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Abstract

Visual localization is the task of accurate camera pose

estimation in a known scene. It is a key problem in com-

puter vision and robotics, with applications including self-

driving cars, Structure-from-Motion, SLAM, and Mixed Re-

ality. Traditionally, the localization problem has been tack-

led using 3D geometry. Recently, end-to-end approaches

based on convolutional neural networks have become pop-

ular. These methods learn to directly regress the camera

pose from an input image. However, they do not achieve the

same level of pose accuracy as 3D structure-based meth-

ods. To understand this behavior, we develop a theoretical

model for camera pose regression. We use our model to pre-

dict failure cases for pose regression techniques and verify

our predictions through experiments. We furthermore use

our model to show that pose regression is more closely re-

lated to pose approximation via image retrieval than to ac-

curate pose estimation via 3D structure. A key result is that

current approaches do not consistently outperform a hand-

crafted image retrieval baseline. This clearly shows that

additional research is needed before pose regression algo-

rithms are ready to compete with structure-based methods.

1. Introduction

Visual localization algorithms enable a camera to de-

termine its absolute pose, i.e., its position and orientation,

in a scene and are a core component of intelligent sys-

tems [24, 38] and Augmented Reality applications [15, 48].

State-of-the-art algorithms for localization follow a 3D

structure-based approach [8, 10, 16, 46, 59, 63, 68, 69]. They

first establish correspondences between pixels in a test im-

age and 3D points in the scene. These 2D-3D matches are

then used to estimate the camera pose by applying an n-

point-pose (PnP) solver [2, 31–34] inside a RANSAC [18,

22, 36, 54] loop. Traditionally, the first stage is based on

matching descriptors extracted in the test image against de-

scriptors associated with the 3D points. Alternatively, ma-

chine learning techniques can be used to directly regress 3D

point positions from image patches [8,10,16,43,46,47,65].

In recent years, absolute pose regression (APR) ap-

proaches to visual localization have become popular [11,

12, 28–30, 44, 50, 53, 74, 76, 78]. Rather than using machine

learning only for parts of the localization pipeline, e.g., lo-

cal features [63,79], outlier filtering [49,70], or scene coor-

dinate regression [10,46], these approaches aim to learn the

full localization pipeline. Given a set of training images and

their corresponding poses, APR techniques train Convolu-

tional Neural Networks (CNNs) to directly regress the cam-

era pose from an image. APR techniques are computation-

ally efficient, given a powerful enough GPU, as only a sin-

gle forward pass through a CNN is required. Yet, they are

also significantly less accurate than structure-based meth-

ods [10, 63, 76]. In addition, updating the map, e.g., when

adding new data, requires expensive retraining of the CNN.

Rather than proposing a new APR variant, this paper

focuses on understanding APR techniques and their per-

formance. To this end, we make the following contribu-

tions: i) We develop a theoretical model for absolute pose

regression (Sec. 3). To the best of our knowledge, ours is

the first work that aims at looking at the inner workings

of APR techniques. Based on this model, we show that

APR approaches are more closely related to approximate

pose estimation via image retrieval (Sec. 5) than to accu-

rate pose estimation via 3D geometry (Sec. 4). ii) Using

our theory, we show both theoretically and through experi-

ments that there is no guarantee that APR methods, unlike

structure-based approaches, generalize beyond their train-

ing data (Sec. 4). iii) Given the close relation between APR

and image retrieval, we show that current APR approaches

are much closer in performance to a handcrafted retrieval

baseline [71] than to structure-based methods. We show

that no published single image pose regression approach is

able to consistently outperform this baseline. This paper

thus introduces a highly necessary sanity check for judging

the performance of pose regression techniques.

In summary, this work closes an important gap in the un-

derstanding of absolute pose regression methods to visual

localization: It clearly demonstrates their short-comings

and more clearly positions them against other ways to ap-

proach the visual localization problem. Overall, we show

that a significant amount of research is still necessary be-

fore absolute pose regression techniques can be applied in

practical applications that require accurate pose estimates.
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Figure 1. Visualization of the base translations {cj} learned by PoseNet [29, 30] and MapNet [11]. Each point corresponds to one base

translation. The scale of the base translations is in meters. We show the combinations of base translations for some training images for

MapNet. The weight a translation received in Eq. 3 for a single image, respectively all images (on the right of the figure), is indicated by

colors and point sizes, with warm colors and large points for translations with a large coefficient. The training and test trajectory are shown

in red and green. The test predictions by PoseNet and MapNet and Active Search [59] are shown in blue, purple, and cyan, respectively.

2. Related Work

Structure-based localization approaches rely on 2D-3D

matches between 2D pixel positions and 3D scene coordi-

nates for pose estimation. These matches are established

by descriptor matching [21, 37, 39, 59, 63, 68, 69, 81] or by

regressing 3D coordinates from pixel patches [8–10, 16, 23,

43, 46, 47, 65]. Descriptor-based methods handle city-scale

scenes [37, 39, 68, 81] and run in real-time on mobile de-

vices [6, 38, 41, 48]. 3D coordinate regression methods cur-

rently achieve a higher pose accuracy at small scale, but

have not yet been shown to scale to larger scenes [10, 69].

Image retrieval is typically used for place recognition

[3, 5, 17, 58, 71, 72, 77, 80], i.e., for determining which part

of a scene is visible in a given image. State-of-the-art ap-

proaches use compact image-level descriptors to enable ef-

ficient and scalable retrieval [3, 52, 71]. Image retrieval can

be used for visual localization by approximating the pose of

a test image by the pose of the most similar retrieved image.

More precise estimates can be obtained by using feature

matches between the test image and the retrieved images for

relative pose estimation [13,82,83]. Image retrieval has also

been used as part of structure-based approaches [14,26,57].

Absolute camera pose regression (APR) approaches

train CNNs to regress the camera pose of an input im-

age [11, 28–30, 44, 50, 53, 74, 76, 78], thus representing the

scene implicitly by the weights of the networks. They all

follow the same pipeline: Features are extracted using a

base network, e.g., VGG [66] or ResNet [25], which are

then embedded into a high-dimensional space. This embed-

ding is then used to regress the camera pose in the scene.

Existing approaches mainly differ in the underlying base

architecture and the loss function used for training, e.g.,

using a weighted combination of position and orientation

errors [11, 30, 76], geometric reprojection errors [29], or

adding visual odometry constraints [11,53,74]. [50,78] ex-

tend the set of training images with synthetic data. [12, 28]

also reason about the uncertainty of the estimated poses.

Rather than using a single image, [11, 19, 53, 74] propose

methods based on localizing sequences of images.

Recent results show that APR methods are significantly

less accurate than structure-based methods [10,46,76]. This

paper aims to understand these results by developing a the-

oretical model for APR. Based on this model, we show that,

in contrast to structure-based methods, APR approaches

struggle to generalize beyond their training data or might

not generalize at all. Furthermore, we show that APR tech-

niques are inherently closer related to image retrieval than

to structure-based methods and that current APR algorithms

do not consistently outperform a retrieval baseline.

Relative camera pose regression (RPR) approaches pre-

dict the pose of a test image relative to one or more training

images rather than in absolute scene coordinates [7, 35, 45,

56]. The prediction is again handled by a CNN trained for

regression. Relevant training images can be found using an

explicit image retrieval step [7, 35] or by implicitly repre-

senting the images in the CNN [56]. APR is an instance-

level problem, i.e., APR techniques need to be trained for a

specific scene. In contrast, RPR is a more general problem

and RPR methods can be trained on multiple scenes [7,35].
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In this paper, we use our theory of APR to show that

there is an inherent connection to RPR. We also show that,

while being among the best-performing end-to-end local-

ization approaches, current RPR techniques also do not con-

sistently outperform an image retrieval baseline.

3. A Theory of Absolute Pose Regression

The purpose of this section is to develop a theoretical

model for absolute camera pose estimation methods such as

PoseNet [28–30] and its variants [11,50,76,78]. Our theory

is not tied to a specific network architecture but covers the

family of architectures used for pose regression. Based on

this theory, Sec. 4 compares absolute pose regression and

structure-based methods, using experiments to support our

model. Sec. 5 then uses the theory to show the inherent

similarities between pose regression and image retrieval.

Notation Let I be an image taken from a camera pose

pI = (cI , rI). Here, cI ∈ R
3 is the camera position and

rI is the camera orientation. There are multiple ways to rep-

resent the orientation, e.g., as a 4D unit quaternion [30, 76]

or its logarithm [11], or as a 3D vector representing an an-

gle and an axis [7, 73]. The exact choice of representation

is not important for our following analysis. Without loss

of generality, we thus simply represent the orientation as a

r-dimensional vector rI ∈ R
r. Absolute camera poses are

thus represented as points in R
3+r.

Absolute pose regression. Given a test image I, the task of

absolute camera pose regression is to predict the pose from

which the image was taken. This pose is defined with re-

spect to a given scene coordinate frame. To solve this tasks,

algorithms for absolute camera pose regression learn a vi-

sual localization function L(I) = p̂I , where p̂I = (ĉI , r̂I)
is the camera pose predicted for image I. In the following,

we will focus on methods that represent the function L via

a convolutional neural network (CNN) [11, 28–30, 76].

Absolute camera pose regression is an instance level

problem. Thus, CNN-based methods for absolute pose re-

gression use a set of images of the scene, labeled with their

associated camera poses, as training data. Additional image

sequences without pose labels might also be used to pro-

vide additional constraints [11, 74]. The training objective

is to minimize a loss L(p̂I ,pI) enforcing that the predicted

pose p̂I is similar to the ground truth pose pI . The precise

formulation of the loss is not important for our analysis.

A theory of absolute pose regression. We divide ab-

solute pose regression via a CNN into three stages: The

first stage, representing a function F (I), extracts a set of

features from the image. This stage is typically imple-

mented using the fully convolutional part of a CNN such

as VGG [66] or ResNet [25]. The second stage computes

a (non-linear) embedding E(F (I)) of the features into a

vector αI = (αI
1 , . . . , α

I
n)

T ∈ R
n in a high-dimensional

space. This embedding typically corresponds to the output

of the second-to-last layer in a pose regression method. The

last stage performs a linear projection from the embedding

space into the space of camera poses. This third stage cor-

responds to the last (fully-connected) layer in the network.

This three stage model covers all PoseNet-like approaches

that have been published so far.

Treating the first two stages as a single network, we can

write the trained visual localization function L as

L(I) = b+ P · E(F (I))

= b+ P ·
(

αI
1 , . . . , α

I
n

)T
, (1)

where P ∈ R
(3+r)×n is a projection matrix and b ∈ R

3+r

is a bias term. The output of L(I) is an estimate p̂I =
(ĉI , r̂I) of the image’s camera pose. Let Pj ∈ R

3+r be the

jth column of P. We can express the predicted camera pose

as a linear combination of the columns of P via

L(I) = b+

n
∑

j=1

αI
j Pj =

(

ĉI
r̂I

)

. (2)

We further decompose the jth column Pj of the projection

matrix P into a translational part cj ∈ R
3 and an orientation

part rj ∈ R
r, such that Pj = (cTj , r

T
j )

T . Similarly, we can

decompose the bias term b as b = (cTb , r
T
b )

T , resulting in

(

ĉI
r̂I

)

=

(

cb +
∑n

j=1 α
I
j cj

rb +
∑n

j=1 α
I
j rj

)

. (3)

Note that Eq. 3 also covers separate embeddings and pro-

jections for the position and orientation of the camera, e.g.,

as in [78]. In this case, the projection matrix has the form

P =

(

c1 . . . ck 0 . . . 0

0 . . . 0 rk+1 . . . rn

)

. (4)

Intuitive interpretation. Eq. 3 leads to the following in-

terpretation: Absolute pose regression algorithms such as

PoseNet and its variants learn a set B = {(cj , rj)} of

base poses such that the poses of all training images can

be expressed as a linear combination of these base poses1.

How much a base pose contributes to a predicted pose de-

pends on the appearance of the input image: The first stage

F (I) provides a set of feature response maps. The sec-

ond stage E(F (I)) then generates a high-dimensional vec-

tor αI = (αI
1 , . . . , α

I
n)

T . Each entry αI
j is computed by

correlating feature activations from the first stage [76] and

corresponds to a base pose (cj , rj). The αI
j provide the

importance of each base pose for a given input image.

Fig. 1 visualizes the translational part {cj} of the base

poses learned by PoseNet [29, 30] and MapNet [11], to-

gether with the combinations used for individual training

1In practice, most methods usually compute a conical combination as

they use a ReLU activation before the linear projection.
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images. As can be seen from the scale of the plots (in me-

ters), {cj} corresponds to a set of translations with small

magnitude. Essentially, the network learns to sum these

translations up to an absolute pose by scaling them appro-

priately via the coefficients in the embedding (c.f . Eq. 3).

For this reason, we refer to the {cj} as base translations

rather than base positions. Notice that the base translations

in Fig. 1 approximately lie in a plane since all training poses

lie in a plane. The supplementary video shows how the base

translations change with changing image content.

4. Comparison with Structure-based Methods

Visual localization algorithms represent a mapping from

image content to the camera pose from which the image

was taken. The current gold standard for localization are

structure-based approaches [8, 10, 16, 46, 59, 63, 68, 69].

These methods establish correspondences between 2D pixel

positions in an image and 3D point coordinates in the scene.

The camera pose is then computed by solving the PnP prob-

lem, i.e., by finding a pose that maximizes the number of 3D

points projecting close to their corresponding 2D positions.

As long as there are sufficiently many correct matches,

structure-based methods will be able to estimate a pose.

In contrast to structure-based methods, pose regression

algorithms do not explicitly use knowledge about projec-

tive geometry. Rather, they learn the mapping from image

content to camera pose from data. Based on our theory,

absolute pose regression methods are expressive enough to

be able to learn this mapping given enough training data:

Changes in image content lead to different features maps

F (I), which lead to a change in the embedding E(F (I)),
and thus a different pose (c.f . Eq. 3). Assuming the right

network architecture, loss function, and sufficient training

data, it should thus be possible to train an APR approach

that accurate estimates camera poses for novel viewpoints.

In practice, collecting a vast amount of images, comput-

ing the training poses (e.g., via SfM), and training a CNN on

large amounts of data are all highly time-consuming tasks.

Thus, methods that are able to accurately predict poses us-

ing as little training data as possible are preferable. In the

following, we use our theoretical model to predict failure

cases for pose regression techniques in scenarios with lim-

ited training data. We validate our predictions experimen-

tally. In addition, we show that structure-based methods, as

can be expected, are able to handle these situations.

Experimental setup. For the practical experiments used

in this section, we recorded new datasets2 . We deliberately

limited the amount of training data to one or a few trajecto-

ries per scene and captured test images from differing view-

points. Ground truth poses for training and testing data were

2The datasets are available at https://github.com/

tsattler/understanding_apr.

obtained using SfM [62]. We scaled the resulting 3D mod-

els to meters by manually measuring distances. For evalu-

ation, we use both PoseNet [29, 30] and MapNet [11]. We

use the PoseNet variant that learns the coefficient weighting

position and orientation errors during training [29]. Both

methods are state-of-the-art absolute pose regression algo-

rithms. We use Active Search [59] to obtain baseline re-

sults for structure-based methods. Active Search uses Root-

SIFT [4,40] features to establish 2D-3D matches. It is based

on prioritized matching, terminating correspondence search

once 200 matches have been found. The pose is estimated

via a P3P solver [31] inside a RANSAC [18] loop, followed

by non-linear refinement of the pose [1]. The 3D model re-

quired by Active Search is build by matching each training

image against nearby training images and triangulating the

resulting matches using the provided training poses.

Training data captured on a line or parallel lines. Let

T = {(I,pI = (cI , rI))} be a set of training images with

their corresponding camera poses. As shown in Sec. 3, cam-

era pose regression techniques express the camera pose of

an image as a linear combination of a set of learned base

poses. Consider a scenario where all training camera posi-

tions lie on a line. This represents the most basic data cap-

ture scenario, e.g., for data captured from a car such as the

large-scale San Francisco [17] and RobotCar [42] datasets.

In this scenario, each camera position cI corresponds to

a point on a line o+δd. Here, o ∈ R
3 is a point on the line,

d ∈ R
3 is the direction of the line, and δ ∈ R is a scaling

factor. One admissible solution to the training problem, al-

though not the only one, is thus to place all base translations

cj on the line o+ δd. As any linear combinations of points

on a line lies on the line, this solution will never generalize.

Fig. 2 shows two examples for this scenario: In the first

one, training data was captured while riding an escalator up-

wards. Testing data was acquired while riding the escalator

down (looking again upwards) in another lane. In the sec-

ond example, training data was acquired while walking par-

allel to building facades while test data was acquired from a

bit farther away. In both cases, MapNet clearly places most

base translations along a line. While there are some transla-

tions not on the line, these are mostly used to handle cam-

era shake (c.f . the supp. video). As a result, MapNet places

its estimates of the test poses on or close to the resulting

line and does not generalize to diverging viewpoints. This

clearly shows that solutions to the training problem that are

guaranteed to not generalize are not only of theoretical in-

terest but can be observed in practice.

The base translations estimated by PoseNet are signifi-

cantly more noisy and do not all lie on a line. Interestingly,

PoseNet still places all test poses on a line through the train-

ing images. While the base poses thus span a space larger

than positions on the line, PoseNet is still not able to gener-

alize. This is due to a failure of mapping the image appear-
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Figure 2. Example scenarios in which two absolute pose regression techniques, PoseNet [29, 30] and MapNet [11], fail to generalize. For

both scenes, the networks learn to (roughly) interpolate along a line. Consequently, the poses of the test images are also placed along this

line. Please see the caption of Fig. 1 for details on the color coding and the base translations shown for the two scenes.

ance to suitable weights for the base poses, showing that

multiple solutions exists that do not generalize. In contrast,

Active Search handles both scenarios well (c.f . Fig. 2).

More general trajectories. The argument above exploits

that it is not necessary that the base translations span the

space of all possible translations to explain a set of images

taken on a line. If the training trajectory is more general,

e.g., covering all directions in a plane in the case of planar

motion, this argument is not applicable anymore.

For more general training trajectories, it is usually pos-

sible to express each viable test pose as a linear combina-

tion of the base poses. However, this is only a necessary

but not a sufficient condition for generalization. As evident

from Eq. 3, absolute pose regression techniques couple base

poses to image appearance via the coefficients αI
j .

Consider a part P ′ of the scene defined by a subset

T ′ = {I} of the training images. The corresponding rel-

evant subset B′(P ′) of the base poses B = {(cj , rj)} is

B′(P ′) = {(cj , rj)| exists I ∈ T ′ with |αI
j | > 0} . (5)

A stronger necessary condition for generalization is that the

linear span of each such B′(P ′) contains the poses of all

test images in P ′3. In the following, we show that this is

not necessarily guaranteed in practice.

Figs. 1 and 3 show scenes with more general motion.

For each scene, we show the training and ground truth test-

ing trajectories, as well as the test trajectories estimated by

PoseNet, MapNet, and Active Search. In addition, we show

the base translations used by the two networks. Since the

training images are taken in a plane, the base translations

also lie in a plane (up to some noise). As can be seen, the

networks are able to generalize in some parts of the scene,

e.g., when the test trajectory crosses the training trajectory

in Fig. 1. In other parts, they however seem to resort to some

form of nearest neighbor strategy: Test poses are placed

close to parts of the training trajectory with similar image

3This condition is not sufficient as a network might not learn the ”right”

embedding for expressing all test poses as linear combinations of B′(P ′).

appearance. In these parts, the relevant base translations are

not sufficient to model the test positions more accurately.

This shows that more training data is required in these re-

gions. It also shows that networks do not automatically ben-

efit from recording more data in unrelated parts of the scene.

As can be expected, Active Search fails or produces in-

accurate pose estimates when there is little visual overlap

between the test and training images (c.f . the example test

image in Fig. 3(left), where the wall visible in the image is

not seen during training). Still, Active Search overall han-

dles viewpoint changes significantly better.

Fig. 4 shows a more complex example, where the train-

ing data is captured on multiple parallel lines and should be

sufficient to explain the test poses. In this case, both net-

works are able to estimate poses close to these lines, but

are not able to properly interpolate between them and do

not generalize beyond them. Active Search mostly handles

the large viewpoint changes between training and testing

images. If the change is too large however, it fails to find

enough matches and thus to estimate a pose. Local features

that are more robust to large viewpoint changes are an ac-

tive field of research [51, 55] and structure-based methods

will automatically benefit from progress in this field.

Using densely sampled training data. Training using

more data in a part of the scene should intuitively improve

the prediction accuracy of pose regression techniques. To

verify this assumption, we use synthetic data: We created a

3D model of the Shop Facade scenes from the Cambridge

Landmarks dataset [30] using multi-view stereo [64]. We

then rendered [75] the scene from the poses of the original

training and testing images, as well as from a set of addi-

tional poses. These poses are placed on a regular grid in the

plane containing the original poses, with a spacing of 25cm

between poses. We only created poses up to 3 meters away

from the original training poses. The orientation of each

additional pose is set to that of the nearest training pose.

Varying the maximum distance to the original poses and the

grid spacing thus creates varying amounts of training data.
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Figure 3. Example scenarios with more general training trajectories in which two absolute pose regression techniques, PoseNet [29, 30]

and MapNet [11], fail to generalize. Please see the caption of Fig. 1 for details on the color coding.

max. distance - 1m 2m 3m

spacing - 1m 0.5m 0.25m 1m 0.5m 0.25m 1m 0.5m 0.25m

# training images 203 501 1,315 4,576 683 2,035 7,425 806 2,531 9,412

PoseNet [29] 1.19 / 6.88 1.02 / 6.48 0.74 / 7.07 0.79 / 5.84 1.15 / 8.10 0.86 / 6.88 0.54 / 5.84 0.66 / 6.88 0.66 / 6.06 0.68 / 5.38

MapNet [11] 1.07 / 4.70 0.61 / 3.31 0.64 / 2.85 0.41 / 2.18 0.72 / 3.41 0.42 / 2.06 0.38 / 2.31 0.69 / 3.18 0.44 / 2.39 0.33 / 1.46

Active Search [59] 0.01 / 0.04

DenseVLAD [71] 0.98 / 7.90 0.79 / 8.01 0.74 / 7.81 0.63 / 7.68 0.72 / 7.81 0.61 / 7.38 0.57 / 6.94 0.66 / 7.81 0.60 / 7.27 0.51 / 6.87

DenseVLAD+Inter. 0.89 / 5.71 0.75 / 5.62 0.52 / 6.65 0.45 / 6.93 0.57 / 5.96 0.48 / 6.13 0.41 / 6.41 0.49 / 6.07 0.46 / 6.26 0.38 / 6.41

Table 1. Median position / orientation errors in meters / degree on the synthetic Shop Facade dataset obtained by rendering a multi-view

stereo reconstruction. We enhance the training set by additional images captured on a regular grid, varying the spacing between images.

We only consider additional images within a certain maximum distance to the positions of the original training poses.

Figure 4. See caption of Fig. 1 for details.

Tab. 1 compares PoseNet and MapNet trained on varying

amounts of data with Active Search using only renderings

from the original training poses4. As expected, using more

training data improves pose accuracy. However, PoseNet

and MapNet do not perform even close to Active Search,

even with one order of magnitude more data.

Discussion. Pose regression techniques are unlikely to

work well when only little training data is available and sig-

nificant viewpoint changes need to be handled. This clearly

limits their relevance for practical applications. Even with

large amounts of training data, pose regression does not

reach the same performance as structure-based methods.

This clearly shows a fundamental conceptual difference be-

tween the two approaches to visual localization. We at-

tribute this divide to the fact that the latter are based on the

laws of projective geometry and the underlying 3D geome-

try of the scene. This in turn enables them to better handle

viewpoint changes.

4All images used in this experiment are renderings of the 3D model.

We use a resolution of 455×256 pixels as input to all methods.

5. Comparison with Image Retrieval

As can be seen in Fig. 1 and Fig. 3(right), absolute pose

regression (APR) techniques tend to predict test poses close

to the training poses in regions where little training data is

available. This behavior is similar to that of image retrieval

approaches. Below, we show that this behavioral similar-

ity is not a coincident. Rather, there is a strong connection

between APR and image retrieval. We also show that APR

methods do not consistently outperform a retrieval baseline.

Relation to image retrieval. Let I be a test image and J
a training image observing the same part of the scene. We

can write the embedding αI as αI = αJ + ∆I , for some

offset ∆I . Using Eq. 3, we can thus relate the pose (ĉI , r̂I)
estimated for I to the pose (ĉJ , r̂J ) estimated for J via

(

ĉI
r̂I

)

=

(

ĉJ
r̂J

)

+

(∑n

j=1 ∆
I
j cj

∑n

j=1 ∆
I
j rj

)

=

(

ĉJ
r̂J

)

+

(

ĉI,J
r̂I,J

)

. (6)

Here, (ĉI,J , r̂I,J ) is a pose offset, i.e., the pose of I is

predicted relative to the pose predicted for J .

Eq. 6 highlights the conceptual similarity between abso-

lute pose regression and image retrieval. Standard image

retrieval approaches first find the training image J most

similar to a given test image I, where similarity is defined

in some feature space such as Bag-of-Words (BoW) [67] or

VLAD [3,27,71]. The pose of the test image is then approx-

imated via the pose of the retrieved image, i.e., (ĉI , r̂I) =
(cJ , rJ ), without adding an offset. However, retrieval

methods can also estimate such an offset as an affine com-

bination
∑k

i=1 ai(cJi
, rJi

),
∑

ai = 1, of the poses of the

top-k retrieved training images J1, . . . ,Jk. Let d(I) be the

descriptor for image I used during retrieval. The weights ai
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can be obtained by finding the affine combination of train-

ing image descriptors that is closest to the test descriptor

d(I), i.e., by minimizing ||d(I) −
∑k

i=1 aid(Ji)||2 sub-

ject to
∑

ai = 1. This approach has been shown to work

well for linearly interpolating between two BoW represen-

tations [72]. Note the conceptual similarity between this

interpolation and Eq. 3, where the trained base poses are

used instead of the poses of the retrieved images.

Eq. 6 also establishes a relation between APR ap-

proaches and relative pose regression (RPR) algorithms.

RPR methods first identify a set of training images rele-

vant to a given test image, e.g., using image retrieval [7,35]

or by encoding the training images in a CNN [56]. They

then compute a pose offset from the training images to the

test image via regression. RPR approaches naturally benefit

from computing offsets to multiple training images [7].

5.1. Experimental Comparison

Baselines. We use DenseVLAD [71] as an image retrieval

baseline. DenseVLAD densely extracts RootSIFT [4, 40]

descriptors from an image and pools them into a VLAD [27]

descriptor. Dimensionality reduction via PCA, trained on

an unrelated outdoor dataset [71], is then used to reduce

the dimensionality of the descriptor to 4096. The Euclidean

distance is used to measure similarity between two Den-

seVLAD descriptors. We use the implementation provided

by [71], but only extract RootSIFT descriptors at a single

scale5. We chose DenseVLAD as it uses a handcrafted fea-

ture representation. At the same time, DenseVLAD has

been shown to perform well even on challenging localiza-

tion tasks [60, 61, 71].

DenseVLAD approximates the pose of the test image via

the pose of the most similar training image. In addition, we

also use a variant, denoted as DenseVLAD + Inter., that uses

the interpolation approach described above. We use all top-

k ranked images for interpolation. As there might be some

outliers among the top retrieved images, interpolation can

potentially decrease pose accuracy. However, we decided

to keep this baseline as simple as possible and thus did not

implement an outlier filtering mechanism.

Cambridge Landmarks [30] and 7 Scenes [65]. In a first

experiment, we compare state-of-the-art pose regression

techniques to the two image retrieval baselines on the Cam-

bridge Landmarks [30] and 7 Scenes [65] datasets. These

two relatively small-scale datasets are commonly used to

evaluate pose regression approaches. We only compare

methods that predict a camera pose from a single image.

Tab. 2 shows the median position and orientation errors

obtained by the various methods. As can be seen by the

results marked in red, none of the absolute and relative pose

5Scale invariance is not desirable when searching for the training image

taken from the most similar pose.

regression approaches is able to consistently outperform the

retrieval baselines. In addition, pose regression techniques

are often closer in performance to image retrieval than to

structure-based methods. In particular, these results verify

our theoretical analysis that APR is much closer related to

image retrieval than to structure-based methods.

Out of the four best-performing pose regression ap-

proaches (MapNet [11], RelocNet [7], Relative PN [35],

AnchorNet [56]), three are RPR approaches (RelocNet,

Relative PN, AnchorNet). AnchorNet comes closest to

structure-based methods. It uses a brute-force approach that

essentially estimates a pose offset between the input image

and every 10th training image. Considering the relative im-

provement6, AnchorNet typically performs closer to other

APR or RPR methods than to the best performing structure-

based approach in each scene. It also fails to outperform the

simple DenseVLAD baseline on the Street scene, which is

the largest and most complex scene in the Cambridge Land-

marks dataset [10, 50].

AnchorNet encodes the training images in the regression

CNN and thus needs to be trained specifically per scene. In

contrast, Relative PN and RelocNet both perform an explicit

image retrieval step. They can thus also be trained on unre-

lated scenes. Besides RelocNet and Relative PN trained on

7 Scenes (7S), we thus also compare against variants trained

on other datasets (ScanNet (SN) [20], University (U) [35]).

As shown in Tab. 2, both approaches currently do not gen-

eralize well using this data, as they are less accurate than

DenseVLAD (which requires no training).

One challenge of the Cambridge Landmarks and 7

Scenes datasets is that there are significant differences in

pose between the training and test images. As shown in

Sec. 4, this is a severe challenge for current regression tech-

niques. In the following, we focus on scenes with less de-

viation between training and test poses, which should be

much easier for pose regression techniques. We show re-

sults on two such datasets. A further experiment (on the

DeepLoc dataset [53]) can be found in the supp. material..

TUM LSI [76]. The scenes in the Cambridge Landmarks

and 7 Scenes datasets are typically rather well-textured.

Thus, we can expect that the SIFT descriptors used by

DenseVLAD and Active Search [59] work rather well. In

contrast, the TUM LSI indoor dataset [76] contains large

textureless walls and repeating structures. In general, we

would expect learned approaches to perform significantly

better than methods based on low-level SIFT features as

the former can learn to use higher-level structures. Yet, as

shown in Tab. 3, DenseVLAD still outperforms pose regres-

sion techniques on this more challenging dataset.

RobotCar dataset [42]. The training images of the LOOP

and FULL scenes [11] correspond to trajectories of 1.1km

6Defined as the ratio of the position / orientation errors of two methods.
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Cambridge Landmarks 7 Scenes

Kings Old Shop St. Mary’s Street Chess Fire Heads Office Pumpkin Kitchen Stairs

A
P

R

PoseNet (PN) [30] 1.92/5.40 2.31/5.38 1.46/8.08 2.65/8.48 0.32/8.12 0.47/14.4 0.29/12.0 0.48/7.68 0.47/8.42 0.59/8.64 0.47/13.8

PN learned weights [29] 0.99/1.06 2.17/2.94 1.05/3.97 1.49/3.43 20.7/25.7 0.14/4.50 0.27/11.8 0.18/12.1 0.20/5.77 0.25/4.82 0.24/5.52 0.37/10.6

Bay. PN [28] 1.74/4.06 2.57/5.14 1.25/7.54 2.11/8.38 0.37/7.24 0.43/13.7 0.31/12.0 0.48/8.04 0.61/7.08 0.58/7.54 0.48/13.1

geo. PN [29] 0.88/1.04 3.20/3.29 0.88/3.78 1.57/3.32 20.3/25.5 0.13/4.48 0.27/11.3 0.17/13.0 0.19/5.55 0.26/4.75 0.23/5.35 0.35/12.4

LSTM PN [76] 0.99/3.65 1.51/4.29 1.18/7.44 1.52/6.68 0.24/5.77 0.34/11.9 0.21/13.7 0.30/8.08 0.33/7.00 0.37/8.83 0.40/13.7

GPoseNet [12] 1.61/2.29 2.62/3.89 1.14/5.73 2.93/6.46 0.20/7.11 0.38/12.3 0.21/13.8 0.28/ 8.83 0.37/6.94 0.35/8.15 0.37/12.5

SVS-Pose [50] 1.06/2.81 1.50/4.03 0.63/5.73 2.11/8.11

Hourglass PN [44] 0.15/6.17 0.27/10.8 0.19/11.6 0.21/8.48 0.25/7.01 0.27/10.2 0.29/12.5

BranchNet [78] 0.18/5.17 0.34/8.99 0.20/14.2 0.30/7.05 0.27/5.10 0.33/7.40 0.38/10.3

MapNet [11] 1.07/1.89 1.94/3.91 1.49/4.22 2.00/4.53 0.08/3.25 0.27/11.7 0.18/13.3 0.17/5.15 0.22/4.02 0.23/4.93 0.30/12.1

MapNet+ [11] 0.10/3.17 0.20/9.04 0.13/11.1 0.18/5.38 0.19/3.92 0.20/5.01 0.30/13.4

MapNet+PGO [11] 0.09/3.24 0.20/9.29 0.12/8.45 0.19/5.42 0.19/3.96 0.20/4.94 0.27/10.6

R
P

R

Relative PN [35] (U) 0.31/15.0 0.40/19.0 0.24/22.2 0.38/14.1 0.44/18.2 0.41/16.5 0.35/23.6

Relative PN [35] (7S) 0.13/6.46 0.26/12.7 0.14/12.3 0.21/7.35 0.24/6.35 0.24/8.03 0.27/11.8

RelocNet [7] (SN) 0.21/ 10.9 0.32/11.8 0.15/13.4 0.31/ 10.3 0.40/ 10.9 0.33/10.3 0.33/11.4

RelocNet [7] (7S) 0.12/4.14 0.26/10.4 0.14/10.5 0.18/5.32 0.26/4.17 0.23/5.08 0.28/7.53

AnchorNet [56] 0.57/0.88 1.21/2.55 0.52/2.27 1.04/2.69 7.86/24.2 0.06/3.89 0.15/10.3 0.08/10.9 0.09/5.15 0.10/2.97 0.08/4.68 0.10/9.26

IR

DenseVLAD [71] 2.80/5.72 4.01/7.13 1.11/7.61 2.31/8.00 5.16/23.5 0.21/12.5 0.33/13.8 0.15/14.9 0.28/11.2 0.31/11.3 0.30/12.3 0.25/15.8

DenseVLAD + Inter. 1.48/4.45 2.68/4.63 0.90/4.32 1.62/6.06 15.4/25.7 0.18/10.0 0.33/12.4 0.14/14.3 0.25/10.1 0.26/9.42 0.27/11.1 0.24/14.7

3
D

Active Search [59] 0.42/0.55 0.44/1.01 0.12/0.40 0.19/0.54 0.85/0.8 0.04/1.96 0.03/1.53 0.02/1.45 0.09/3.61 0.08/3.10 0.07/3.37 0.03/2.22

BTBRF [46] 0.39/0.36 0.30/0.41 0.15/0.31 0.20/0.40

DSAC++ [10] 0.18/0.3 0.20/0.3 0.06/0.3 0.13/0.4 0.02/0.5 0.02/0.9 0.01/0.8 0.03/0.7 0.04/1.1 0.04/1.1 0.09/2.6

InLoc [69] 0.03/1.05 0.03/1.07 0.02/1.16 0.03/1.05 0.05/1.55 0.04/1.31 0.09/2.47

Table 2. Results on the Cambridge Landmarks [30] and 7 Scenes [65] datasets. We compare absolute (APR) and relative (RPR) pose

regression methods, image retrieval (IR) techniques, and structure-based (3D) approaches. We report the median position / orientation

error in meters / degree. DenseVLAD + Inter. uses the top-20 (Cambridge Landmarks) respectively top-25 (7 Scenes) retrieved images.

Red numbers show when a method fails to outperform the image retrieval (IR) baselines.

PoseNet MapNet LSTM Dense DenseVLAD

[30] [11] PN [76] VLAD [71] +Inter.

1.87m, 6.14◦ 1.71m, 3.50◦ 1.31m, 2.79◦ 1.08m, 1.82◦ 0.49m, 2.01◦

Table 3. Median position and orientation errors on the TUM LSI

dataset [76]. The top-2 retrieved images are used for interpolation.
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Figure 5. Cum. distribution of position errors for (left) RobotCar

LOOP and (right) RobotCar FULL. On the larger dataset, Den-

seVLAD significantly outperforms pose regression techniques.

and 9.6km, respectively, driven by a car. The test images are

obtained by driving the same trajectory. This dataset repre-

sents a scenario encountered during autonomous driving.

Fig. 5 shows the cumulative distributions of position er-

rors for pose regression and image retrieval techniques. As

expected, MapNet+ and MapNet+PGO outperform Den-

seVLAD on the smaller LOOP dataset. However, they per-

form significantly worse on the larger FULL scene7. This

is despite MapNet+ using additional training sequences and

MapNet+PGO using information from multiple images for

its predictions. This scalability issue of pose regression is in

line with similar observations in the literature [60, 63, 69].

7DenseVLAD is slightly more accurate on the FULL scene than on the

LOOP dataset. We attribute this to the image quality, as the test set of the

LOOP scene contains several overexposed images.

Using densely sampled data. As in Sec. 4, our final ex-

periment compares image retrieval and APR techniques on

a synthetic scene, where a vast amount of training data is

available. As shown in Tab. 1, MapNet outperforms the im-

age retrieval baselines when more training data is available.

Still, it performs much closer to the retrieval baselines than

to the structure-based method.

6. Conclusion

In this paper, we have derived a theoretic model for ab-

solute pose regression (APR) algorithms. For the first time,

this model allowed us to develop a better understanding of

what APR method are and are not capable of. Based on

our theory, we have predicted that APR techniques are not

guaranteed to generalize from the training data in practical

scenarios. We have also shown that APR is more closely re-

lated to image retrieval approaches than to methods that ac-

curately estimate camera poses via 3D geometry. These pre-

dictions have been verified through extensive experiments.

The second main result of our paper is to show that pose

regression techniques are currently competing with image

retrieval approaches approximating the test pose rather than

with methods that compute it accurately. More precisely,

we have shown that no current pose regression approach

consistently outperforms a handcrafted retrieval baseline.

This paper has thus introduced an important sanity check

for judging pose regression methods, showing that there is

still a significant amount of research to be done before pose

regression approaches become practically relevant.
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