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Abstract

We propose an approach for unsupervised adaptation

of object detectors from label-rich to label-poor domains

which can significantly reduce annotation costs associated

with detection. Recently, approaches that align distribu-

tions of source and target images using an adversarial loss

have been proven effective for adapting object classifiers.

However, for object detection, fully matching the entire dis-

tributions of source and target images to each other at the

global image level may fail, as domains could have distinct

scene layouts and different combinations of objects. On

the other hand, strong matching of local features such as

texture and color makes sense, as it does not change cate-

gory level semantics. This motivates us to propose a novel

method for detector adaptation based on strong local align-

ment and weak global alignment. Our key contribution is

the weak alignment model, which focuses the adversarial

alignment loss on images that are globally similar and puts

less emphasis on aligning images that are globally dissim-

ilar. Additionally, we design the strong domain alignment

model to only look at local receptive fields of the feature

map. We empirically verify the effectiveness of our method

on four datasets comprising both large and small domain

shifts. Our code is available at https://github.com/

VisionLearningGroup/DA_Detection.

1. Introduction

Deep convolutional neural networks have greatly im-

proved object recognition accuracy [17], but remain reliant

on large quantities of labeled training data. For object detec-

tion, annotation is particularly burdensome: each instance

of an object category in every image must be annotated with

a precise bounding box. Transferring pre-trained models

from label-rich domains is an attractive solution, but dataset

bias often reduces their generalization to novel data [30].

Various methods for unsupervised domain adaptation
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Figure 1. Upper: Our Strong-Weak model learns domain-invariant

features that are strongly aligned at the local patch level and

weakly (partially) aligned at the global scene level. Lower: Global

features obtained by our proposed weak alignment method on Pas-

cal to Clipart. The target features are partially aligned with source,

which improves detection performance, as shown in our experi-

ments.

(UDA) have been proposed to tackle the dataset bias prob-

lem [10, 40, 39, 24], most of which are based on domain-

invariant alignment of the feature [31] or image [20, 14]

distributions. Recent methods align the source and target

distributions of examples using adversarial learning and are

motivated by theoretical results that bound the generaliza-

tion error partially by the size of the discrepancy between

domains [2, 1]. The conventional wisdom is therefore that
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discrepancy must be reduced at all costs, which can only

be done if one fully aligns the distributions. In this paper,

we argue that such strong domain alignment is only reason-

able in closed problems, such as object classification set-

tings where the source and target examples share the same

categories and prior label distributions. In settings such as

open-set classification [4, 33] or partial domain adaptation

[41], strong alignment can be infeasible and could actually

hurt performance.

In object detection this is particularly evident, as aligning

global (image-level) features means that not only the object

categories, but also backgrounds and scene layouts must be

similar across domains. Yet this is precisely what the cur-

rent state-of-the-art UDA method for detection, Adaptive

Faster RCNN [5], attempts to do. It trains Faster RCNN

with a domain classifier trained to distinguish source and

target examples, while the feature extractor learns to de-

ceive the domain classifier. Feature alignment is done both

at the global image scale and at the instance (object) scale.

While the global matching might work well for small

domain shifts that only affect the appearance/texture of ob-

jects (e.g. weather related shifts), it is likely to hurt perfor-

mance for larger shifts that affect the layout of the scene, the

number of objects and/or their co-occurrence. For example,

source images may contain single objects, while target im-

ages may contain multiple smaller objects. Forcing invari-

ance to such global features can hurt performance.On the

other hand, strong alignment of local features would match

the texture or color of the domains and should improve per-

formance in most cases, because it will not change the cat-

egory information but is likely to reduce the domain gap.

In this paper, by “local” scale we do not mean the instance

(object) scale but rather texture or color features with small

receptive fields.

Motivated by these observations, we propose an unsu-

pervised adaptation method for object detection that com-

bines weak global alignment with strong local alignment,

called the Strong-Weak Domain Alignment model (top of

Fig. 1). We propose to apply weak alignment to the global

features, partially aligning them to reduce the domain gap

without hurting the performance of the model. We show

an example of weak global alignment in the bottom of

Fig. 1, where only the target images which contain one ob-

ject are aligned with the source. Our key contribution is the

weak global alignment model, which focuses the adversar-

ial alignment loss toward images that are globally similar,

and away from images that are globally dissimilar. Addi-

tionally, we achieve strong local alignment by constructing

a domain classifier designed to look only at local features

and to strictly align them with the other domain. We verify

the effectiveness of our method in adaptation between both

similar and dissimilar domains.

2. Related Work

Object Detection. The development of deep convolutional

neural networks has boosted the performance of object de-

tection. Having a strong backbone feature extractor is key

for accurate detection models. Current detection networks

can be categorized into two types: two-stage and one-stage.

Faster-RCNN (FRCNN) [29] is a representative two-stage

detector that generates coarse object proposals using region

proposal networks (RPN) as the first stage, and feeds the

proposals and cropped features into a classification mod-

ule as the second stage. In this paper, we use the FRCNN

as a base detector, however, our method should be appli-

cable to other two-stage detectors and one-stage detectors

such as YOLO [28] or SSD [21]. Detector back-bone net-

works are usually pre-trained on ImageNet [7] and need to

be fine-tuned again with a large number of annotated object

bounding boxes. Various datasets have been publicized for

this purpose [8, 7, 19]. To deal with the deficit in such large

annotated datasets, weakly supervised and semi-supervised

object detection has been proposed in the literature [38, 3].

Although cross-domain object detection and especially un-

supervised cross-domain object detection can also help with

this problem, as far as we know, there is only one work that

has tackled the task of unsupervised domain transfer of deep

object detectors [5]. In this work, the feature alignment at

the instance (object) scale was done for features cropped by

region proposals. To effectively conduct feature alignment,

region proposals have to precisely localize objects of inter-

est. However, this is difficult to do for the target domain as

we are not given ground truth proposals. The feature align-

ment may therefore hurt the performance of the model as we

show in our experiments, which is why we do not conduct

instance scale alignment in our work.

Domain Adaptation. The problem of bridging a gap be-

tween domains has been investigated for various visual ap-

plications such as image classification and semantic seg-

mentation [30, 40, 43, 35]. To solve the problem, a large

number of methods utilize feature distribution matching be-

tween training and testing domains. The basic idea is to

measure some type of distance between different domains’

feature distributions and train a feature extractor to mini-

mize that distance. Various ways of measuring the distance

have been proposed [9, 40, 39, 22, 24, 32]. Motivated by a

theoretical result [2, 1], various approaches utilize the do-

main classifier [9, 40, 39] to measure domain discrepancy.

They train a domain classifier and feature extractor in an ad-

versarial way, as done for training GANs [11]. Such meth-

ods are designed to strictly align the feature distribution of

the target with that of the source. In addition, Long et al. de-

signed a loss function of the domain classifier to fully match

features between domains [23] for image classification.

In this paper, we instead propose a weak feature align-

ment model for global features, and use strong alignment
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only at the local level to strictly align the style of images

across domains. Some research on GANs and domain adap-

tive semantic segmentation has shown that regularizing the

domain classifier with task-specific classification loss can

stabilize the adversarial training [26, 35]. Motivated by this

approach, we further propose a method to regularize the do-

main classifier by the detection loss on source examples.

3. Method
The architecture of our proposed Strong-Weak DA

model is illustrated in Fig. 3. We extract global features

just before the RPN and local features from lower layers,

and perform weak global alignment in the high-level fea-

ture space and strong local alignment in the low-level fea-

ture space. We further propose to stabilize the training of

domain classifiers with the detection loss (Sec. 3.3).

3.1. Weak Global Feature Alignment
We utilize a domain classifier to align the target features

with the source for the global-level feature alignment. Easy-

to-classify target examples are far from source examples in

the feature space while hard-to-classify target examples are

near the source as shown in the left of Fig. 2. Therefore, fo-

cusing on hard-to-classify examples should achieve a weak

alignment between domains. We propose to train a domain

classifier to ignore easy-to-classify examples while focus-

ing on hard-to-classify examples with respect to the classi-

fication of the domain.

We have access to a labeled source image xs and bound-

ing boxes for each image ys drawn from a set of annotated

source images {Xs, Ys}, as well as an unlabeled target im-

age xt drawn from unlabeled target images Xt. The global

feature vector is extracted by F . The domain classifier, Dg ,

is trained to predict the domain of input global features.

Our learning formulation optimizes F so that the features

are discriminative for the primary task of object detection,

but are uninformative for the task of domain classification.

The domain-label d is 1 for the source and 0 for the target.

The network R takes features from F and outputs bounding

boxes with a class label. R includes the Region Proposal

Network (RPN) and other modules in Faster RCNN. The

objective of the detection loss is summarized as:

Lcls(F,R) = −
1

ns

ns
∑

i=1

Ldet(R(F (xi
s)), yi

s) (1)

where we assume that Ldet contains all losses for detection

such as a classification loss and a bounding-box regression

loss. ns denotes the number of source examples.

In existing methods [5], the objective for domain classifi-

cation is the cross-entropy loss. As shown in Fig. 2, the loss

of the easy-to-classify examples, which have high probabil-

ity, is not negligible in this cross-entropy loss. This indi-

cates that Dg and F account for all examples in the training

procedure. Therefore, F tries to match the entire feature
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Figure 2. Left: Weak-distribution alignment using a domain clas-

sifier. Right: Standard cross-entropy loss and focal loss.

distribution, which is not desirable in domain adaptive ob-

ject detection.

Instead, we want the domain classifier to ignore easy-to-

classify examples while focusing on hard-to-classify exam-

ples. The problem with cross-entropy (CE) loss (− log p) is

that it puts non-negligible values of easy-to-classify exam-

ples where p ∈ [0, 1] is the model’s estimated probability

for the class with label d = 1. We propose to add a modu-

lating factor f(pt) to the cross-entropy loss, resulting in

− f(pt) log(pt) (2)

where we define pt:

pt =

{

p if d = 1

1− p otherwise.
(3)

We choose a function that decreases as pt increases. One

example of such a loss function is Focal Loss (FL) [18]

FL(pt) = −f(pt) log(pt), f(pt) = (1− pt)
γ (4)

where γ controls the weight on hard-to-classify examples.

FL is designed to put more weight on hard-to-classify ex-

amples than on easy ones during training, as shown in the

right of Fig. 2. The feature extractor tries to deceive the do-

main classifier, that is, tries to increase the loss. However,

the feature extractor cannot align the well-classified target

examples with the source because the scale of gradients of

such examples is very small. The same can be said about

aligning source examples to the target. f(pt) can take other

formulations if it satisfies the requirement described above.

In experiments, we will show the result of another loss func-

tion that satisfies the condition. We denote the loss of the

weak global-level domain classifier as Lglobal as follows,

Lglobals = −
1

ns

ns
∑

i=1

(1−Dg(F (xi
s))γ log(Dg(F (xi

s))) (5)

Lglobalt = −
1

nt

nt
∑

i=1

Dg(F (xi
t))γ log(1−Dg(F (xi

t))) (6)
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Figure 3. Proposed Network Architecture. Our method performs strong-local alignment by a local domain classifier network and weak-

global alignment by a global domain classifier. The context vector is extracted by the domain classifiers and is concatenated in the layer

before the final fully connected layer.

Lglobal(F,Dg) =
1

2
(Lglobals + Lglobalt) (7)

where nt denotes the number of target examples.

The gradients of this loss should change the parameters

of low-level layers, which should also align low-level fea-

tures, but the effect may not be strong enough. We thus

propose to directly perform the alignment in local-level fea-

tures in the next sub-section.

3.2. Strong Local Feature Alignment
The architecture of the local domain classifier, Dl, is de-

signed to focus on the local features rather than global fea-

tures. Dl is a fully-convolutional network with kernel-size

equal to one. The feature extractor F is decomposed as

F2 ◦ F1 and the output of F1 is the input to Dl as shown in

Fig. 3. F1 outputs a feature whose width and height is W

and H respectively. Dl outputs a domain prediction map

which has the same width and height as the input feature.

We employed a least-squares loss to train the domain clas-

sifier following [25, 42]. This loss function stabilizes the

training of the domain classifier and is empirically shown

to be useful for aligning low-level features. The loss func-

tion of the strong local alignment Lloc is summarized as

Llocs =
1

nsHW

ns
∑

i=1

W
∑

w=1

H
∑

h=1

Dl(F1(xi
s))2wh (8)

Lloct =
1

ntHW

nt
∑

i=1

W
∑

w=1

H
∑

h=1

(1−Dl(F1(xi
t))wh)

2 (9)

Lloc(F,Dl) =
1

2
(Llocs + Lloct) (10)

where Dl(F1(xi
s))wh denotes the output of the domain

classifier in each location. The loss is designed to align each

receptive field of features with the other domain.

3.3. Context Vector based Regularization
We further propose a regularization technique to improve

the performance of our model. As discussed above, regular-

izing the domain classifier with the segmentation loss was

effective for stabilizing the adversarial training in domain

adaptive segmentation [35]. The authors designed a domain

classifier that outputs both the domain label and a semantic

segmentation map. Motivated by this approach, we propose

to stabilize the training of the domain classifier by the detec-

tion loss computed on source examples. We extract vectors

v1 and v2 from the middle layers of the two domain classi-

fiers respectively. These vectors should contain information

about whole input image, which we call “context”. Then,

we concatenate the vectors with all region-wise features as

shown in Fig. 3 and train the domain classifiers to minimize

the detection loss on source examples as well as minimize

domain classification loss. During the test phase, the vec-

tors are forwarded to obtain outputs.

3.4. Overall Objective
We denote the objective of detection modules as Ldet,

which contains the loss for region proposal networks and

final classification and localization error. The adversarial

loss Ladv(F,D) is summarized as,

Ladv(F,D) = Lloc(F1, Dl) + Lglobal(F,Dg) (11)

Combined with the loss of detection on source examples,

the overall objective is,

max
D

min
F,R

Lcls(F,R)− λLadv(F,D) (12)
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Table 1. Results on adpatation from PASCAL VOC to Clipart Dataset. Average precision (%) is evaluated on target images. G, I, CTX, L

indicate global alignment, instance-level alignment, context-vector based regularization, and local-alignment respectively.

Method G I CTX L aero bcycle bird boat bottle bus car cat chair cow table dog hrs bike prsn plnt sheep sofa train tv MAP

Source Only 35.6 52.5 24.3 23.0 20.0 43.9 32.8 10.7 30.6 11.7 13.8 6.0 36.8 45.9 48.7 41.9 16.5 7.3 22.9 32.0 27.8

BDC-Faster X 20.2 46.4 20.4 19.3 18.7 41.3 26.5 6.4 33.2 11.7 26.0 1.7 36.6 41.5 37.7 44.5 10.6 20.4 33.3 15.5 25.6

DA-Faster X X 15.0 34.6 12.4 11.9 19.8 21.1 23.2 3.1 22.1 26.3 10.6 10.0 19.6 39.4 34.6 29.3 1.0 17.1 19.7 24.8 19.8

Proposed

X 30.5 48.5 33.6 24.8 41.2 48.9 32.4 17.2 34.5 55.0 19.0 13.6 35.1 66.2 63.0 45.3 12.5 22.6 45.0 38.9 36.4

X X 31.7 55.2 30.9 26.8 43.4 47.5 40.0 7.9 36.7 50.0 14.3 18.0 29.2 68.1 62.3 50.4 13.4 24.5 54.2 45.8 37.5

X X X 26.2 48.5 32.6 33.7 38.5 54.3 37.1 18.6 34.8 58.3 17.0 12.5 33.8 65.5 61.6 52.0 9.3 24.9 54.1 49.1 38.1

Table 2. Results on PASCAL VOC in adaptation from PASCAL

VOC to Clipart Dataset. Average precision (%) is evaluated on

PASCAL. Our method does not degrade the performance on the

source whereas BDC-Faster and DC-Faster degrade it.

Method G I CTX L MAP

Source Only 77.5

BDC-Faster X 73.6

DA-Faster X X 66.4

Proposed

X 78.0

X X 77.6

X X X 77.0

where λ controls the trade-off between detection loss and

adversarial training loss. The sign of gradients is flipped by

a gradient reversal layer proposed by [9]. Each mini-batch

has one labeled source and one unlabeled target example.

4. Experiments

We evaluate our approach on four domain shifts–

PASCAL [8] to Clipart [15], PASCAL to Watercolor [15],

Cityscapes [6] to FoggyCityscapes [34], and GTA [16] to

Cityscapes–to demonstrate that it is effective for adaptation

between both dissimilar and similar domains. Additionally,

we provide experiments to verify our claim that complete

feature matching can degrade the performance of the model

in the target domain.

Implementation Details. In all experiments, we set the

shorter side of the image to 600 following the implemen-

tation of Faster RCNN [29] with ROI-alignment [12]. We

first trained the networks with learning rate 0.001 for 50K

iterations, then with learning rate 0.0001 for 20K more it-

erations and reported the final performance. All models

are trained with this scheduling and we reported the per-

formance trained after 70K iterations. Without specific no-

tation, we set λ as 1.0 and γ as 5.0. We implemented all

methods with Pytorch [27]. Please see our supplemental

material for the detail of the network architecture.

We compared our method with three baselines: FRCNN

model, FRCNN with a baseline domain classifier, and do-

main adaptive FRCNN (DA-Faster) [5]. FRCNN model

was trained only on source examples without any adapta-

tion. The FRCNN with a baseline domain classifier has

exactly the same architecture as our proposed weak-global

alignment model, but its domain classifier is trained with

cross-entropy loss in Eq. 5 and 6. The model does not

have a local-level domain classifier. By comparing with

this model, we can directly observe the effectiveness of our

proposed weak alignment approach. Hereafter, we call the

baseline BDC-Faster. DA-Faster [5] employs two domain

classifiers, an image-level one for high-level features and

an instance-level one for features cropped by the region

proposal network. Both domain classifiers are trained by

cross-entropy loss. In addition, it utilizes a technique called

consensus regularization, which makes the outputs of two

domain classifiers similar. Since we did not observe any

benefit of the technique, we report the results without it.

Since we implemented the method ourselve, the results re-

ported in the original paper and in our paper are different.

We denote their reported performance as DA-Faster*.

4.1. Adaptation between dissimilar domains

We first show experiments on dissimilar domains, specif-

ically, adaptation from real images to artistic images. We

utilized the Pascal VOC Dataset as the real source domain

[8]. This dataset contains 20 classes of images and their

bounding box annotations. Following a prevalent evalua-

tion protocol, we employed PASCAL VOC 2007 and 2012

training and validation splits for training, resulting in about

15k images. The target domain consists of either the Cli-

part or the Watercolor datasets [15]. Clipart contains comi-

cal images whereas Watercolor has artistic images. Clipart

contains 1K images in total, which have the same 20 cat-

egories as PASCAL VOC. All images were used for both

training (without labels) and testing. Watercolor contains

6 categories in common with PASCAL and 2K images in

total. 1K training images were utilized during training and

our model is evaluated on 1K test images. In this experi-

ment, we used the ResNet101 [13] pre-trained on [7] as a

backbone network. For other details see our supplemental

material.

Results on Clipart. As shown in Table 1, our proposed

method outperformed all baselines. Just by replacing the

domain classifier’s objective with the focal loss, MAP im-

proved by 10.8% (25.6 to 36.4). In addition, the context

vector based regularization and local alignment (C, L in
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(a) Proposed (MAP: 36.4) (b) Baseline DC (MAP: 25.6) (c) Proposed (MAP: 29.1) (d) baseline DC (MAP: 27.6)

Figure 4. Visualization of features obtained by two different models. Blue: source examples, Red: target examples. Fig. (a) and (b) are

the results of adaptation between dissimilar domains (from pascal to clipart). For Fig. (a), images with green lines are from PASCAL

VOC (source). Images with orange lines are from Clipart (target). Our method does not match feature distributions strictly whereas the

baseline method matches. However, our method outperformed the baseline with a large margin, which demonstrates the effectiveness of

global-weak alignment. Fig. (d) and (c) are adaptation between similar domains (from Cityscape to FoggyCityscape). When the domains

are very similar, the baseline method works well though our method performs better.

Table), further improved MAP. The performance on the

source domain, PASCAL VOC, is shown in Table 2. Com-

pared with the performance of the source only model, BDC-

Faster and DA-Fastster significantly decrease its perfor-

mance. This fact indicates that strictly aligning feature dis-

tributions between different domains can disturb the train-

ing for object detection while our method does not degrade

the performance on the source domain.

We further visualized the features obtained by two mod-

els, our proposed global-level adaptation model and BDC-

Faster in Fig. 4(a) and 4(b). The target features obtained

by a baseline domain classifier are matched compactly with

the source domain (Fig. 4(b)). On the other hand, with

our proposed method (Fig. 4(a)), some features are aligned

with the source features, but most of them are separated

from source features. Source images usually focus on one

or two objects whereas target images usually contain mul-

tiple images. Some target images focusing on single object

are likely to be aligned with source as shown in the fig-

ure. Many existing methods for image classification aimed

to match the feature distributions closely. However, this vi-

sualization implies that such distribution matching does not

always help domain adaptive object detection.

Results on Watercolor. According to Table 3, our method

outperformed the baseline methods. There was a large im-

provement on this domain. The improvement by the local

alignment is especially large, about 3%, because the target

images have a characteristic “painting” style. Therefore, the

reducing the domain-gap based on local-level features im-

proves the performance.

4.2. Adaptation between similar domains

In this experiment, we aim to analyze our method by

evaluating the adaptation between very similar domains.

We used Cityscape [6] as the source domain. The images

Table 3. AP on adpatation from PASCAL VOC to WaterColor (%).

The definition of G, I, CTX, L is following Table 1.

AP on a target domain

Method G I CTX L bike bird car cat dog prsn MAP

Source Only 68.8 46.8 37.2 32.7 21.3 60.7 44.6

BDC-Faster X 68.6 48.3 47.2 26.5 21.7 60.5 45.5

DA-Faster X X 75.2 40.6 48.0 31.5 20.6 60.0 46.0

Proposed

X 66.4 53.7 43.8 37.9 31.9 65.3 49.8

X X 71.3 52.0 46.6 36.2 29.2 67.3 50.4

X X X 82.3 55.9 46.5 32.7 35.5 66.7 53.3

Table 4. AP on adaptation from Cityscape to FoggyCityscape (%).

The performance of our method is very near to oracle, which is

trained on labeled target images.

AP on a target domain

Method G I CTX L bus bcycle car bike prsn rider train truck MAP

Faster RCNN 22.3 26.5 34.3 15.3 24.1 33.1 3.0 4.1 20.3

BDC-Faster X 29.2 28.9 42.4 22.6 26.4 37.2 12.3 21.2 27.5

DA-Faster X X 33.1 23.3 25.5 15.6 23.4 29.0 10.9 19.6 22.5

DA-Faster* X X 25.0 31.0 40.5 22.1 35.3 20.2 20.0 27.1 27.6

Proposed

X 33.5 33.3 42.7 22.2 27.1 40.3 11.6 22.3 29.1

X 34.3 32.2 36.2 23.7 27.5 39.3 5.4 24.4 27.9

X X 38.0 31.2 41.8 20.7 26.6 37.6 19.7 20.5 29.5

X X X 36.2 35.3 43.5 30.0 29.9 42.3 32.6 24.5 34.3

Oracle 50.0 36.2 49.7 34.7 33.2 45.9 37.4 35.6 40.3

in the dataset are captured by a car-mounted video cam-

era. As the target domain, we used FoggyCityscape datasets

[34]. The images are rendered from Cityscape using depth

information and it simulates the change of weather condi-

tion. The important difference from other adaptation sce-

nario is that source and target images are originally the

same one. Target images are generated from source images

by adding fog noise. In such adaptation scenario, strictly

aligning feature distributions should be effective because

there exists a correct matching between source and target

images. Both dataset have 2, 975 images in the training set,
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Table 5. Results on adpatation from Sim10k to Cityscape Dataset

(%). Average precision is evaluated on target images. FL (γ =

3)* indicates the experiments in which shorter side of image is

scaled to 1000 during training and testing. P indicates pixel-level

alignment, whether we used images generated by cyclegan during

training. † indicates the performance when the context vector is

zero-padded and not used for the output.

Method G I CTX L P AP on Car

Faster RCNN 34.6

BDC-Faster X 31.8

DA-Faster X X 34.2

DA-Faster* X X 38.9

Weak Align X X 35.8

Proposed (FL)

X 36.4

X X 38.2 (38.3)†
X X X 40.1

X X X 41.5

X X X X 40.7

Proposed Method with different parameters

EFL X X 38.7

FL (γ = 3) X X 42.3

FL (γ = 3)* X X X 47.7

Oracle 53.1

and 500 images in the validation set. We utilized the train-

ing set during training and evaluated on the validation set.

Since Cityscapes dataset does not have bounding-box anno-

tation, we take the tightest rectangles of its instance masks

as groundtruth bounding boxes. We used the VGG16 model

[37] as a backbone network following [5].

As shown in Table 4, our proposed method performed

much better than the baseline methods. MAP of a model

with only strong local alignment was 27.9. Combining

strong local and weak global alignment boosted MAP to

34.3. The domain-shift is caused by fog noise, a local-level

shift. Hence, strong local alignment largely contributed to

the improvement. In this adaptation scenario, the method

with a baseline domain classifier performs better than the

source only model. This is because the target images have

exactly the same layout and number/combination of objects.

Thus, strong alignment between different domains was ef-

fective. The visualized features in Fig. 4 show completely

different characteristics from the experiments on PASCAL

to Clipart dataset. The features are matched in both meth-

ods. The results indicate that our proposed method performs

both when two domains are dissimilar and similar.

4.3. Adaptation from synthetic to real images

We evaluate the performance of our model in an adapta-

tion from synthetic images to real images. As the synthetic

domain, we used Sim10k [16]. The dataset contains im-

ages of the synthetic driving scene, 10,000 training images

which are collected from the computer game Grand Theft

Auto (GTA). We employed the same architecture as used in

the previous section. Following the protocol of [5], we eval-

uated detection performance on car. As a real domain, we

used Cityscape. All training images are used during train-

ing for both domains. Average precision was evaluated on

the validation split of the Cityscape. We set the value of

λ = 0.1 following [5] in Eq. 12. We show the performance

when varying the value of λ in our supplemental material.

The two domains have similar layout in that both domains

are driving scene images. However, the color and lighting

are clearly different. In this respect, the two domains are

more different than Cityscape and Foggycityscape are. We

extensively evaluated our method by ablating some compo-

nents. Moreover, we show the results using instance-level

adaptation as proposed in [5]. We also show the compar-

ison and results of combination with a model trained with

images translated by CycleGAN [42]. We trained Cycle-

GAN to translate different domains’ images, then utilized

the translated source images for training. Whether we em-

ployed the translated images is denoted by the colum of P

in Table 5. The details are shown in supplemental material.

In addition, we demonstrate that our idea of weak alignment

can be achieved with a loss function other than focal loss. In

Eq. 2, we set f(pt) = e−ηpt , which is a decreasing function

with the value of pt. We call the loss function exponential

focal loss (EFL). We set η = 5.0.

The results are summarized in Table 5. Our method con-

stantly performed better than the baseline models. Compar-

ing the results of BDC-Faster (31.8) and our method with

only global-level alignment (36.4), the weak feature distri-

bution alignment outperformed the strict alignment. Setting

the value of γ = 3.0 in Focal Loss significantly improved

the performance. In addition, with regard to a model trained

with EFL, we could observe the improvement over the base-

line models. The results demonstrate that our idea of weak

global alignment is effective and can be achieved by func-

tions other than Focal Loss.

Context vector based regularization and local-level

alignment further improved the performance. The perfor-

mance did not degrade when we did not use the context vec-

tor in test phase as seen in the table. This implies that the

network does not use the vector for the prediction whereas

the performance improved compared to the model without

the regularization. Therefore, the context vector seems to

contribute to the regularization of the domain classifier.

We could not see a positive effect of instance-level adap-

tation (Weak Align in Table 5). Instance-level alignment

utilizes the cropped features by region proposal networks,

but the proposals may not localize objects in the target do-

main well, so it can hurt the performance of the model.

4.4. Analysis

Examples of detection results. We show the examples

of detection results in Fig. 5. Even when the style of

the images is different between the source and target, our
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Bird: 1.00

Bird: 0.91

Bird: 1.00

Bird: 1.00

Person: 1.0

Bottle: 0.88

Cat: 0.91

Motorbike: 1.00

Person: 0.99

Person Person

Person

Car

Car Car Car Car

Bicycle Bicycle

Car

Bicycle CarCarCarCar

Figure 5. Upper: Examples of detection results on the target domain. From left to right column, Clipart, Watercolor, FoggyCityscape and

Cityscape dataset. Bottom: Visualization of domain evidence using Grad-Cam. The evidence is obtained by the global-domain classifier.

The pictures show results on target (Top) and source images (Bottom). From left to right, input images, images of evidence for the target,

evidence of the source domain. The feature extractor seems to focus on deceiving the domain classifier in regions with cars.

model localizes objects correctly in these cases. As seen

in Clipart’s example, when the appearance of the objects

is largely different, the detection results are not success-

ful. Also, as seen in case of Watercolor, the detector tends

to output multiple predictions to one object. In case of

FoggyCityscape’s examples, our model tends to assign one

bounding box to multiple neighboring bicycles.

Visualization of domain evidence. To analyze the behav-

ior of the feature extractor and domain classifier, we visu-

alize the evidence for the global-level domain classifier’s

prediction using Grad-cam [36] in Fig. 5. We use Grad-cam

to show the evidence (heatmap) for why the domain classi-

fier thinks the image comes from the source or the target,

for the adaptation from Sim10k to Cityscapes. Please see

our supplemental material for other examples. For the tar-

get images, the domain classifier does not look at cars as the

evidence for the target. Similarly, for source images, it also

does not look at cars as the evidence for the source. This

indicates that the feature extractor seems to focus on cars

to deceive the domain classifier, which means that the fea-

ture extractor learns to partially align global-image features,

specifically around cars.

5. Conclusion

In this work, we propose a novel approach for detec-

tor adaptation based on strong local alignment and weak

global alignment for unsupervised adaptation of object de-

tectors. Our key contribution is the weak alignment model,

which focuses the adversarial alignment loss on images that

are globally similar and puts less emphasis on aligning im-

ages that are globally dissimilar. Additionally, we design

the strong domain alignment model to only look at local

receptive fields of the feature map. Our method outper-

formed other existing methods with a large-margin in sev-

eral datasets. Through extensive experiments, we verified

the effectiveness of weak global and strong local align-

ment.
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