques [10, 21, 28]

in order to complete the hole region naturally.

2.2. Coarsetofine network

Yu et al. [27, 28] proposed a novel image inpainting

framework consisting of two networks: the coarse network

and the refinement network. This two-stage network, called

a coarse-to-fine network, performs a couple of tasks sepa-

rately. First, it produces an initial coarse prediction with the

coarse network, and refines the results by extracting fea-

tures from the roughly filled prediction with the refinement

network. To produce a higher-quality image inpainting with

the generative network, the network should understand the
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Figure 2. The illustration of the CAM. The conventional CAM re-

constructs foreground patches by measuring the cosine similarities

with background patches. In contrast, the modified CAM uses the

Euclidean distance to compute similarity scores.

relation between background and hole regions. The refine-

ment network learns the relation by using the CAM, which

computes the cosine similarity between those regions. As

shown in Figure 2, the CAM first divides features into a

target foreground and its surrounding background and ex-

tracts 3× 3 patches. Then, the similarity score s(x,y),(x′,y′)

between the foreground patch at (x, y), fx,y , and the back-

ground patch at (x′, y′), bx′,y′ , can be obtained as

s(x,y),(x′,y′) =

〈
fx,y

‖fx,y‖
,

bx′,y′

‖bx′,y′‖

〉
, (2)

s∗(x,y),(x′,y′) = softmax(λs(x,y),(x′,y′)), (3)

where λ is a hyper-parameter for scaled softmax. By using

(s∗(x,y),(x′,y′)) as weights, the CAM reconstructs features

of foreground regions by a weighted sum of background

patches to learn the relation between them. The coarse-to-

fine network shows outstanding a performance among state-

of-the-arts image inpainting techniques.

3. Proposed Method

As described in Section 2.2, the CAM learns where to

borrow or copy the feature information from known back-

ground feature patches to generate missing feature patches

by computing the between-patch similarity. Thus, it is nec-

essary to extract features from a roughly completed image,

i.e., the coarse result. The refinement network without the

coarse result shows worse results than the full coarse-to-

fine network as shown in Table 1 and Figure 3 (these re-

sults were obtained by training the refinement network us-

ing raw masked images as an input). This means that, if

the coarse feature of the hole region is not encoded well,

the CAM produces the missing features using unrelated

feature patches, yielding contaminated results as shown in

Figure 3(d). In other words, the coarse-to-fine network

must pass through a two-stage encoder-decoder network

which needs massive computational complexity, especially

on high-resolution images.

Figure 3. The toy example about coarse network. (a) The ground

truth (b) The masked input image (c) The result from the coarse-

to-fine network (d) The result without the coarse result.

Square mask Free-form mask
Time

PSNR SSIM PSNR SSIM

GatedConv [27] 24.67 0.8949 27.78 0.9252 21.39ms

GatedConv ∗ 23.50 0.8822 16.35 0.9098 14.28ms

Table 1. The toy example about coarse network. * means a model

without coarse results.

3.1. Architecture of PEPSI

As shown in Figure 1, our proposed network, PEPSI,

unifies the two-stage cascade network of the coarse-to-fine

network into a single-stage encoder-decoder network. The

PEPSI consists of a single shared encoding network and a

parallel decoding network which has coarse and inpainting

paths. The encoding network is jointly learned for extract-

ing features from input images with hole regions as well

as completing the missing features without the coarse re-

sult. As listed in Table 2, our feature encoding network is

composed of a series of 3 × 3 convolution layers. In this

network, we use a 5× 5 kernel in the first convolution layer

to fully exploit the latent information in the input image.

In addition, we employ the dilated convolution layers with

different dilation rate in the last four convolution layers to

extract the features with large receptive fields.

Table 3 shows a detailed architecture of the decoding

network. In the proposed method, a parallel decoding net-

work consists of two sibling paths: coarse and inpainting

paths. The coarse path attempts to produce a roughly com-

pleted result from the encoded feature map. On the other

hand, taking the encoded features as an input, the inpainting

path first reconstructs the feature map by using the CAM.

Then, the reconstructed feature map is decoded to gener-

ate a higher-quality inpainting result. By sharing the weight

parameters of the two paths, we attempt to regularize the in-

painting path of the decoding network. Moreover, two dif-

ferent paths employ the same encoded feature map as their

input, and thus they compel the single encoder to generate

valuable features for two different image generation tasks.

Note that we employ only the inpainting path during tests,

which substantially reduces the computational resources. In

the proposed method, the coarse path is trained with the re-

construction L1 loss explicitly, whereas the inpainting path

is trained with the L1 loss as well as the GAN losses. More

detailed information will be described in Section 3.4.

Similar to traditional image inpainting networks [10, 21,
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Type Kernel Dilation Stride Outputs

Convolution 5× 5 1 1× 1 32

Convolution 3× 3 1 2× 2 64

Convolution 3× 3 1 1× 1 64

Convolution 3× 3 1 2× 2 128

Convolution 3× 3 1 1× 1 128

Convolution 3× 3 1 2× 2 256

Dialated convolution 3× 3 2 1× 1 256

Dialated convolution 3× 3 4 1× 1 256

Dialated convolution 3× 3 8 1× 1 256

Dialated convolution 3× 3 16 1× 1 256

Table 2. Detail architecture of encoding network.

Type Kernel Dilation Stride Outputs

Convolution ×2 3× 3 1 1× 1 128

Nearest Neighbor (×2 ↑) - - - -

Convolution ×2 3× 3 1 1× 1 64

Nearest Neighbor (×2 ↑) - - - -

Convolution ×2 3× 3 1 1× 1 32

Nearest Neighbor (×2 ↑) - - - -

Convolution ×2 3× 3 1 1× 1 16

Convolution (Output) 3× 3 1 1× 1 3

Table 3. Detail architecture of decoding network. The output layer

consists of a convolution layer clipped value to the [-1, 1].

27, 28], the proposed network takes a masked image and

a binary mask indicating the background regions as input

pairs. The masked image includes holes with the variable

numbers, sizes, shapes, and locations randomly sampled

during every iteration. In terms of layer implementations,

we use mirror padding for all convolution layers and em-

ploy the exponential liner unit (ELU) [4] as an activation

function instead of ReLU except the last layer. Also, we

utilize [−1, 1] normalized image with 256 × 256 pixels as

an input image of the network, and generate an output im-

age with the same resolution by clipping the output values

into [−1, 1] instead of using tanh functions.

3.2. Modified CAM

The conventional CAM [28] measures similarity scores

by applying the cosine similarity. However, normalizing the

feature patch vector in (2) can distort the semantic feature

representation. Thus, we propose a modified CAM which

directly measures distance similarity scores (d(x,y),(x′,y′))
using the Euclidean distance. It is more suitable for a re-

construction because the Euclidean distance considers not

only an angle between two vectors of feature patches but

also magnitudes of them. Since the distance similarity

scores are hard to be applied softmax having the output

range of [0,∞), we define the truncated distance similar-

ity scores, d̃(x,y),(x′,y′), as

d̃(x,y),(x′,y′) = tanh (−(
d(x,y),(x′,y′) −m(d(x,y),(x′,y′))

σ(d(x,y),(x′,y′))
)),

(4)

where

d(x,y),(x′,y′) = ‖fx,y − bx′,y′‖. (5)

Figure 4. A comparison of the image reconstruction between the

cosine similarity and the truncated distance similarity: (a) The

original image, (b) masked image, (c) image reconstructed by us-

ing the cosine similarity and (d) image reconstructed by using the

truncated distance similarity.

square mask free-form mask

PSNR SSIM PSNR SSIM

Cosine similarity 25.16 0.8950 27.95 0.9218

Euclidean distance 25.57 0.9007 28.59 0.9293

Table 4. Comparison of the performance between the cosine simi-

larity and the Euclidean distance applying on the PEPSI.

In (4), the truncated distance similarity score has limited

values within [−1, 1]. It operates like a threshold which

sorts out the distance score less than the mean value be-

cause tanh function changes rapidly across zero. It means

that the truncated distance similarity score helps to divide

background patches into two groups which are related to

the foreground patch and not. We perform toy examples

comparing the cosine similarity and the truncated distance

similarity. We reconstruct the hole region by the weighted

sum of existing image patches where the weights are ob-

tained by using the cosine similarity scores or the truncated

distance similarity scores. As can be seen in Figure 4, re-

construction applying the truncated distance similarity can

collect more similar patches than the cosine similarity. Fur-

thermore, we evaluate the results between PEPSI with con-

ventional and modified CAMs to confirm the improvement

of the modified CAM. As shown in Table 4, the modified

CAM increases the performance as compared to the conven-

tional CAM, which means that the modified CAM is more

suitable to express the relationship between background and

hole regions.

Similar to the conventional CAM, modified one also

weigh them with scaled softmax and reconstruct the fore-

ground patch by a weighted sum of background patches at

last. Consequently, it supports the module to reconstruct

foreground patches from a related patch vector group.

3.3. Region Ensemble Discriminator(RED)

PEPSI is learned based on the GAN, which consists of

the generator and discriminator. In [27, 28], the conven-

tional global and local discriminators aim at not only coher-

ence in a whole image but also the local texture of hole re-

gion. However, the local discriminator can handle only the

hole region with the fixed size of the square shape, while

holes can be appeared with arbitrary locations, shapes, and

sizes in real applications. Thus, it is hard to employ the
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Figure 5. The overview of the RED. The RED aims to classify hole

regions which may appear any region with any sizes in an image.

local discriminator to train the inpainting network for the

irregular hole. To cope with this problem, we unify global

and local discriminators into the region ensemble discrimi-

nator (RED), which is inspired by the region ensemble net-

work [8] detecting a target object that appears anywhere in

images by handling multiple feature regions individually.

As depicted in Figure 5, the RED divides the feature of the

last layer as a pixel-wise block and differentiates each fea-

ture is real or fake individually by fully-connected layers.

Since the RED tries to classify each feature block which

has different receptive fields separately, it assumes different

image regions are real or fake individually. In contrast to the

local discriminator, the RED can handle the various hole re-

gions that may appear anywhere in images of any sizes. A

detailed architecture of the RED is listed in Table 5.

3.4. Loss function

To train PEPSI, we jointly optimize two different paths:

the inpainting path and the coarse path. For the inpainting

path, we adopt the GAN [7] optimization framework in (1),

which is described in Section 2.1. It is well known that,

in the original GAN [7], the gradient of the generator can

easily disappear, which yields unsatisfactory results of gen-

erated images. To solve this problem, motivated by [29],

we employ the adversarial loss functions of the generator

and the discriminator using the hinge loss and the spectral

normalization, which are defined as

LG = −Ex∼PXi
[D(x)], (6)

LD = Ex∼PY
[min(0,−1 +D(x))]

−Ex∼PXi
[min(0,−1−D(x))], (7)

where PXi
and PY denote the data distributions of inpaint-

ing results and input images. Since goal of image inpainting

is not only to generate the natural hole filling but also to re-

store the missing part of the original image accurately, we

add a strong constraint using ℓ1 norm to (6) as follows:

LG =
λi

N

N∑

n=1

‖X
(n)
i − Y (n)‖1 − λadvEx∼PXi

[D(x)], (8)

Type Kernel Stride Outputs

Convolution 5× 5 2× 2 64

Convolution 5× 5 2× 2 128

Convolution 5× 5 2× 2 256

Convolution 5× 5 2× 2 256

Convolution 5× 5 2× 2 256

Convolution 5× 5 2× 2 512

FC 1× 1 1× 1 1

Table 5. Detailed architecture of RED. After each convolution

layer, except last one, there is a leaky-ReLU as the activation func-

tion. Every layer is normalized by a spectral normalization. The

fully-connected layer is applied to every pixel-wise feature block.

where X
(n)
i and Y (n) are the nth image pair of the gen-

erated image via the inpainting path and its corresponding

original input image in a mini-batch, respectively, N is the

number of image pairs in a mini-batch, and λi and λadv are

hyper-parameters to balance between two loss terms. As

mentioned in Section 3.3, we respectively average the ad-

versarial losses of each feature elements in the last layer of

a discriminator in (7).

The role of the coarse path loss is to complete the miss-

ing features properly for the CAM. Thus, we optimize the

following simple l1 loss function defined as

LC =
1

N

N∑

n=1

‖X(n)
c − Y (n)‖1, (9)

where X
(n)
c and Y (n) are the nth image pair of the gener-

ated image via the coarse path and its corresponding orig-

inal input image in a mini-batch, respectively. Finally, we

define the total loss function of the generative network of

PEPSI as follows:

Ltotal = LG + λc(1−
k

kmax

)LC , (10)

where λc is a hyper-parameter controlling the contributions

from each loss term, and k and kmax represent the iteration

of the learning procedure and the maximum number of it-

erations, respectively. In the proposed method, as the train-

ing progresses, we slightly reduce the weights of the coarse

path loss for the decoding network to focus on the image

reconstruction process.

4. Experiments

4.1. Implementation details

Free-Form Mask As shown in Figure 7(b), traditional

methods [10, 21, 28] usually adopt the regular mask (e.g.

hole region with rectangular shape) during the training pro-

cedure. Thus, the network trained with regular mask of-

ten yields visual artifacts such as color discrepancy and

blurriness when the hole region has irregular shapes. To

cope with this problem, Yu et al. [27] adopt the free-form
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Figure 6. Comparison of our method and conventional methods on randomly square masked CelebA-HQ datasets. (a) The ground truth

(b) The input image of the network (c) Results of the Context Encoder [21] (d) Results of the Globally-Locally [10] (e) Results of the gated

convolution [27] (f) Results of the proposed method

Figure 7. Examples of (a) the original image, (b) its square masked

image, and (c) the free-form masked image

mask algorithm during the training procedure, which auto-

matically generates multiple random free-form holes as de-

picted in Figure 7(c). In particular, this algorithm produces

the free-form mask by drawing multiple different lines and

erasing pixels closer than an arbitrary distance from these

lines. For a fair comparison, we adopt the same free-form

mask generation algorithm to our method.

Training Procedure PEPSI is trained for one million it-

erations using a batch size of 8 in an end-to-end manner.

We perform optimization using the ADAM optimizer [12],

which is a stochastic optimization method with adaptive es-

timation of moments. The parameters of Adam optimizer,

β1 and β2, are set to 0.5 and 0.9, respectively. Inspired

by [9], we employ two-timescale update rule (TTUR) where

the learning rates of the discriminator and generator are

0.0004 and 0.0001, respectively. In addition, we reduce the

learning rate as 1/10 after 0.9 million iterations. The hyper-

parameters in our model are set to λi = 10, λc = 5, and

λadv = 0.1. Our experiments were conducted on CPU In-

tel(R) Xeon(R) CPU E3-1245 v5 and GPU TITAN X (Pas-

cal), and implemented in TensorFlow v1.8.

4.2. Performance Evaluation

For our experiments, we use the CelebA-HQ [11, 18],

ImageNet [14], and Place2 [30] datasets which consist of

human faces, things, and various scenes, respectively. In

the CelebA-HQ dataset, we randomly sample the 27,000

images as a training set and 3,000 ones as a test set. We

also train the network with all the images in the ImageNet

dataset and test it on Place2 dataset to measures the perfor-

mance of trained deep learning models on other datasets to

confirm the generalization ability of PEPSI. In addition, to

demonstrate the superiority of PEPSI, we compare its qual-

itative, quantitative, and operation speed results with those

of the conventional generative methods: CE [21], GL [10],

GCA [28], and GatedConv [27].
Qualitative Comparison We compare the qualitative

performance of PEPSI with the conventional methods us-

ing the image masked with the free-form mask as well as

that with the squared mask. The conventional methods are

implemented by following the training procedure in each

paper. As shown in Figures 6 and 8, CE [21] and GL [10]

show obvious visual artifacts including blurred or distorted

images in the masked region, especially on the free-form

mask. Although GatedConv [27] shows a fine performance,

it shows lack of relevance between hole and background re-

gions such as symmetry of eyes. In contrast to the conven-

tional methods, PEPSI shows visually pleasing results and

high relevance between hole and background regions.

Moreover, we show the real application of PEPSI by

testing on the challenging datasets, ImageNet and Place2

datasets. We compare PEPSI with GatedConv and the

widely available non-generative method, PatchMatch [1],
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Square mask Free-form mask

Time (ms)
Method

PSNR
SSIM

PSNR
SSIM

Local Global Local Global

CE [21] 17.7 23.7 0.872 9.7 16.3 0.794 5.8

GL [10] 19.4 25.0 0.896 15.1 21.5 0.843 39.4

GCA [28] 19.0 24.9 0.898 12.4 18.9 0.798 22.5

GatedConv [27] 18.7 24.7 0.895 21.2 27.8 0.925 21.4

GatedConv ∗ 17.5 23.5 0.882 19.8 26.4 0.910 14.3

PEPSI(Ours) 19.5 25.6 0.901 22.0 28.6 0.929
9.2

PEPSI ∗ 19.2 25.2 0.894 21.6 28.2 0.923

Table 6. Results of global and local PSNR, SSIM and operation time with both of square and free-formed masks on CelebA-HQ dataset.

* means a model without coarse results.

Figure 8. Comparison of our method and conventional methods on free-form masked CelebA-HQ datasets. (a) The ground truth (b) The in-

put image of the network (c)Results of the Context Encoder [21] (d) Results of the Globally-Locally [10] (e) Results of the GatedConv [27]

(f) Results of the proposed method

on the Place2 dataset with 256 × 256 image resolution.

As depicted in Figure 9, PatchMatch shows visually poor

performance especially on the edge of images because it

fills the hole region without understands of the contexts of

scenes. GatedConv generates more realistic results with-

out color discrepancy or edge distortion but still produces

wrong textures. In contrary, PEPSI generates the most natu-

ral images without artifacts or distortion on various contents

and complex scenes for real applications.

Quantitative Comparison We evaluate a performance

of the proposed and conventional methods by measuring

the peak signal-to-noise ratio (PSNR) of the local and

global regions, i.e. the hole region and the whole image,

and the structural similarity (SSIM) [23]. Table 6 pro-

vides the comprehensive performance benchmarks between

PEPSI and conventional ones [10, 21, 27, 28] on CelebA-

HQ datasets [11]. As shown in Table 6, CE [21], GL [10],

and [28] effectively fill the hole region with a square shape,

but they could not complete the hole region with an irregu-

lar shape. Since these methods mainly focus on filling the

holes with a rectangular shape, they could not generalize

well on the free-form masks. Note that GL [10] shows a

competitive PSNR value with the PEPSI only in the local

region of the square mask since it applies a image blend-

ing technique as the post-processing. However, this post-

processing yields blurred results as shown in Figure 6(d)

and needs more computation time. GatedConv [27] shows

fine performance on both of square and free-form holes, but

also needs much computation time. Contrary to the conven-

tional methods, PEPSI can complete any shape of the hole

region, while reducing the operation time significantly.

For further study, we conduct an experiment in which the

models, GatedConv and PEPSI, are trained without using

the coarse results, i.e. GatedConv without using the coarse

network and PEPSI without using the coarse path learn-

ing. As shown in Table 6 (models without coarse results
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Figure 9. Comparison of our method and conventional methods on Place2 datasets. (a) The ground truth (b) The input image of the network

(c) Results of the non-generative method, PatchMatch (d) Results of the GatedConv [27] (e) Results of the proposed method

Mask Method
PSNR

SSIM
Local Global

Square
GatedConv [27] 14.2 20.3 0.818

PEPSI(Ours) 15.2 21.2 0.832

Free-form
GatedConv [27] 17.4 24.0 0.875

PEPSI(Ours) 18.2 24.8 0.882

Table 7. Results of global and local PSNR and SSIM on the

Places2 dataset.

are denoted by *), even without the coarse results, PEPSI

shows better results compared to the full model of Gat-

edConv thanks to the modified CAM and RED. With the

coarse path learning, PEPSI exhibits the better than PEPSI

without using coarse results in terms of all the Quantitative

metrics, which indicates that the coarse path drives the en-

coding network to produce missing features properly for the

CAM. In other words, the single-stage network structure of

PEPSI can overcome the limitation of the two-stage coarse-

to-fine network through a parallel learning scheme.

To demonstrate the generalization ability of PEPSI, we

conduct another experiment using the challenging datasets,

ImageNet [14], and Place2 [30] datasets. Table 7 shows the

experimental results of the test using the input image with

the resolution of 256 × 256. We compare the performance

of PEPSI with GatedConv [27], which exhibits superior

performance compared to other conventional methods in

Celeb-A dataset. As shown in Table 7, PEPSI achieves bet-

ter performance than GatedConv on Place2 dataset, which

indicates that the PEPSI can consistently generate the high-

quality results from various contents and complex scenes

either.

5. Conclusion

In this paper, a novel image inpainting method, called

PEPSI, has been proposed. As shown in the experimen-

tal results, the proposed method not only achieves supe-

rior performance as compared to conventional ones, but

also significantly reduces the operation time by redesign-

ing unifying two-stage coarse-to-fine network into an effi-

cient single-stage network structure and adopting an effec-

tive joint learning scheme for training the proposed archi-

tecture. Therefore, it is expected that PEPSI can be widely

employed in various applications including image genera-

tion, style transfer, and image editing. Further improve-

ments can be achieved by reducing the parameters of the

network, which helps to be applied to restricted hardware

systems.
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