
Efficient Parameter-free Clustering Using First Neighbor Relations

M. Saquib Sarfraz1,2, Vivek Sharma1, Rainer Stiefelhagen1

1Karlsruhe Institute of Technology
2Daimler TSS, Germany

{firstname.lastname}@kit.edu

Abstract

We present a new clustering method in the form of a

single clustering equation that is able to directly discover

groupings in the data. The main proposition is that the first

neighbor of each sample is all one needs to discover large

chains and finding the groups in the data. In contrast to most

existing clustering algorithms our method does not require

any hyper-parameters, distance thresholds and/or the need

to specify the number of clusters. The proposed algorithm

belongs to the family of hierarchical agglomerative methods.

The technique has a very low computational overhead, is

easily scalable and applicable to large practical problems.

Evaluation on well known datasets from different domains

ranging between 1077 and 8.1 million samples shows sub-

stantial performance gains when compared to the existing

clustering techniques. [code release]

1. Introduction

Discovering natural groupings in data is needed in virtu-

ally all areas of sciences. Despite half a decade of research

in devising clustering techniques there is still no universal so-

lution that 1.) can automatically determine the true (or close

to true) clusters with high accuracy/purity; 2.) does not need

hyper-parameters or a priori knowledge of data; 3.) general-

izes across different data domains; and 4.) can scale easily

to very large (millions of samples) data without requiring

prohibitive computational resources. Clustering inherently

builds on the notion of similarity. All clustering techniques

strive to capture this notion of similarity by devising a crite-

rion that may result in a defined local optimal solution for

groupings in the data. Well known center-based methods

(e.g., Kmeans) iteratively assign points to a chosen number

of clusters based on their direct distance to the cluster center.

Agglomerative clustering methods merge points based on

predefined distance thresholds. More recent methods build

similarity graphs (e.g., spectral clustering techniques) from

the pairwise distances of the points and solve a graph par-

titioning problem by using these distances as edge weights

and the sample points as nodes. All existing clustering tech-

niques use some form of prior knowledge/assumptions on

defining the similarity goal to obtain specific groupings in

the data. This prior knowledge comes in the form of setting

number of clusters in advance or setting distance thresholds

or other hyper-parameters that render a user defined notion

of similarity for obtaining groupings. These choices are

subjective and must change when the underlying data dis-

tribution changes. This means that these parameters are not

stable and need to be adjusted for each data set. This makes

the clustering problem very hard as no standard solution can

be used for different problems.

In this paper, we describe an efficient and fully parameter-

free unsupervised clustering algorithm that does not suffer

from any of the aforementioned problems. By “fully”, we

mean that the algorithm does not require any user defined

parameters such as similarity thresholds, or a predefined

number of clusters, and that it does not need any a priori

knowledge on the data distribution itself. The main premise

of our proposed method is the discovery of an intriguing

behavior of chaining large number of samples based on a

simple observation of the first neighbor of each data point.

Since the groupings so obtained do not depend on any pre-

defined similarity thresholds or other specific objectives, the

algorithm may have the potential of discovering natural clus-

ters in the data. The proposed method has low computational

overhead, is extremely fast, handles large data and provides

meaningful groupings of the data with high purity.

2. Related Work

Books have been written to guide through a myriad

of clustering techniques [12]. The representative algo-

rithms can largely be classified in three directions, cen-

troid/partitioning algorithms (e.g., Kmeans, Affinity Prop-

agation), hierarchical agglomerative/divisive methods and

methods that view clustering as a graph partitioning problem

(e.g., spectral clustering methods). For center-based cluster-

ing it is known that the Kmeans is sensitive to the selection

of the initial K centroids. The affinity propagation algo-

rithm [13] addresses this issue by viewing each sample as an

8934



exemplar and then an efficient message parsing mechanism

is employed until a group of good exemplars and their corre-

sponding clusters emerge. Such partition-based methods are

also commonly approached by choosing an objective func-

tion and then developing algorithms that approximately opti-

mize that objective [29, 1, 32]. Spectral Clustering (SC) and

its variants have gained popularity recently [36]. Most spec-

tral clustering algorithms need to compute the full similarity

graph Laplacian matrix and have quadratic complexities,

thus severely restricting the scalability of spectral clustering

to large data sets. Some approximate algorithms have been

proposed [39, 23] to scale spectral methods. An important

clustering direction has approached these spectral schemes

by learning a sparse subspace where the data points are bet-

ter separated, see Elhamifar and Vidal’s Sparse Subspace

Clustering (SSC) [11]. The aim is to reduce the ambiguity

in the sense of distances in high dimensional feature spaces.

Recently many methods approach estimating such subspaces

by also using low-rank constraints, see Vidal et al. [35] and

very recent work by Brbic and Kopriva [4].

In their remarkable classic work Jarvis & Patrick [17]

bring forth the importance of shared nearest neighbors to

define the similarity between points. The idea was rooted in

the observation that two points are similar to the extent that

their first k-neighbors match. Similarities so obtained are

a better measure of distances between points than standard

euclidean metrics. Using neighbors to define similarity be-

tween points has been used in partition-based, hierarchical

and spectral clustering techniques [27, 5, 44].

Our paper closely relates to Hierarchical Agglomerative

Clustering (HAC) methods, which have been studied ex-

tensively [30]. The popularity of hierarchical clustering

stems from the fact that it produces a clustering tree that

provides meaningful ways to interpret data at different levels

of granularity. For this reason, there is a lot of interest in the

community to both develop and study theoretical properties

of hierarchical clustering methods. Some of the recent works

establish guarantees on widely used hierarchical algorithms

for a natural objective function [25, 9]. In agglomerative

methods, each of the input sample points starts as a clus-

ter. Then iteratively, pairs of similar clusters are merged

according to some metric of similarity obtained via well

studied linkage schemes. The most common linkage-based

algorithms (single, average and complete-linkage) are often

based on Kruskals minimum spanning tree algorithm [20].

The linkage methods merge two clusters based on the pair-

wise distances of the samples in them. The linkage schemes

can be better approached by an objective function that links

clusters based on minimizing the total within cluster vari-

ance e.g., Ward [37]. This approach generally produces

better merges than the single or average linkage schemes.

Dasgupta [10] recently proposed an objective function opti-

mization on the similarity graph for hierarchical clustering

to directly obtain an optimal tree. It initiated a line of work

developing algorithms that explicitly optimize such objec-

tives [31, 7, 25, 9].

Recently clustering is also used in jointly learning a non-

linear embedding of samples. This could be approached with

deep learning based methods e.g., employing auto encoders

to optimize and learn the features by using an existing clus-

tering method [40, 38, 15, 18]. These deep learning based

approaches are primarily the feature representation learning

schemes using an existing clustering method as a means of

generating pseudo labels [6] or as an objective for training

the neural network.

Almost all of the existing clustering methods operate

directly on the distance values of the samples. This makes it

hard for these methods to scale to large data as they need to

have access to the full distances stored as floats. Apart from

this, all of the current clustering methods need some form of

supervision/expert knowledge, from requiring to specify the

number of clusters to setting similarity thresholds or other

algorithm specific hyper-parameters. Our proposal is a major

shift from these methods in that we do not require any such

prior knowledge and do not need to keep access to the full

pairwise distance floats.

3. The Proposed Clustering Method

Historically, clustering methods obtain groupings of data

by interpreting the direct distances between data points. Data

that lies in high dimensional space has less informative mea-

sure of closeness in terms of these distances. Methods that

aim at describing uniform volumes of the hyperspace may

fail because source samples are hardly uniformly distributed

within the target manifold. On the other hand, semantic rela-

tions (i.e., who is your best friend/ or friend of a friend) may

be impervious to this as they rely on indirect relations rather

than exact distances. Our proposal is intuitively related to

such semantic relations for discovering the groupings in the

data. We observed that the very first neighbor of each point

is a sufficient statistic to discover linking chains in the data.

Thus, merging the data into clusters can be achieved without

the need to maintain a full distance matrix between all the

data points. Also, using this approach, no thresholds or other

hyper-parameters have to be set. We capture this observation

in the proposed clustering equation and then describe the

full algorithm in detail.

3.1. The Clustering Equation

Given the integer indices of the first neighbor of each data

point, we directly define an adjacency link matrix

A(i, j) =

{

1 if j = κ1
i or κ1

j = i or κ1
i = κ1

j

0 otherwise
(1)

where κ1
i symbolizes the first neighbor of point i. The

8935



1st

neighbor

1 Mercury Moon

2 Venus Earth

3 Earth Mars

4 Moon Mars

5 Mars Moon

6 Jupiter Saturn

7 Saturn Jupiter

8 Uranus Neptune

9 Neptune Uranus

(a)

1 2 3 4 5 6 7 8 9

1 0 0 0 1 1 0 0 0 0

2 0 0 1 0 0 0 0 0 0

3 0 1 0 1 1 0 0 0 0

4 1 0 1 0 1 0 0 0 0

5 1 0 1 1 0 0 0 0 0

6 0 0 0 0 0 0 1 0 0

7 0 0 0 0 0 1 0 0 0

8 0 0 0 0 0 0 0 0 1

9 0 0 0 0 0 0 0 1 0

(b) (c)
Figure 1. The clustering equation walk-through: clustering the planets in our solar system. (a) Planets and their first neighbors. (b) Adjacency

link matrix by Eq.1. (c) Directed graph using the adjacency matrix of (b). FINCH discovered 3 clusters shown as directed graph’s connected

components. Each planet is represented by first 15 attributes described in [https://nssdc.gsfc.nasa.gov/planetary/factsheet/].

adjacency matrix links each point i to its first neighbor via

j = κ1
i , enforces symmetry via κ1

j = i and links points

(i, j) that have the same neighbor with κ1
i = κ1

j . Equa-

tion 1 returns a symmetric sparse matrix directly specifying

a graph who’s connected components are the clusters. One

can see, in its striking simplicity, the clustering equation

delivers clusters in the data without relying on any thresh-

olds or further analysis. The connected components can be

obtained efficiently from the adjacency matrix by using a

directed or undirected graph G = (V,E), where V is the

set of nodes (the points to be clustered) and the edges E

connect the nodes A(i, j) = 1. Intuitively the conditions

in the Equation 1 are combining 1-nearest neighbor (1-nn)

and shared nearest neighbour (SNN) graphs. Note, however,

that the proposed clustering equation directly provides clus-

ters without solving a graph segmentation problem. More

precisely the adjacency matrix obtained from the proposed

clustering equation has absolute links. We do not need to

use any distance values as edge weights and require solving

a graph partitioning. This is what makes it unique as by just

using the integer indices of first neighbors, Equation 1 speci-

fies and discover the semantic relations and directly delivers

the clusters. Computing the adjacency matrix is also com-

putationally very efficient since it can easily be obtained by

simple sparse matrix multiplication and addition operation.

To understand the mechanics of Equation 1 and see how

it chains large numbers of samples in the data, let’s first

look at a small tractable example of clustering the planets

in our solar system. We can cluster the planets in the space

of their known measurements e.g., mass, diameter, gravity,

density, length of day, orbital period and orbital velocity

etc. We describe each planet by the first 15 measurements

taken from NASA’s planetary fact sheet. The first neighbor

of each planet in this space is the one with the minimum

distance, obtained by computing pairwise euclidean distance.

Figure 1 (a) shows the 9 samples (8 planets and moon) and

their first neighbors. With this information one can now

form the 9× 9 adjacency matrix (see Fig. 1 (b)) according

the Equation 1. An important observation is that not all first

neighbors are symmetric, e.g., Earth is the first neighbor of

Venus but Venus is not the first neighbor of Earth. This is

also the basis of why these neighbors can form chains. Note

how each of the adjacency conditions results in linking the

planets. For instance, the adjacency condition j = κ1
i simply

connects all planets to their first neighbors. The condition

κ1
i = κ1

j connects Mercury-Mars and Earth-Moon together

because they have same first neighbor. The condition κ1
j = i

forces symmetry and bridges the missing links in the chains,

e.g., Earth is connected to Venus via this condition. Figure 1

(c) shows the directed graph of this adjacency matrix. Note

how five out of nine planets are chained together directly

while symmetric neighbors formed two separate clusters.

This short walk-through explains the mechanics of Equa-

tion 1 which has discovered three clusters. Interestingly

astronomers also distinguish these planets into three groups

at a fine level, rocky planets (Mercury, Venus, Earth, Moon,

and Mars) in one group, gas planets (Jupiter, Saturn) being

similar in terms of larger size with metallic cores, and ice

giants (Uranus, Neptune) are grouped together because of

similar atmospheres with rocky cores.

3.2. Proposed Hierarchical Clustering

The question whether the discovered clusters are indeed

the true groupings in the data has no obvious answer. It is be-

cause the notion of clusters one considers true are subjective

opinions of the observer. The problem of finding ground-

truth clustering has been well studied in Balcan et al. [2],

where they show that having a list of partitions or a hierarchy

instead of a single flat partition should be preferred. In such

a set of groupings, they show that single or average-linkage

algorithms are known to provably recover the ground-truth

clustering under some properties of a similarity function.

Equation 1 delivers a flat partition of data into some au-

tomatically discovered clusters. Following it up recursively

in an agglomerative fashion may provide further successive

groupings of this partition capturing the underlying data

structure at different level of granularities. Because Equa-

tion 1 may chain large numbers of samples quickly, we show

that in only a few recursions a meaningful small set of parti-

tions is obtained with a very high likelihood of recovering

8936



Algorithm 1 Proposed Algorithm

1: Input: Sample set S = {1, 2, · · · , N}, S ∈ R
N×d,

where N is total number of samples and each sample

point is represented by d attributes or feature dimensions.

2: Output: Set of Partitions L = {Γ1,Γ2, · · · ,ΓL}
where each partition Γi = {C1, C2, · · · , CΓi

|CΓi
>

CΓi+1∀i ∈ L} is a valid clustering of S.

3: The FINCH Algorithm:

4: Compute first neighbors integer vector κ1 ∈ R
N×1

via exact distance or fast approximate nearest neighbor

methods.

5: Given κ1 get first partition Γ1 with CΓ1
clusters via

Equation 1. CΓ1
is the total number of clusters in parti-

tion Γ1.

6: while there are at least two clusters in Γi do

7: Given input data S and its partition Γi, compute clus-

ter means (average of all data vectors in that clus-

ter). Prepare new data matrix M = {1, 2, · · · , CΓi
},

where M
CΓi

×d.

8: Compute first neighbors integer vector κ1 ∈ R
CΓi

×1

of points in M .

9: Given κ1 get partition ΓM of Γi via Equation 1, where

ΓM ⊇ Γi

10: if ΓM has one cluster then

11: break

12: else

13: Update cluster labels in Γi : ΓM → Γi

14: end if

15: end while

the exact ground-truth clustering or a partition very close to

it. Since by just using the First Integer Neighbor indices we

can produce a Clustering Hierarchy, we term our algorithm

as (FINCH).

The FINCH Algorithm. The main flow of the proposed

algorithm is straightforward. After computing the first par-

tition, we want to merge these clusters recursively. For

this, Equation 1 requires the first neighbor of each of these

clusters. Finding these neighbors requires computing dis-

tances between clusters. This is also related to all the link-

age methods, e.g., average-linkage in hierarchical agglom-

erative clustering use the average of pairwise distances be-

tween all points in the two clusters. Following this, how-

ever, is computationally very expensive with a complexity

of O(N2log(N)). It thus can not easily scale to millions

of samples, and it requires to keep the full distance matrix

in the memory. With our method, for large scale data, we

do not need to compute the full pairwise distance matrix as

we can obtain first neighbors via fast approximate nearest

neighbor methods (such as k-d tree). We, instead, average

the data samples in each cluster and use these mean vectors

Algorithm 2 Required Number of Clusters Mode

1: Input: Sample set S = {1, 2, · · · , N}, S ∈ R
N×d and

a partition Γi from the output of Algorithm 1.

2: Output: Partition Γr with required number of clusters.

3: for steps = CΓi
- CΓr

do

4: Given input data S and its partition Γi, compute clus-

ter means (average of all data vectors in that clus-

ter). Prepare new data matrix M = {1, 2, · · · , CΓi
},

where M
CΓi

×d.

5: Compute first neighbors integer vector κ1 ∈ R
CΓi

×1

of points in M .

6: Given κ1 compute Adjacency Matrix of Equation 1

7: ∀A(i, j) = 1 keep one symmetric link A(i, j) which

has the minimum distance d(i, j) and set all others to

zero.

8: Update cluster labels in Γi: Merge corresponding

(i, j) clusters in Γi

9: end for

to compute the first neighbor. This simplifies the computa-

tion and keeps the complexity to O(Nlog(N)) as we merge

these clusters at each recursion. In contrast to standard HAC

algorithms, our clustering equation directly provides a mean-

ingful partition of the data at each iteration. It provides a

hierarchical structure as a small set of partitions where each

successive partition is a superset of the preceding partitions.

The resulting set of partitions provides a fine to coarse view

on the discovered groupings of data. The complete algorith-

mic steps are described in Algorithm 1.

The quality of the outlined procedure is demonstrated in

the experimental section on diverse data of different sizes.

We show that it results in partitions that are very close to

the ground-truth clusters. For some applications, it is often

a requirement to obtain a specific number of clusters of the

data. Since our algorithm returns a hierarchy tree, we can use

simple mechanisms to refine a close partition by one merge

at a time to provide required clusters as well. However, the

required number of clusters are obviously upper-bounded by

the size of the first partition, FINCH returns. For complete-

ness, we outline a simple procedure in Algorithm 2.

For better clarity, we demonstrate the quality of the

outlined FINCH algorithm in Fig. 2 using the classic 2D

Gestalt [41] and Aggregation [14] data that represent well

understood clustering problems and provide a good qualita-

tive look into the performance of clustering methods. After

running FINCH Algo 1 we obtained a set of clustering par-

titions. Here, to evaluate FINCH on the true clusters, we

can take a larger partition than the true clusters and refine

it with Algo 2. For example, on Gestalt data with 399 2D

points, Algo 1 provides a total of 4 partitions with {91, 23, 5

and 2} clusters. We use Algo 2 on the 23 cluster partition to

evaluate at ground truth 6 clusters. Clearly, we can observe

8937



Kmeans: 88% Spectral: 81% HAC: 92% SSC: 74% FINCH: 98%

Kmeans [1]: 72% Spectral [27]: 75% HAC [37]: 73% SSC [11]: 67% FINCH: 85%

Figure 2. Visualization of Aggregation [14] 7 clusters (top) and Gestalt [41] 6 clusters (bottom) with NMI score for each method.

that FINCH maintains the merges quite well and clusters

these data better than the considered baselines.

4. Experiments

We demonstrate FINCH on challenging datasets which

cover domains such as biological data, text, digits, faces

and objects. We first introduce the datasets and clustering

metric, followed by a thorough comparison of the proposed

method to algorithms that estimate the clusters automatically

using hyper-parameter settings, and also to algorithms that

require #clusters as input. We also compare FINCH with

state-of-the-art deep clustering methods in section 4.2.

Datasets. The datasets are summarized in Table 1. The di-

mensionality of the data in the different datasets varies from

77 to 4096. Mice Protein [16] consists of the expres-

sion levels of 77 proteins measured in eight classes of control

and trisomic genotypes, available from [32]. REUTERS [22]

consists of 800000 Reuters newswire articles. We use a

sampled subset of 10000 articles available from [38], cate-

gorized in four classes. The TF-IDF features are of 2000

dimensions. STL-10 [8] is an image recognition dataset for

unsupervised learning, consisting of 10 classes with 1300

examples each. BBTs01 (season 1, episodes 1 to 6) and

BFs05 (season 5, episodes 1 to 6) are challenging video

face identification/clustering datasets. They are sitcoms with

small cast list, for BBTs01: 5 main casts, and BFs05: 6

main casts. Data for BBTs01 and BFs05 are provided by [3].

MNIST [21]: we use three variants of MNIST handwrit-

ten digits, they consist of: 10K testset (MNIST 10k), 70K

(train+test) (MNIST 70k), and 8.1M [24] (MNIST 8M) sam-

ples categorized into 10 classes. We use CNN features for

STL-10, BBTs01, BFs05, and both CNN features and pixels

for MNIST datasets. More details on the features used and

datasets settings can be found in the supplimentary .

Evaluation Metrics. We use the most common clustering

evaluation metric, Normalized Mutual Information (NMI),

and the unsupervised clustering accuracy (ACC) as the met-

ric to evaluate the quality of clustering. ACC is also widely

used [38, 15, 18] and computed as max
m

∑
n

i=1
1{li=m(ci)}

n
,

where li is the ground truth label, ci is the cluster assignment

obtained by the method, and m ranges in the all possible

one-to-one mappings between clusters and labels.

Baselines. We compare FINCH to existing clustering meth-

ods (both classic and recent proposals) that covers the

whole spectrum of representative clustering directions. We

include 11 baselines categorized in two variants of clus-

tering algorithms: (1) algorithms that estimate the num-

ber of clusters automatically - given some input hyper-

parameter/threshold settings. These algorithms include

Affinity Propagation (AP) [13], Jarvis-Patrick (JP) [17],

Rank-Order (RO) [44], and the recently proposed Robust

Continuous Clustering (RCC) [32]; and (2) algorithms that

require the number of clusters as input. These algorithms

are: Kmeans++ (Kmeans) [1], Birch (BR) [42], Spec-

tral (SC) [27], Sparse Subspace Clustering (SSC) [11], Hier-

archical Agglomerative Clustering (HAC Ward) with ward

linkage [37], and HAC with average linkage (HAC Avg),

and very recent method Multi-view Low-rank Sparse Sub-

space Clustering (MV-LRSSC) [4]. The parameter settings

for the baselines are provided in the supplimentary.

4.1. Comparison with baselines

Comparison on Small-scale datasets: In this section, we

consider clustering datasets upto 70k samples. Consider-

ing the size of BBTs01 (∼199k) samples, the full distance

matrix takes up approximately 148 GB RAM. The memory

consumption of different algorithms is not linear rather expo-

nential, and the number of samples and feature dimensions

parameters negatively influence their time efficiency and

computational cost. For this reason, we separate algorithms

that need to store quadratic memory usage. The algorithms

that need to compute the full distance matrix are evaluated

in this section: small scale (≤70k: ∼36.5 GB), while large

scale (≥199k: ∼148 GB) are evaluated separately.

In Table 2, we compare the performance of FINCH with

the current clustering methods. Results on datasets: MICE

Protein, REUTERS, STL-10, MNIST 10k and MNIST 70k

are reported in Table 2 using NMI-measure. We compare

FINCH against the algorithms that requires the number of

8938



Mice Protein REUTERS STL-10 BBTs01 BFs05 MNIST

Type Biological Text Objects Faces Digits

#C 8 4 10 5 6 10

#S 1077 10k 13k 199346 206254 10k 70k 8.1M

Dim. 77 2000 2048 2048 2048 4096/784 4096/784 256/784

LC/SC (%) 13.88/9.72 43.12/8.14 10/10 33.17/0.63 39.98/0.61 11.35/8.92 11.25/9.01 11.23/9.03

Table 1. Datasets used in experiments. #S denotes the number of samples, #C denotes the true number classes/clusters, and largest class (LC)

/ smallest class (SC) is the class balance percent of the given data.

NMI Scores

Algorithms that estimate #C automatically @FINCH estimated #C

Dataset FINCH AP JP RO RCC Kmeans BR SC HAC Ward HAC Avg SSC MV-LRSSC True #C #S

Mice Protein 51.64 59.10 55.99 1.75 65.92 42.66 40.39 55.13 51.35 37.65 41.94 51.31

Estim. #C 8 67 30 2 38 8 8 1077

REUTERS 44.88 36.23 22.97 36.76 28.32 41.75 38.77 7.97 38.40 12.38 3.19 41.27

Estim. #C 4 1073 1656 9937 358 4 4 10k

STL-10 85.05 57.18 51.70 33.37 81.56 85.59 80.9 72.62 80.9 52.57 81.25 74.44

Estim. #C 10 589 4780 4358 14 10 10 13k

MNIST 10k 97.55 69.97 35.97 49.87 77.74 81.92 80.78 97.43 89.05 63.86 96.63 93.67

Estim. #C 10 116 513 9950 149 10 10 10k

MNIST 70k 98.84 − 24.20 4.01 86.59 81.02 84.50 98.77 87.61 47.08 − −
Estim. #C 10 − 5722 531 120 10 10 70k

Table 2. Small-scale clustering results of FINCH with nearest neighbors obtained using exact distances. We compare FINCH against

algorithms that estimates the clusters automatically - given input hyper-parameters/thresholds, and the algorithms that requires the #clusters as

input. For algorithms that require the number of clusters as input, we use the #clusters estimated by FINCH. − denotes OUT OF MEMORY.

cluster as input: Kmeans, BR, SC, HAC, SSC and MV-

LRSSC. To have a fair time comparison with these algo-

rithms we also compute the full pairwise distance matrix for

obtaining the first neighbours. To demonstrate the quality of

merges FINCH made, we use the FINCH estimated clusters

as input to these algorithms. On these datasets, FINCH has

estimated the ground truth clusters as one of its partition, see

Fig 3 and discussion in section 5.

For comparison with algorithms that provides a fixed flat

partition given some hyperparamters (AP, JP, RO and RCC),

we can not directly compare FINCH as it provides a hierar-

chy. Here we follow the previous approaches [28, 32, 33]

that tend to compare on the basis of NMI measure only, and

not on the basis of estimated number of clusters. In Table 2,

following the same procedure, we simply evaluate all the

algorithms at the respective author’s best parameter setup for

each method, and report their results attained. We observe

that not only FINCH finds a meaningful partition of the data

it also consistently achieves high performance on most of

these datasets.

Comparison on Large-scale datasets: As FINCH only re-

quires the first neighbor indices, for large scale datasets we

obtain the first nearest neighbor using the randomized k-d

tree algorithm from [26], thus avoiding the expensive O(N2)
distance matrix computation cost, and quadratic memory

storage. For example, computing the full distance matrix for

single precision MNIST 8M requires 244416.3 GB RAM.

Among all our considered baselines, only Kmeans and

RCC are able to scale. We compare FINCH against Kmeans

and RCC on BBTs01 and BFs05 datasets. On the million

NMI

Dataset FINCH RCC Kmeans

BBTs01 89.79 2.56 71.82

Estim. #C 6 7 6

BBTs01 (@True #C=5) 91.57 − 83.39

BFs05 82.46 46.70 71.85

Estim. #C 7 523 7

BFs05 (@True #C=6) 83.64 − 76.15

Table 3. BBTs01 and BFs05 (∼200k).

NMI

Dataset FINCH Kmeans

MNIST 8M CNN (@Estim. #C=13) 96.55 93.33

MNIST 8M CNN (@True #C=10) 99.54 97.39

MNIST 8M PIXELS (@Estim. #C=11) 46.49 40.17

MNIST 8M PIXELS (@True #C=10) 63.84 37.26

Table 4. MNIST 8M (8.1M).

scale (8.1 million samples) MNIST 8M datasets, we were

only able to run Kmeans.

For BBTs01 and BFs05, there exists a huge line of work,

from exploiting video-level constraints [34], to dynamic

clustering constraints via MRF [43], and the most recent

link-based clustering [19]. In contrast to these works, we use

features from a pre-trained model on other datasets without

any data specific transfer or considering any other video-level

constraints for clustering. FINCH performs significantly bet-

ter in comparison with the previously published methods

on these datasets. These comparison results are available in

the supplimentary. Results in Table 3 and run-time in Ta-

ble 5 show that with approximate nearest neighbors, FINCH

8939



Dataset #S Dimen. FINCH Kmeans SC HAC Ward HAC Avg AP JP RO BR RCC SSC MV-LRSSC

Mice Protein 1077 77 37ms 115ms 220ms 40ms 668ms 700ms 00:01 00:02 90ms 84ms 00:08 00:02

REUTERS 10k 2000 00:05 00:18 05:54 00:31 00:43 01:53 40:25 00:14 01:32 37:25 01:27:36 52:53

STL-10 13k 2048 00:03 00:19 08:03 00:42 01:10 02:42 57:49 00:07 02:25 15:11 02:41:14 02:04:52

MNIST 10k 10k 4096 00:10 00:19 02:39 01:05 01:31 02:23 44:20 00:12 03:06 13:41 01:35:25 38:42

MNIST 70k 70k 4096 00:54 02:19 58:45 29:28 30:17 − 60:09:17 05:22 02:20:44 05:53:43 − −

BBTs01 199346 2048 01:06 02:17 − − − − − − − 00:38:11 − −
BFs05 206254 2048 01:09 01:33 − − − − − − − 03:28:04 − −
MNIST 8M 8.1M 256 18:23 56:41 − − − − − − − − − −

Framework Matlab Python Python Matlab Matlab Python Matlab C++ Python Python Matlab Matlab

Table 5. Run-time comparison of FINCH with Kmeans, SC, HAC, AP, JP, RO, BR, RCC SSC, and MV-LRSSC. We report the run time in

HH:MM:SS and MM:SS. − denotes OUT OF MEMORY.

achieves the best run-time of the three methods and the best

performance as well. A similar behavior can be observed in

Table 4 for very large scale MNIST 8M datasets.

4.2. Deep Clustering: Unsupervised Learning

Many recent methods propose to learn feature representa-

tions using a given clustering algorithm as objective, or as a

means of providing weak labels/pseudo labels for training

a deep model (usually an auto-encoder) [40, 38, 15, 18, 6].

FINCH lends itself naturally to this task since it provides

a hierarchy of partitions containing automatically discov-

ered natural groupings of data and one need not specify a

user defined number of clusters to train the network. To

demonstrate this and to be able to compare with deep cluster-

ing methods we follow a similar approach, as used recently

in [6], of using cluster labels to train a small network for

learning an unsupervised feature embedding. We demon-

strate this unsupervised learning on MNIST 70K PIXELS

(28x28 =784-dim), REUTERS-10k TF-IDF (2000-dim) and

STL-10 ResNet50 (2048-dim) features as input. Note that

we use the same features that were used in previous methods

to train their embedding, see Jiang et al. [18].

We train a simple MLP with two hidden layers for this

task in classification mode. Among the FINCH returned par-

titions the partition obtained at the first pass of the Equation 1

or the one after it contains the largest number of clusters and

also the purest since follow on recursions are merging these

into smaller clusters. We use the estimated clusters of the

second partition as the pseudo labels to train our network

with softmax. We approach the training in steps, initializing

training with the FINCH labels and re-clustering the last

layer embedding after 20 epochs to update the labels. At

each label update step we divide the learning rate by 10

and train for 60-100 epochs. For all experiments our net-

work structure is fixed with the two hidden layers set to 512

neurons each. We train the network with minibatch SGD

with batch size of 256 and initial learning rate of 0.01. The

last layer 512-dimensional embedding is trained this way

and used to report clustering performance at the ground truth

clusters. As seen in Table 6 FINCH has effectively trained an

unsupervised embedding that clusters better in this learned

space. Interestingly, on STL-10 for which we have ResNet50

Accuracy (ACC %)

Method MNIST 70k PIXELS REUTERS-10K STL-10

GMM [18] 53.73 54.72 72.44

AE+GMM [18] 82.18 70.13 79.83

VAE+GMM [18] 72.94 69.56 78.86

DEC [38] 84.30 72.17 80.62

IDEC [15] 88.06 76.05 -

VaDE [18] 94.46 79.83 84.45

FINCH on base features 74.00 66.14 85.28

DeepClustering With FINCH 91.89 81.46 95.24

Table 6. Unsupervised Deep Clustering with FINCH: Comparison

with state-of-the-art deep clustering methods at true clusters.

features, FINCH directly clusters these base features with

better accuracy as the compared methods achieve after train-

ing a deep model. After our FINCH driven deep clustering

we are able to improve clustering performance on STL-10

to ∼ 95% improving by almost 10% on the existing state-of-

the-art deep clustering methods.

4.3. Computational Advantage

In Table 5, we report the run-time of each algorithm for

all the datasets. The corresponding timing is the complete

time for the algorithm execution, that includes computing

the pairwise distance between the samples, or obtaining the

nearest neighbors using kd-tree, and the running time of

each algorithm. We can observe that, FINCH achieves a

remarkable time efficiency, and is not dominated by the num-

ber of samples, and/or the feature dimensions. Apart from

time efficiency, FINCH is very memory efficient, as it only

requires to keep the integer (N × 1) first neighbor indices

and the data. The performance is measured on a workstation

with an AMD Ryzen Threadripper 1950X 16-core processor

with 192 (128+64 swap) GB RAM. For large scale datasets

with more than 70k samples, most of the algorithms break,

or demands for more than 192 GB RAM. FINCH memory

requirement is, therefore, O(N) vs O(N2). The compu-

tational complexity of FINCH is O(Nlog(N)), whereas

spectral methods are O(N3) and hierarchical agglomerative

linkage-based methods are O(N2log(N)).

5. Discussion

We have extensively evaluated FINCH on a number of

different data (image pixels, biological measurements, text

8940



0 1 2 3 4 5 6 7 8 9 10

Steps

10 0

10 1

10 2

10 3

10 4

10 5

10 6

10 7

C
lu

s
te

rs

MNIST_8M_CNN: 8M

BFs05: 206254

MNIST_70k: 70k

MNIST_10k: 10k

REUTERS: 10k

MICE Protein: 1077

23478
1
0

1
3

1
7

2
4

5
0

5
3

6
5

7
5

1
0
6

2
2
0

2
6
2

3
1
0

3
5
1

3
5
5

3
5
7

1
3
6
2

1
6
9
9

1
7
5
3

1
8
3
7

1
8
9
1

6
8
3
0

6
9
4
5

1
1
4
9
3

2
9
1
5
0

3
3
2
1
7

1
6
1
3
7
1

6
9
4
5
2
5

2
0
1
5
3
0
5

Clusters

10

20

30

40

50

60

70

80

90

100

A
C

C
 (

%
)

MNIST_8M_CNN: 8M

BFs05: 206254

MNIST_70k: 70k

MNIST_10k: 10k

REUTERS: 10k

MICE Protein: 1077

(a) (b)

Figure 3. FINCH steps/partitions and clustering quality. (a) Algorithm convergence: clusters vs algorithm steps, each step produces a

partition of data. (b) Quality of merges: number of cluster produced at each step and their corresponding purity/accuracy

frequency and CNN features) represented in 77 to 4096 di-

mensional feature space. Interestingly many existing popular

clustering methods do not perform well even in the cases

where the data has well separated distinct clusters in the

feature space. The recursion scheme in our algorithm con-

verges at an exponential rate in very few steps providing a

valid partition of the data at each step. In Figure 3 (a) we

plot the clusters obtained at each step of the FINCH algo-

rithm. One can see for the different data sizes (1077 samples

to 8.1 million samples), our algorithm converges in 4-10

steps providing a valid partition at each. The accuracy of the

formed clusters at each partition is depicted in Figure 3 (b).

One can assess the quality of discovered clusters and the

successive merges by the fact that it maintains the accuracy

quite well for very large merges through each step. Corre-

sponding to Figure 3 (a) the x-axis of Figure 3 (b) depicts

#clusters obtained at each step of the algorithm for all of

the plotted datasets. For example, for the smallest dataset

with 1077 samples, FINCH delivers a total of 6 partitions

in 6 steps of the run. From 1077 samples it comes down to

351 clusters in the first pass of Equation 1 and then to 106,

24, 8, 4 and 3 clusters in the successive recursions, discov-

ering the ground-truth clustering of 8 clusters at step 4 of

the algorithm. One can interpret the corresponding cluster

purity and the number of clusters at each step of FINCH for

the other datasets in Figure 3 (b). In direct contrast to HAC

linkage schemes which require N − 1 steps to converge for

N samples, FINCH convergence (number of steps) does not

depend on N and is governed by Equation 1. It is very in-

teresting to study this behavior and finding some theoretical

bounds explaining this. An interesting observation are the re-

sults on the MNIST 10k and MNIST 70k datasets in Table 2.

Since these features have been learned on the data using

the ground-truth labels, these are already well separated 10

clusters in the feature space. Despite this, none of the base-

line algorithms (even the ones that require to specify the

number of clusters) performs as accurately. FINCH stops its

recursive merges at step 5 (for MNIST 10k) and step 6 (for

MNIST 70k) providing the exact 10 clusters with above 99%

accuracy. Note that this is the same classification accuracy as

the trained CNN model provides on these features. Since the

ground-truth clusters are well separated, Algorithm 1 exactly

stops here because another pass of this 10-cluster partition

merge them to 1 cluster. This shows that FINCH can recover

well the global structure in the data. We also include the

number of steps and corresponding clusters, along with the

accuracy, for each dataset in the supplimentary. Note that,

because of the definition of Equation 1, FINCH can not dis-

cover singletons (clusters with 1 sample). This is because

we link each sample to its first neighbor without considering

the distance between them. Singletons, therefore will always

be paired to their nearest sample point. This sets the limit of

smallest cluster with size 2 for FINCH.

Conclusively, we have presented an algorithm that shifts

from the prevalent body of clustering methods that need to

keep the pairwise distance matrix and require user defined

hyper-parameters. It offers a unique and simple solution in

the form of the clustering equation and an effective agglom-

erative merging procedure. The advantage it brings, in being

fully parameter-free and easily scalable to large data at a

minimal computational expense, may prove useful for many

applications. We have demonstrated one such application of

unsupervised feature representation learning. Automatically

discovering meaningful clusters in such a manner is needed

in many areas of sciences where nothing is known about the

structure of data. For example, it may have very exciting ap-

plications from discovering exotic particles to stars/galaxies

based on their spectra.

8941



References

[1] David Arthur and Sergei Vassilvitskii. k-means++: The advan-

tages of careful seeding. In ACM-SIAM. Society for Industrial

and Applied Mathematics, 2007.

[2] Maria-Florina Balcan, Avrim Blum, and Santosh Vempala. A

discriminative framework for clustering via similarity func-

tions. In ACM STOC, 2008.

[3] Martin Bäuml, Makarand Tapaswi, and Rainer Stiefelhagen.

Semi-supervised Learning with Constraints for Person Identi-

fication in Multimedia Data. In CVPR, 2013.

[4] Maria Brbić and Ivica Kopriva. Multi-view low-rank sparse

subspace clustering. Pattern Recognition, 2018.

[5] Sébastien Bubeck and Ulrike von Luxburg. Nearest neighbor

clustering: A baseline method for consistent clustering with

arbitrary objective functions. JMLR, 2009.

[6] Mathilde Caron, Piotr Bojanowski, Armand Joulin, and

Matthijs Douze. Deep clustering for unsupervised learning of

visual features. In ECCV, 2018.

[7] Moses Charikar and Vaggos Chatziafratis. Approximate hier-

archical clustering via sparsest cut and spreading metrics. In

ACM SIAM, 2017.

[8] Adam Coates, Andrew Ng, and Honglak Lee. An analysis

of single-layer networks in unsupervised feature learning. In

AISTATS, 2011.

[9] Vincent Cohen-Addad, Varun Kanade, and Frederik

Mallmann-Trenn. Hierarchical clustering beyond the worst-

case. In NIPS, 2017.

[10] Sanjoy Dasgupta. A cost function for similarity-based hierar-

chical clustering. In ACM STOC, 2016.

[11] Ehsan Elhamifar and Rene Vidal. Sparse subspace clustering:

Algorithm, theory, and applications. PAMI, 2013.

[12] Brian S Everitt, Sabine Landau, Morven Leese, and Daniel

Stahl. Cluster Analysis, 5th Edition. Wiley-Blackwell, 2011.

[13] Brendan J Frey and Delbert Dueck. Clustering by passing

messages between data points. science, 2007.

[14] Aristides Gionis, Heikki Mannila, and Panayiotis Tsaparas.

Clustering aggregation. ACM TKDD, 2007.

[15] Xifeng Guo, Long Gao, Xinwang Liu, and Jianping Yin. Im-

proved deep embedded clustering with local structure preser-

vation. In IJCAI, 2017.

[16] Clara Higuera, Katheleen J Gardiner, and Krzysztof J Cios.

Self-organizing feature maps identify proteins critical to learn-

ing in a mouse model of down syndrome. PloS one, 2015.

[17] Raymond Austin Jarvis and Edward A Patrick. Clustering

using a similarity measure based on shared near neighbors.

IEEE Transactions on computers, 1973.

[18] Zhuxi Jiang, Yin Zheng, Huachun Tan, Bangsheng Tang, and

Hanning Zhou. Variational deep embedding: An unsupervised

and generative approach to clustering. In IJCAI, 2017.

[19] SouYoung Jin, Hang Su, Chris Stauffer, and Erik Learned-

Miller. End-to-end Face Detection and Cast Grouping in

Movies using ErdsRnyi Clustering. In ICCV, 2017.

[20] Joseph B Kruskal. On the shortest spanning subtree of a graph

and the traveling salesman problem. American Mathematical

society, 1956.

[21] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-

based learning applied to document recognition. Proc. IEEE,

1998.

[22] David D Lewis, Yiming Yang, Tony G Rose, and Fan Li.

Rcv1: A new benchmark collection for text categorization

research. JMLR, 2004.

[23] Mu Li, Xiao-Chen Lian, James T Kwok, and Bao-Liang

Lu. Time and space efficient spectral clustering via column

sampling. In CVPR, 2011.

[24] Gaëlle Loosli, Stéphane Canu, and Léon Bottou. Training

invariant support vector machines using selective sampling.

Large scale kernel machines, 2007.

[25] Benjamin Moseley and Joshua Wang. Approximation bounds

for hierarchical clustering: Average linkage, bisecting k-

means, and local search. In NIPS, 2017.

[26] Marius Muja and David G Lowe. Scalable nearest neighbor

algorithms for high dimensional data. PAMI, 2014.

[27] Andrew Y Ng, Michael I Jordan, and Yair Weiss. On spectral

clustering: Analysis and an algorithm. In NIPS, 2002.

[28] Charles Otto, Dayong Wang, and Anil K Jain. Clustering

millions of faces by identity. PAMI, 2018.

[29] Adrian E Raftery and Nema Dean. Variable selection for

model-based clustering. American Statistical Association,

2006.

[30] Chandan K Reddy and Bhanukiran Vinzamuri. A survey

of partitional and hierarchical clustering algorithms. Data

Clustering: Algorithms and Applications, 2013.

[31] Aurko Roy and Sebastian Pokutta. Hierarchical clustering via

spreading metrics. In NIPS, 2016.

[32] Sohil Atul Shah and Vladlen Koltun. Robust continuous

clustering. PNAS, 2017.

[33] Sohil Atul Shah and Vladlen Koltun. Deep continuous clus-

tering. arXiv:1803.01449, 2018.

[34] Makarand Tapaswi, Omkar M Parkhi, Esa Rahtu, Eric Som-

merlade, Rainer Stiefelhagen, and Andrew Zisserman. Total

Cluster: A Person Agnostic Clustering Method for Broadcast

Videos. In ICVGIP, 2014.

[35] René Vidal and Paolo Favaro. Low rank subspace clustering

(lrsc). Pattern Recognition Letters, 2014.

[36] Ulrike Von Luxburg. A tutorial on spectral clustering. Statis-

tics and computing, 2007.

[37] Joe H. Ward Jr. Hierarchical Grouping to Optimize an Objec-

tive Function. Journal of the American Statistical Association,

1963.

[38] Junyuan Xie, Ross Girshick, and Ali Farhadi. Unsupervised

deep embedding for clustering analysis. In ICML, 2016.

[39] Donghui Yan, Ling Huang, and Michael I Jordan. Fast ap-

proximate spectral clustering. In ACM SIGKDD, 2009.

[40] Jianwei Yang, Devi Parikh, and Dhruv Batra. Joint unsuper-

vised learning of deep representations and image clusters. In

CVPR, 2016.

[41] Charles T Zahn. Graph theoretical methods for detecting and

describing gestalt clusters. IEEE TOC, 1970.

[42] Tian Zhang, Raghu Ramakrishnan, and Miron Livny. Birch:

an efficient data clustering method for very large databases.

In ACM Sigmod Record, 1996.

8942



[43] Zhanpeng Zhang, Ping Luo, Chen Change Loy, and Xiaoou

Tang. Joint face representation adaptation and clustering in

videos. In ECCV, 2016.

[44] Chunhui Zhu, Fang Wen, and Jian Sun. A rank-order distance

based clustering algorithm for face tagging. In CVPR, 2011.

8943


