
BAD SLAM: Bundle Adjusted Direct RGB-D SLAM

Thomas Schöps1 Torsten Sattler2 Marc Pollefeys1,3

1Department of Computer Science, ETH Zürich 2Chalmers University of Technology 3Microsoft

Abstract

A key component of Simultaneous Localization and Map-

ping (SLAM) systems is the joint optimization of the esti-

mated 3D map and camera trajectory. Bundle adjustment

(BA) is the gold standard for this. Due to the large num-

ber of variables in dense RGB-D SLAM, previous work has

focused on approximating BA. In contrast, in this paper we

present a novel, fast direct BA formulation which we imple-

ment in a real-time dense RGB-D SLAM algorithm.

In addition, we show that direct RGB-D SLAM systems

are highly sensitive to rolling shutter, RGB and depth sensor

synchronization, and calibration errors. In order to facili-

tate state-of-the-art research on direct RGB-D SLAM, we

propose a novel, well-calibrated benchmark for this task

that uses synchronized global shutter RGB and depth cam-

eras. It includes a training set, a test set without public

ground truth, and an online evaluation service. We observe

that the ranking of methods changes on this dataset com-

pared to existing ones, and our proposed algorithm out-

performs all other evaluated SLAM methods. Our bench-

mark and our open source SLAM algorithm are available

at: www.eth3d.net

1. Introduction

SLAM is the problem of simultaneously building a 3D

model of a scene and determining the pose of a camera in

the scene. This for example enables augmented reality [32]

and perception for self-driving cars [64]. Modern SLAM

systems consist of two parts [32]: A front-end that tracks

the camera pose in real-time, and a back-end that jointly

optimizes the 3D map and the previous camera poses. The

gold standard for the back-end optimization is bundle ad-

justment (BA) [62]: optimization of all parameters of the

reconstructed model and the cameras.

BA algorithms are widely used with sparse features, e.g.,

[7, 44, 54]. These however discard most of the image infor-

mation. Direct [10, 45, 46, 69] approaches can make use of

all data. For a dense reconstruction, this introduces many

variables that need to be optimized. Thus, a common as-

sumption is that full BA is infeasible in real-time for di-

rect and dense methods [27]. Instead, approximations are

Figure 1. Scene from our benchmark reconstructed in real-time

with ca. 335’000 surfels, with keyframes and estimated trajectory.

common such as pose graph optimization [11, 30, 34, 60] or

deformable geometry [67–69] (c.f . Sec. 2). In this paper,

we demonstrate that direct alternating BA on dense RGB-D

data is feasible in real-time, using a single GPU. We pro-

pose a novel, practical BA algorithm, carefully designed to

run in real-time in scenes such as the one in Fig. 1.

Experiments on the TUM RGB-D benchmark [61] show

the benefit of direct BA over approximate methods. How-

ever, the feature-based ORB-SLAM2 [44] outperforms all

direct methods. This is likely caused by effects such as

rolling shutter [10], asynchronous RGB and depth frames,

and depth distortion. We believe that such problems are

better solved in hardware than in software. For example,

handling rolling shutter is computationally complex [53,56]

and introduces degenerate cases [1]. We thus introduce a

novel benchmark for RGB-D SLAM that was recorded with

accurately calibrated, synchronized global shutter cameras.

On this dataset, ORB-SLAM2 is outperformed by our di-

rect BA approach, while DVO-SLAM [30] performs on a

similar level as ORB-SLAM2. Our benchmark is available

online with public leaderboards for a training and a test set.

In summary, our contributions are: i) A novel, fast al-

gorithm for direct BA, implemented in an RGB-D SLAM

system which outperforms existing approaches. ii) A well-

calibrated benchmark dataset for RGB-D SLAM, but also

monocular and stereo visual-inertial SLAM. In contrast to

previous datasets, ours uses synchronized global shutter

cameras, removing the need to model effects such as rolling

134

shutter. We show that the ranking of RGB-D SLAM meth-

ods changes on this dataset compared to existing datasets.

iii) A leaderboard for our benchmark, and our SLAM sys-

tem as open source, available at www.eth3d.net.

2. Related Work

The main technical contribution of our work is a real-

time capable direct BA strategy for RGB-D data. This sec-

tion thus focuses on optimization strategies used for SLAM.

We also shortly discuss benchmarks for RGB-D SLAM.

Frame-to-model tracking algorithms track the motion of

the camera with respect to the 3D model built so far. Ex-

amples include voxel-based KinectFusion-style approaches

[28, 45, 47], similar methods based on surfel representa-

tions [29, 35, 36], as well as some keyframe-based tech-

niques [39–43]. However, the camera poses are never re-

fined, leading to drift in the estimated trajectory over time.

Map deformation can be done explicitly when a loop is

detected. For example, Kintinuous [68] deforms the recon-

structed mesh for loop closing. Similar approaches are used

by [67] and ElasticFusion [69]. However, while such a de-

formation can approximately improve the model, it does not

accurately take into account all available information.

Pose graph optimization methods [9, 11, 30, 34, 60, 65]

build a graph of simplified constraints on the relative trans-

formation between camera pairs. This is then used to refine

the camera poses. This reduces the size of the optimization

problem, but also only approximates BA.

Fragment-based optimization fuses together chunks of

frames into fragments and then optimizes the global (rigid)

fragment alignment [6,15,27,49]. This enables efficient op-

timization of the map and cameras due to the low number of

variables [27]. Yet, the intra-fragment structure and poses

are typically fixed, i.e., only approximate BA is performed.

Indirect (feature-based) BA. Typically, SLAM meth-

ods perform indirect BA on a sparse set of keypoints

only, optimizing the reprojection error of the reconstructed

points. BundleFusion [7] performs global SIFT [38] key-

point matching in real-time. Direct image alignment is used

within small chunks of frames, and as a post-processing step

on the whole reconstruction. [16, 17] combine direct local-

ization of image patches with indirect BA optimizing the

reprojection error. Henry et al. [25] use depth to extend the

keypoint reprojection error. A similar formulation is also

used by ORB-SLAM2 [44]. It significantly outperforms all

current direct RGB-D SLAM systems on existing datasets

as it is less sensitive to unmodeled geometric distortions.

However, our experiments show that our dense BA strategy

outperforms ORB-SLAM2 on well-calibrated data.

Direct BA optimizes the camera and scene parameters by

minimizing a photometric error. Delaunoy & Pollefeys [8]

propose an offline algorithm with a mesh-based object rep-

resentation. This requires frequent remeshing, contributing

to a high runtime. In another offline algorithm, Goldlücke et

al. [23] optimize for (super-resolved) appearance and cam-

era calibration, while leaving the initial geometry constant

aside from creating a displacement map.

SDF-2-SDF [59] performs pairwise alignment of signed

distance functions (SDFs). A final offline BA step refines

keyframe poses and a fused reconstructed SDF. In contrast

to our method, SDF-2-SDF considers geometry only. Fur-

thermore, the discretization into voxels limits its accuracy.

Yan et al. [70] use surfels as map representation. They

propose an optimization scheme similar to direct BA, which

however combines pose graph optimization with some di-

rect structure and pose updates only.

The geometric term of our direct BA approach is sim-

ilar to multiview ICP [14]. However, instead of matching

frames to a global reconstruction, multiview ICP builds on

pairwise matching, requiring to take all overlapping pairs

into account for using all information. Furthermore, multi-

view ICP does not refine the geometry.

Both Alismail et al. [2] and DSO [10] propose direct BA

approaches for visual odometry. Only few keyframes which

are temporally close to the current frame and the 3D points

visible in them are optimized. DSO has been extended with

loop closure handling, but only using pose graph optimiza-

tion without BA [20]. As one key difference to these works,

we propose a direct BA approach for global consistency in

SLAM, instead of restricting it to odometry only. Our ap-

proach runs in real-time, which is made possible by alter-

nating between optimizing poses and geometry to limit the

size of the individual optimization problems.

Benchmarking RGB-D SLAM. Tab. 1 shows a compari-

son of our new benchmark with existing datasets. Ours par-

ticularly stands out in providing real RGB-D data with syn-

chronized global-shutter cameras. In contrast to other real-

world RGB-D datasets, ours also provides full IMU data.

Furthermore, to our knowledge, ours is the first real-world

RGB-D SLAM benchmark with a public online leaderboard

on a test set for which ground truth is withheld. Aside

from RGB-D SLAM, (visual-inertial) monocular and stereo

SLAM methods can also be evaluated on our benchmark.

We provide online leaderboards for these tasks as well.

3. Direct RGB-D Bundle Adjustment

As is common for SLAM algorithms, our method con-

sists of a front-end and a back-end (c.f . Fig. 2). The front-

end tracks the motion of the RGB-D camera in real-time. It

thus provides initial estimates for camera poses and scene

geometry. The back-end, running at a lower frequency [32],

then refines both the camera trajectory and the geometry to

build a consistent 3D map. The core technical contribution

135

Method Real data RGB-D Stereo Global shutter Sync’ed cameras IMU Accurate GT Geometry GT Benchmark

TUM RGB-D [61] X X (1) X (2)

TUM VI [57] X X X X X X

TUM Mono [12] X X -

CoRBS [66] X X X X

ICL-NUIM [24] X X X X (3)

VIPER Odometry [51] X - X X

InteriorNet [37] X X X X X X X

KITTI Odometry [21] X (4) X X X X X

EuRoC MAV [3] X X X X X X (5)

Ours X X X X X X (6) X

Table 1. Comparison of selected existing datasets with our new benchmark. Notes on numbered entries: (1) Accelerometer but not

gyroscope measurements are available. (2) While this dataset has a test set, it is not well suited for benchmarking since it shows the

same scenes as the training set, and there is no online leaderboard. (3) Available in an extended version of the dataset [6]. (4) Sparse

measurements of a spinning laser scanner are available. (5) Structure ground truth is available for some of the sequences. (6) A motion

capturing system is used for all but a few training datasets, for which GT is obtained using Structure-from-Motion (c.f . Sec. 5).

Input: RGB-D camera

Track wrt. last KF

image

New KF?

no
yes

Loop detected?
no

yes

Pose graph optimization

Model (KFs, surfels)

Front-end Back-end

Continuous optimization:

poses, surfels, intrinsics

Discrete surfel updates:

creation, merging, deletion

Direct BA

Figure 2. Approach overview. KF stands for keyframe.

of this paper is a novel Bundle Adjustment (BA) strategy for

direct RGB-D SLAM, used in the back-end. In the follow-

ing, we describe this strategy in detail. The front-end, which

follows common practice, is briefly discussed in Sec. 4.

Our BA strategy is based on a set of key concepts: We

use both geometric constraints, based on the recorded depth

images, and photometric constraints. The latter use gradi-

ents rather than raw pixel intensities to be robust to pho-

tometric changes. To enable efficient optimization, our ap-

proach alternates between refining the 3D map and the cam-

era poses to minimize the number of parameters considered

at each point in time (c.f . Alg. 1). As a result, ours is the

first dense BA approach for RGB-D SLAM that runs in real-

time for smaller scenes. In the following, we first describe

our data representation before detailing the cost function we

optimize and the optimization procedure itself.

3.1. Data Representation

We represent the scene geometry with dense surfels and

use keyframes to reduce the amount of input data for BA.

A keyframe is defined by an RGB-D frame and its 6DOF

camera pose. We use a shared intrinsic calibration for all

keyframes, where we separately model the color and depth

sensors as pinhole cameras. Optionally, we also model

depth image deformations, which is important to improve

the depth quality of typical consumer depth cameras [72].

A surfel s in our method is an oriented disc defined by

a 3D center point ps, a surface normal vector ns, a radius

rs, and a scalar visual descriptor ds. We chose surfels as a

scene representation as they can be efficiently fused and up-

dated by BA, and can be quickly deformed to adapt to loop

closures [69]. In contrast to voxel-based scene represen-

tations (e.g., [45]), surfels can easily represent thin surfaces

and scene detail of arbitrary scale. In contrast to meshes [8],

no expensive topology updating is required during BA.

Naively optimizing 3D surfel positions during BA can

lead to problems. RGB-D sensors provide measurements

in weakly textured regions with little variation in geome-

try, e.g., white walls. In these regions, neither photometric

nor geometric descriptors constrain all degrees of freedom,

allowing some surfels to arbitrarily move within a surface.

To prevent potential artefacts, e.g., holes, we thus restrict

the movement of the surfels during optimization. [10] pro-

poses to fix a surfel’s pixel position in its keyframe and to

only optimize its (inverse) depth. In practice, we encoun-

tered problems when using this parameterization in combi-

nation with the point-to-plane residuals typically used for

RGB-D SLAM [73]. For silhouettes and object bound-

aries in particular, the parameterization leads to intersect-

ing the plane and a nearly parallel viewing ray, which is

ill-conditioned. Correspondingly, we observed that the op-

timization moved some surfels to wrong locations.

Our solution is moving surfels along the surfel normal

directions only, and only using measurements having simi-

lar normals to optimize them. This provides a sensible di-

rection of optimization while avoiding ill-defined residuals.

As position and normal optimization is alternated, surfels

are not restricted to move along their initial normal only.

3.2. Cost Function

Our goal is to optimize the parameters of the model de-

fined in Sec. 3.1 to maximize consistency. These parame-

ters are the surfel attributes, keyframe poses, and optionally

camera intrinsics, while measurements are the (mostly) raw

RGB-D input data stored in the keyframes. The cost could

be measured per element of the model (i.e., surfel), or of the

input (i.e., pixel). Since one pixel can correspond to multi-

ple surfels, a non-diagonal Hessian matrix may result in the

latter case during optimization. For efficiency reasons, we

thus use the model-based approach in this work.

The cost is thus computed by projecting each surfel into

each keyframe to establish correspondences with pixel mea-

surements. Geometric and photometric residuals measure

how well the surfel models the depth and color at its corre-

136

sponding image positions. The goal of the optimization is

to maximize photometric and geometric consistency.

Mathematically, we define the cost as follows. Let K be

the set of all keyframes and let Sk be the set of all surfels

that have a corresponding measurement in keyframe k ∈ K.

To robustly handle outliers, the geometric and photomet-

ric residuals rgeom and rphoto are weighted with Tukey’s

biweight and the Huber robust loss function, respectively,

with weighting parameter 10 for both functions. The photo-

metric residuals are furthermore weighted by wphoto = 10−2

to prefer depth information. The resulting cost function is a

sum of geometric and photometric terms:

C(K,S) =
∑

k∈K

∑

s∈Sk

(

ρTukey

(

σ−1
D rgeom(s, k)

)

+ (1)

wphotoρHuber

(

σ−1
p rphoto(s, k)

))

.

Here, σD and σp are standard deviations of the geometric

and photometric measurements. They are used to normalize

the individual residuals, which we explain in the following.

Geometric residuals. Point-to-plane data associations are

commonly used for RGB-D SLAM [73] and are known to

work well for ICP [5]. We thus define rgeom analogously:

rgeom(s, k)=
(

Tk
Gns

)T
(π−1

D,k(π̂D,k(T
k
Gps))−Tk

Gps) (2)

Here, π̂D,k maps a 3D point in the local coordinate system

of keyframe k to the center of the corresponding depth im-

age pixel. In return, π−1
D,k maps a depth pixel to its 3D point

in the keyframe’s local coordinate system via its measured

depth dm. The transformation Tk
G maps the position ps and

normal ns of a surfel s from the global map coordinate sys-

tem G to the local coordinate system of keyframe k. Intu-

itively, Eq. 2 computes the distance between the surfel and

measurement positions along the surfel’s normal direction.

The resulting residual is normalized using an estimate

σD of its standard deviation. To derive this, we apply un-

certainty propagation of the measurement uncertainties. For

a well-calibrated camera, it is reasonable to assume that the

measurement uncertainty is purely in the depth direction.

Many depth cameras use stereo matching on infrared im-

ages to compute depth maps. In this case, the depth error

grows quadratically with the depth dm and can be shown to

be δd2m(bf)−1 [18], which we use as a model for the stan-

dard deviation σdm
. Here, b is the baseline in meters, i.e.,

the camera-camera distance for active stereo, or the camera-

projector distance for structured light. f is the focal length

in pixels, and δ is the expected stereo matching error in pix-

els, which we set to 0.1. Applying uncertainty propagation

(in this case: σ2
D = (

∂rgeom

∂dm

)2σ2
dm

) then leads to:

σD = δ
d2m
bf

∣

∣

∣

(

Tk
Gns

)T
πk(T

k
Gps)

∣

∣

∣
. (3)

The depth uncertainty depends on the sensor type; a differ-

ent model should be used for e.g., time-of-flight sensors.

Photometric residuals. For rphoto, we compare the sur-

fel’s descriptor ds to the surfel’s projection into the im-

age. The descriptor should be robust against photometric

changes while offering a wide basin of convergence and en-

abling efficient optimization. We use simple intensity gra-

dient magnitudes, calculated in a geometrically consistent

way. This approach is similar in principle to the pose re-

finement in [55]. However, [55] uses several points to com-

pute one residual, which prevents fast geometry optimiza-

tion since the resulting Hessian for surfel optimization is

not diagonal. Instead, for one residual we sample the image

at the projections of the surfel center ps and of two fixed

points s1, s2 on the boundary of the same surfel’s disc. The

surfel disc radius rs resembles the pixel sampling of the

highest-resolution image observing the surfel, c.f . the ra-

dius update in Sec. 3.3. s1 and s2 are chosen such that the

directions s1−ps and s2−ps are orthogonal. Then the gra-

dient magnitude is computed and compared to ds to obtain:

rphoto(s, k)=

∥

∥

∥

∥

(

I(πI,k(s1))− I(πI,k(ps))
I(πI,k(s2))− I(πI,k(ps))

)∥

∥

∥

∥

2

−ds . (4)

Here, πI,k is the projection function for the RGB image and

I(·) the bilinearly interpolated image intensity.

The uncertainty σp (c.f . Eq. 1) of the photometric mea-

surements depends on many factors. Some of them, e.g.,

reflections or illumination changes during the capture pro-

cess, are hard to model mathematically. For simplicity, we

thus empirically set σp to 1
180 (for intensities in [0, 1]).

Surfel-measurement correspondence estimation. Eq. 1

compares the surfels in the map to their corresponding

RGB-D measurements in the keyframes. We establish these

correspondences by projecting the surfel centers into the

keyframes. To filter outliers, we only establish a correspon-

dence between a surfel s and its pixel projection in keyframe

k if: i) ps projects to a pixel that has a depth measurement.

In practice this also discards observations at very oblique

angles, since depth cameras will usually discard measure-

ments there. ii) The depth of the measurement and the

projected surfel is similar enough. Similarity is measured

via the weight of the depth residual in the optimization,

i.e., we only establish a correspondence if 1
r

∂ρTukey(r)
∂r

> 0
with r := rgeom(s, k). iii) The surfel normal is similar to

the depth measurement’s normal (estimated by finite differ-

ences in the depth image) and points towards the camera.

3.3. Optimization

We perform BA by optimizing for the cost in Eq. 1. Sim-

ilar to sparse SfM [54], where additional points are trian-

gulated and existing points are merged after BA, we inter-

leave the cost optimization with several discrete surfel up-

date steps. Changing keyframe poses can otherwise result

in scene parts not being covered by surfels.

Both the numbers of surfels and keyframes quickly be-

come large. Jointly optimizing all parameters using a

second-order method such as Gauss-Newton thus quickly

becomes slow, even when using the Schur complement. We

137

thus use alternating optimization, which can still perform

competitively for strongly connected problems [62].

Our optimization scheme, stated in Alg. 1, performs a

number of iterations up to a maximum or until convergence.

Within each iteration, alternating steps optimize the cost in

Eq. 1 and update the surfels. Each step is detailed below.

Algorithm 1 Surfel-based alternating direct BA scheme

1: for all keyframes do Create missing surfels

2: for i ∈ [1,max iteration count] do
3: Update surfel normals
4: Optimize surfel positions and descriptors
5: if i = 1 then Merge similar surfels

6: Optimize keyframe poses
7: Optimize camera intrinsics (optionally)
8: if no keyframe moved then break

9: for all keyframes which moved in the last loop do
10: Merge similar surfels

11: Delete outlier surfels; Update surfel radii

Surfel creation. In a first step, we attempt to create new

surfels for all keyframes. We partition the keyframes into

4×4 pixel cells. If no pixel in a cell corresponds to an ex-

isting surfel, we randomly choose one depth measurement

within the cell to create a new surfel s. Its attributes are

computed from the pixel p it is created from: ps is set to

TG
k π

−1
D,k(p). ns is computed via centered finite differences

on the depth image. rs is defined as the minimum distance

between ps and the 3D points of the 4-neighborhood of p.

ds is initialized to the first term in Eq. 4. Only pixels for

which all neighboring pixels have a depth measurement are

considered when creating new surfels.

Further, we only use pixels that pass the following out-

lier filter: We project the pixel’s 3D point into each other

keyframe. We count the number of times nC the point

projects to a corresponding measurement, and the number

of free-space violations nV , i.e., how often the point lies

in front of a keyframe’s depth map. A pixel is consid-

ered an outlier if nC < nmin or nV > nC . nmin is set to

min(3, 1+ ⌊0.2|K|⌋), avoiding optimization on incomplete

surfel models while the number of keyframes |K| is small.

Surfel normal updates. For efficiency reasons, we treat

surfel normals (which mainly only impact the directions in

which surfels are allowed to move) as auxiliary variables.

Instead of deriving an update step from the cost function

(which may require adding a normal residual in addition to

rgeom and rphoto), we thus use an update which is designed

to be efficient: We average the normals of all corresponding

measurements, followed by re-normalization to unit length.

Surfel position and descriptor optimization. After up-

dating normals ns, surfel positions ps and descriptors ds
are jointly optimized by applying a Gauss-Newton iteration

to Eq. 1. We only allow surfels to move along their nor-

mal directions. A surfel position is thus parametrized as

ps + t · ns and we optimize for t. Joint optimization of

positions and descriptors is very helpful for improved con-

vergence speed. Since different surfels are independent, this

only involves solving a 2×2 matrix for each surfel.

Surfel merging. Surfel creation often generates unneces-

sary surfels for noisy measurements, which get denoised by

their first position optimization. Thus, after position opti-

mization in the first iteration of the BA scheme, we merge

surfels with similar attributes. Two surfels s1 and s2 are

merged if their normals are within 40◦ of each other, and

their positions are closer than 4 · 0.8 · min(rs1 , rs2). The

factor 4 corresponds to the cell size for surfel creation and

0.8 is the merge threshold. For finding merge candidates

quickly, we project the surfels into all keyframes and con-

sider surfels projecting to the same cell for merging.

Keyframe pose optimization. We optimize the poses of all

keyframes by applying the Gauss-Newton method to Eq. 1.

Pose updates ǫ are parametrized as local updates in the Lie

algebra se(3). Thus, the transformation Tk
G from the global

coordinates to the local coordinates of keyframe k is up-

dated as T
g
k · exp(ǫ̂). Local updates ensure that rotation

updates are well-defined [13]. Since keyframes are inde-

pendent, this results in a standard direct pose refinement for

each keyframe (similar to e.g. [29, 30, 41]).

Camera intrinsics optimization. If the RGB-D camera

is not accurately calibrated, we can optionally optimize the

camera intrinsics. We only do this for evaluation on existing

datasets; our new dataset does not require this step. Again,

we use the Gauss-Newton method to minimize Eq. 1, now

optimizing the intrinsic parameters while fixing all others.

We use separate pinhole models for the color and depth

camera and also model depth deformation. We use the depth

offset model from [26], which relates true inverse depths

dtrue to distorted inverse depths ddist for every pixel (x, y) as

dtrue(x, y) = ddist(x, y) +Dδ(x, y) · e
α0−α1ddist(x,y) . (5)

We drop α0 as changing it has the same effect as changing

Dδ for all pixels correspondingly. The remaining parame-

ters are α1 and a parameter image Dδ . The part of the Hes-

sian corresponding to Dδ is a diagonal matrix. The Schur

complement can thus be used to very efficiently solve this

matrix despite its large size. We estimate Dδ at a quarter of

the image resolution, corresponding to the surfel creation

cell size, and use nearest-neighbor access to keep the Hes-

sian diagonal. This approach allows us to quickly optimize

for camera intrinsics and especially depth deformation.

Surfel cleanup and radius update. As is common in

sparse SfM [54], we filter outlier surfels based on the same

criteria used to detect outliers during surfel creation. In ad-

dition, the radius of each surfel is updated to the minimum

radius of all its corresponding measurements. Intuitively,

this corresponds to using the highest resolution under which

the point is observed when computing its descriptor.

138

4. RGB-D SLAM Front-End

The main technical contribution of this paper is the dense

direct BA approach presented in the previous section, which

forms the back-end of our RGB-D SLAM approach. The

following describes our front-end responsible for real-time

camera pose tracking and loop closure detection.

Preprocessing. As is common, a bilateral filter is used to

smooth the depth map, and large depth measurements are

removed. The filter parameters depend on the camera used.

Odometry. Once a new RGB-D frame becomes available,

we first estimate its pose relative to the last keyframe via

standard direct photometric and geometric image alignment

in SE(3) [29, 30, 41]. For robustness against illumination

changes, we use intensity gradients rather than pixel inten-

sities for tracking. The odometry’s purpose is to provide

good initial keyframe poses and it can be exchanged easily.

Interaction with BA. We do not address keyframe selec-

tion in this work and thus simply select every 10th frame

as a keyframe. After a new keyframe is created, we test for

loop closures with previous parts of the trajectory, as de-

tailed below, before passing it to the BA back-end. If a new

keyframe is created before these iterations finish, we skip

the remaining ones to keep up real-time operation.

Loop closure detection. We use a standard bag-of-words

approach [19] based on binary features [4] to identify the

keyframe m most similar to the latest keyframe k. We get

an initial estimate of the keyframes’ relative pose from the

resulting keypoint matches. This pose is then refined us-

ing direct alignment. We also use direct alignment to align

keyframe k to the keyframes m − 1 and m + 1. If these

estimates are sufficiently consistent based on thresholding

their translation and angle differences, we accept the loop

closure. We use the averaged relative pose in a pose graph

optimization step to obtain an initial correction for the tra-

jectory, followed by applying our BA strategy.

It should be noted that as a general limitation of direct

image alignment and thus direct BA, the convergence re-

gion is small [50]. Thus it is for example conceivable that a

pose graph optimization step upon a loop detection pushes

old keyframes out of their convergence region. However,

we did not observe this in our final system. If it became

an issue, we think that future work might try to couple di-

rect BA with a well-converging but inaccurate method. This

way, it could stay close to the solution of the other method

and is thus likely to converge, while acting as a refinement.

5. Benchmark Dataset

Motivation. As motivation for recording a new RGB-

D SLAM benchmark, we discuss results on the popular

TUM RGB-D dataset [61]. Tab. 2 shows absolute trajec-

fr1/desk fr2/xyz fr3/office avg. rank

BundleFusion [7] 1.6 (1) 1.1 (3) 2.2 (4) 2.7 (2)

DVO SLAM [30] 2.1 (5) 1.8 (6) 3.5 (8) 6.3 (6)

ElasticFusion [69] 2.0 (4) 1.1 (3) 1.7 (2) 3.0 (4)

Kintinuous [68] 3.7 (8) 2.9 (9) 3.0 (6) 7.7 (8)

MRSMap [60] 4.3 (9) 2.0 (7) 4.2 (9) 8.3 (9)

ORB-SLAM2 [44] 1.6 (1) 0.4 (1) 1.0 (1) 1.0 (1)

PSM SLAM [70] 1.6 - 3.1 -

RGB-D SLAM [9] 2.3 (6) 0.8 (2) 3.2 (7) 5.0 (5)

VoxelHashing [47] 2.3 (6) 2.2 (8) 2.3 (5) 6.3 (6)

Ours (fixed intr.) 3.6 1.2 2.5 -

Ours 1.7 (3) 1.1 (3) 1.7 (2) 2.7 (2)

Table 2. ATE RMSE results in cm on TUM RGB-D datasets (rank

in brackets). Ours achieves the second best average rank af-

ter ORB-SLAM2 and alongside BundleFusion. Results for other

methods are as reported in [7], [70] and [44]. Our results without

intrinsics and depth deformation optimization are clearly worse,

showing that this is necessary for these datasets.

clean async rs async & rs

avg. med. avg. med. avg. med. avg. med.

BundleFusion [7] 0.34 0.22 1.10 1.14 1.10 1.02 1.48 1.40

DVO SLAM [30] 0.32 0.23 2.33 0.72 5.10 1.37 4.94 1.39

ElasticFusion [69] 1.11 0.90 1.98 1.17 2.70 1.77 3.19 2.52

ORB-SLAM2 [44] 0.47 0.30 0.60 0.40 3.25 1.57 3.49 1.55

Ours 0.15 0.02 0.40 0.21 0.99 0.87 1.01 0.98

Table 3. ATE RMSE [cm] averages and medians for seven syn-

thetic datasets per category. Asynchronous RGB-D frames (async)

and rolling shutter (rs) both worsen the results.

tory error (ATE) results (as used in [61]; smaller is better)

for different SLAM methods on some commonly used se-

quences. As a first observation, our optional intrinsics and

depth distortion optimization strongly improves our results

on these datasets. This shows that the depth camera’s in-

accurate (internal) calibration affects SLAM methods and

should be calibrated for good results. Furthermore, we ob-

serve that ORB-SLAM2 [44] as an indirect method clearly

outperforms all direct methods on these datasets, including

ours, which shares the second average rank with Bundle-

Fusion [7]. As part of the reason for this, [10] shows that

ORB-SLAM2 is less affected by rolling shutter, as exhib-

ited by the camera used in this dataset, than direct meth-

ods. Further, the camera’s depth and color streams are not

synchronized. These effects, together with the depth distor-

tion observed above, introduce further geometric distortions

which may strongly affect direct methods. We aim to eval-

uate the effect of distortions in the following.

Impact of distortions. While the geometric distortions in

the cameras may be hard to model accurately, we can iso-

late the effect of asynchronous RGB-D frames and rolling

shutter in synthetic datasets. We create such datasets by

making dense 3D reconstructions of scenes from the TUM

RGB-D dataset [61] and rendering them with their origi-

nal (continuously interpolated) trajectory. We render each

dataset in four variations: a ’clean’ variant and variants with

rolling shutter and asynchronous frames, both individually

and combined. For rolling shutter of both the color and

depth camera, we use the estimated shutter times (time off-

set between first and last scanline readout) for the Kinect v1

from [52]: ca. 30.5 ms for the depth camera and ca. 26.1

139

Figure 3. Example images (top) and depth maps (bottom) from our

dataset, showing some of its variety including still scenes, moving

objects, darkness, a planar scene requiring photometric tracking,

and outdoor scenes. No white balancing is used.

ms for the color camera. For asynchronous frames, we use

the worst case in the sense that a color image is rendered at

the middle point in time between two successive depth im-

ages. All other offsets would yield depth/color pairs which

are closer in time. Results are shown in Tab. 3. In con-

trast to the TUM RGB-D results, our method outperforms

all others on these datasets, suggesting that more effects,

such as depth distortion, need to be simulated for obtaining

realistic results. However, we can still make the observation

that both evaluated effects significantly degrade the SLAM

results when not modeled. Since modeling all of these ef-

fects in a direct SLAM system is laborious and may lead to

high runtimes [53, 56] and degeneracies [1], we think that

they are better addressed in hardware. Thus, we recorded a

novel RGB-D SLAM benchmark using better hardware.

Our benchmark. For data recording, we mounted syn-

chronized global shutter cameras [22] together with an Asus

Xtion Live Pro, using the Xtion’s infrared emitter together

with our cameras. Color and depth images are recorded

at exactly the same points in time, such that no temporal

smoothness assumption is needed to use both for estimating

one camera pose. Like e.g. [31, 33, 48, 71], we use active

stereo: By doing stereo depth estimation on two IR cam-

eras, the stereo algorithm takes advantage of both the ac-

tive illumination and ambient infrared light. Ground truth

poses are mostly recorded by a motion capturing system. A

few of the training datasets are recorded outside of this sys-

tem for more diversity. Ground truth for those is given by

Structure-from-Motion on the benchmark cameras as well

as additional cameras on the rig, on videos that cover the

dataset sequence multiple times. These datasets are kept in

a separate category since they are likely to be less accurate.

Our SLAM benchmark consists of 61 training and 35 test

datasets. Fig. 3 shows example images from our datasets.

All sequences are shown in the supplementary video.

Currently, it is common practice in RGB-D SLAM eval-

uation to subselect (and thus potentially cherry-pick) a

small number of datasets, e.g., from the training set of the

TUM RGB-D dataset [61] (see e.g., [7,58,69]). Since these

datasets come with ground truth, it is furthermore unclear

to what extent the methods overfit on them. By providing

a benchmark with non-public ground truth and an online

leaderboard (analogous to [21]), we hope to improve this.

In contrast to datasets with typical consumer depth cam-

eras our camera is well-calibrated, which includes the cal-

ibration used internally for depth estimation. We refer to

the supplementary material for additional information and

experiments on the dataset’s recording and calibration.

6. Evaluation

Test environment. We used a PC with an Intel Core i7

6700K and an MSI Geforce GTX 1080 Gaming X 8G. Our

BA scheme was implemented on the GPU using CUDA 8.0.

For quantitative evaluation, we focus on the absolute tra-

jectory RMSE with SE(3) alignment (SE(3) ATE RMSE,

c.f . [61]), since this focuses on the SLAM (instead of odom-

etry) performance. Additional results for other metrics are

provided in the supplementary material. SE(3) ATE RMSE

is computed by first aligning the estimated trajectory to the

ground truth with a transformation in SE(3) by matching

poses with the same timestamp and applying the Umeyama

method [63]. Then, the RMSE of the translational differ-

ences between all matched poses is computed.

Ablation study. We evaluate the contributions of dif-

ferent components of our algorithm to the final results in

Fig. 5 (top). Clearly, the geometric residuals rgeom strongly

help, since the results for using photometric residuals rphoto

only are much worse. In addition, the plots show that BA

clearly improves upon running only the front-end of our

method. While the remaining differences are smaller, it can

be observed that using both types of residuals (”Default”)

performs better than using only depth residuals. Further-

more, we evaluate an offline (but close to real-time) variant

of our algorithm for which we never skip BA iterations and

perform 25 BA iterations after dataset playback finished.

As expected, this performs slightly better than the real-time

settings. Finally, we also evaluate a preconditioned con-

jugate gradient (PCG) solver on the Gauss-Newton update

equation in place of our alternating optimization scheme.

It performs very similar, but slightly worse than the alter-

nating optimization. Since individual iterations take longer,

more BA iterations are skipped in this variant (c.f . Sec. 4).

Parameter values. We evaluate the keyframe creation fre-

quency in Fig. 5 (bottom left), where the number of frames

per keyframe is stated for each graph. In this evaluation, se-

lecting keyframes more frequently always performs better

than selecting less keyframes, despite possibly reducing the

number of BA iterations in the real-time setting. However,

the memory use also rises linearly with more keyframes.

The cell size for surfel creation is evaluated in Fig. 5

(bottom right). A smaller cell size yields denser scene re-

constructions and thus higher memory use. It can improve

accuracy since more geometry is considered, but also in-

creases computational demands. This can slow down con-

vergence of BA. According to the plotted results, in prac-

140

20 40 60 80 100 120 140 160
0

250

500

750

T
im

e
[m

s]

Surfel creation

Geometry optimization

Surfel merge and list compaction in loop

Pose optimization

Surfel deletion and radius update

Final surfel merge and list compaction

0

100000

200000

300000

S
u
rf
el
s

Surfel count

Figure 4. Runtime of our BA scheme in ms for the dataset shown in Fig. 1 (without skipping any BA iterations). The number of keyframes

is shown on the x-axis. Since we create one keyframe every 10 frames for ∼27 Hz input, 370 ms of processing time are available for each

keyframe; if BA takes longer, iterations are skipped in real-time mode. The spike in the surfel count corresponds to a loop closure.

0 1 2

SE3 ATE RMSE [cm]

0

20

40

#
su
cc
es
sf
u
l
ru
n
s Legend for left plot:

0 1 2

SE3 ATE RMSE [cm]

0

20

40

#
su
cc
es
sf
u
l
ru
n
s

rgeom only

rphoto only

Default

Legend for right plot:

Front-end only

Offline

PCG solver

Default

0 1 2

SE3 ATE RMSE [cm]

0

20

40

#
su
cc
es
sf
u
l
ru
n
s

5

10

15

20

25

30 0 1 2

SE3 ATE RMSE [cm]

0

20

40

#
su
cc
es
sf
u
l
ru
n
s

2× 2

4× 4

8× 8

16× 16

32× 32

64× 64

Figure 5. Ablation study (top row), keyframe interval evaluation

(bottom left), and surfel sparsity evaluation (bottom right). In

each plot, for a given threshold on the ATE RMSE (x-axis), the

graphs show the number of training datasets from our benchmark

for which the evaluated variant has a smaller error.
Training Test

0 5

SE3 ATE RMSE [cm]

0

20

40

#
su
cc
es
sf
u
l
ru
n
s

0 5

SE3 ATE RMSE [cm]

0

10

20

#
su
cc
es
sf
u
l
ru
n
s

BundleFusion

DVO SLAM

ElasticFusion

ORB-SLAM2

BAD SLAM

Figure 6. Evaluation on our benchmark’s training and test datasets.

For a given threshold on the ATE RMSE (x-axis), the graphs show

the number of datasets for which the method has a smaller error.

BAD SLAM

Easy Medium Hard SfM

BundleFusion

DVO SLAM

ElasticFusion

ORB-SLAM2
0.0

2.5

5.0

7.5

10.0

BAD SLAM

Easy Medium Hard

BundleFusion

DVO SLAM

ElasticFusion

ORB-SLAM2
0.0

2.5

5.0

7.5

10.0

Figure 7. Complete SE(3) ATE RMSE evaluation results on the

training (top) and test (bottom) datasets of our benchmark in cm.

Each column visualizes the results for one dataset. We show three

runs per dataset for non-deterministic methods.

tice, varying the cell size between 2 × 2 and 8 × 8 shows

little effect overall. The results degrade for larger cell sizes.

Evaluation on the proposed benchmark. We compare

against state-of-the-art (non-inertial) RGB-D SLAM meth-

ods for which source code is available. For all methods,

parameters are tuned on the training datasets only. Fig. 6

shows cumulative results, while Fig. 7 visualizes individ-

ual results on all datasets. We qualitatively classified the

datasets as easy, medium, or hard: Easy datasets are solved

by most algorithms, while hard datasets are not solved well

by any algorithm. The remaining ones are of medium diffi-

culty. In addition, the ’SfM’ category for training datasets

contains datasets with SfM ground truth (c.f . Sec. 5). Our

method significantly outperforms the others, yielding su-

perior results on medium datasets and being very reliable

on easy datasets. While no direct algorithm was able to

beat ORB-SLAM2 on the TUM RGB-D dataset, here it is

outperformed by our method. DVO SLAM performs bet-

ter than ORB-SLAM2 on the training set, but worse on the

test set. The hard datasets provide open challenges for fu-

ture work. Common reasons for failure include textureless

scenes with ambiguous structure, fast camera motion, and

moving objects. Thus, while we believe that our algorithm

can obtain very accurate results, it would still require for

example the use of an IMU or of larger field of view to

increase the whole system’s robustness in these cases. It

should also be noted that scalability is not considered in the

evaluation above; some methods do not require a GPU.

Runtime. Fig. 4 shows the runtime of the different parts

of our BA scheme on an example dataset of our benchmark.

The time used by odometry is negligible. Keyframe pose

and geometry optimization take up the most time.

7. Conclusion

We presented a novel RGB-D SLAM method with a real-

time direct BA back-end using surfels. This allows to use

rich information during global optimization, resulting in

very accurate trajectories. To avoid unmodeled geometric

distortion, we present an RGB-D SLAM benchmark with

synchronized global shutter cameras. On this benchmark,

direct methods like ours and DVO SLAM [30] perform

significantly better compared to the indirect ORB-SLAM2

[44] than on existing datasets. We believe this to be very

interesting for the community since it shows that existing

datasets only give a partial picture of the SLAM algorithms’

performance. The benchmark also contains hard sequences

as open challenges for (visual-only) RGB-D SLAM. For ex-

ample, using silhouettes or initializing depth measurements

from RGB images might help solving them. As future work,

one might also apply standard techniques such as windowed

BA to keep up real-time BA for longer sequences.

Acknowledgements. Thomas Schöps was supported by a Google

PhD Fellowship.

141

References

[1] Cenek Albl, Akihiro Sugimoto, and Tomas Pajdla. Degen-

eracies in Rolling Shutter SfM. In ECCV, 2016. 1, 7

[2] Hatem Alismail, Brett Browning, and Simon Lucey. Photo-

metric bundle adjustment for vision-based SLAM. In ACCV,

2016. 2

[3] Michael Burri, Janosch Nikolic, Pascal Gohl, Thomas

Schneider, Joern Rehder, Sammy Omari, Markus W. Achte-

lik, and Roland Siegwart. The EuRoC micro aerial vehicle

datasets. IJRR, 2016. 3

[4] Michael Calonder, Vincent Lepetit, Christoph Strecha, and

Pascal Fua. BRIEF: Binary Robust Independent Elementary

Features. In ECCV, 2010. 6

[5] Yang Chen and Gérard Medioni. Object modelling by regis-

tration of multiple range images. Image and vision comput-

ing, 10(3):145–155, 1992. 4

[6] Sungjoon Choi, Qian-Yi Zhou, and Vladlen Koltun. Robust

reconstruction of indoor scenes. In CVPR, 2015. 2, 3

[7] Angela Dai, Matthias Nießner, Michael Zollhöfer, Shahram

Izadi, and Christian Theobalt. BundleFusion: Real-time

globally consistent 3D reconstruction using on-the-fly sur-

face re-integration. ACM Transactions on Graphics (TOG),

36(3):24, 2017. 1, 2, 6, 7

[8] Amaël Delaunoy and Marc Pollefeys. Photometric bundle

adjustment for dense multi-view 3D modeling. In CVPR,

2014. 2, 3

[9] Felix Endres, Jürgen Hess, Nikolas Engelhard, Jürgen Sturm,

Daniel Cremers, and Wolfram Burgard. An evaluation of the

RGB-D SLAM system. In ICRA, 2012. 2, 6

[10] Jakob Engel, Vladlen Koltun, and Daniel Cremers. Direct

sparse odometry. PAMI, 40(3):611–625, 2018. 1, 2, 3, 6

[11] Jakob Engel, Thomas Schöps, and Daniel Cremers. LSD-

SLAM: Large-scale direct monocular SLAM. In ECCV,

2014. 1, 2

[12] Jakob Engel, Vladyslav Usenko, and Daniel Cremers. A

photometrically calibrated benchmark for monocular visual

odometry. In arXiv:1607.02555, 2016. 3

[13] Chris Engels, Henrik Stewénius, and David Nistér. Bundle

Adjustment Rules. In Photogrammetric Computer Vision,

2006. 5

[14] Simone Fantoni, Umberto Castellani, and Andrea Fusiello.

Accurate and automatic alignment of range surfaces. In

3DIMPVT, 2012. 2

[15] Nicola Fioraio, Jonathan Taylor, Andrew Fitzgibbon, Luigi

Di Stefano, and Shahram Izadi. Large-scale and drift-free

surface reconstruction using online subvolume registration.

In CVPR, 2015. 2

[16] Christian Forster, Zichao Zhang, Michael Gassner, Manuel

Werlberger, and Davide Scaramuzza. SVO: Semidirect

visual odometry for monocular and multicamera systems.

IEEE Transactions on Robotics, 33(2):249–265, 2017. 2

[17] Yasutaka Furukawa and Jean Ponce. Accurate camera cali-

bration from multi-view stereo and bundle adjustment. IJCV,

84(3):257–268, 2009. 2

[18] David Gallup, Jan-Michael Frahm, Philippos Mordohai, and

Marc Pollefeys. Variable Baseline/Resolution Stereo. In

CVPR, 2008. 4

[19] Dorian Gálvez-López and Juan D. Tardós. Bags of binary

words for fast place recognition in image sequences. IEEE

Transactions on Robotics, 28(5):1188–1197, October 2012.

6

[20] Xiang Gao, Rui Wang, Nikolaus Demmel, and Daniel Cre-

mers. LDSO: Direct sparse odometry with loop closure. In

IROS, 2018. 2

[21] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel

Urtasun. Vision meets robotics: The KITTI dataset. IJRR,

32(11):1231–1237, 2013. 3, 7

[22] Pascal Gohl, Dominik Honegger, Sammy Omari, Markus

Achtelik, Marc Pollefeys, and Roland Siegwart. Omnidirec-

tional visual obstacle detection using embedded FPGA. In

IROS, 2015. 7

[23] Bastian Goldlücke, Mathieu Aubry, Kalin Kolev, and Daniel

Cremers. A super-resolution framework for high-accuracy

multiview reconstruction. IJCV, 106(2):172–191, 2014. 2

[24] Ankur Handa, Thomas Whelan, John McDonald, and An-

drew J. Davison. A benchmark for RGB-D visual odometry,

3D reconstruction and SLAM. In ICRA, 2014. 3

[25] Peter Henry, Michael Krainin, Evan Herbst, Xiaofeng Ren,

and Dieter Fox. RGB-D mapping: Using Kinect-style depth

cameras for dense 3D modeling of indoor environments.

IJRR, 31(5):647–663, 2012. 2

[26] Daniel Herrera, Juho Kannala, and Janne Heikkilä. Joint

depth and color camera calibration with distortion correc-

tion. PAMI, 34(10):2058–2064, 2012. 5

[27] Olaf Kähler, Victor A. Prisacariu, and David W. Murray.

Real-time large-scale dense 3D reconstruction with loop clo-

sure. In ECCV, 2016. 1, 2

[28] Olaf Kähler, Victor A. Prisacariu, Julien Valentin, and David

Murray. Hierarchical voxel block hashing for efficient inte-

gration of depth images. RA-L, 1(1):192 – 197, 2016. 2

[29] Maik Keller, Damien Lefloch, Martin Lambers, Shahram

Izadi, Tim Weyrich, and Andreas Kolb. Real-time 3D re-

construction in dynamic scenes using point-based fusion. In

3DV, 2013. 2, 5, 6

[30] Christian Kerl, Jürgen Sturm, and Daniel Cremers. Dense

visual SLAM for RGB-D cameras. In IROS, 2013. 1, 2, 5,

6, 8

[31] Leonid Keselman, John Iselin Woodfill, Anders Grunnet-

Jepsen, and Achintya Bhowmik. Intel RealSense stereo-

scopic depth cameras. arXiv preprint arXiv:1705.05548,

2017. 7

[32] Georg Klein and David Murray. Parallel tracking and map-

ping for small AR workspaces. In ISMAR, 2007. 1, 2

[33] Kurt Konolige. Projected texture stereo. In ICRA, 2010. 7

[34] Gim Hee Lee, Friedrich Fraundorfer, and Marc Polle-

feys. Structureless Pose-Graph Loop-Closure with a Multi-

Camera System on a Self-Driving Car. In IROS, 2013. 1,

2

[35] Damien Lefloch, Markus Kluge, Hamed Sarbolandi, Tim

Weyrich, and Andreas Kolb. Comprehensive use of curvature

for robust and accurate online surface reconstruction. PAMI,

39(12):2349–2365, December 2017. 2

[36] Damien Lefloch, Tim Weyrich, and Andreas Kolb.

Anisotropic point-based fusion. In International Conference

142

on Information Fusion (FUSION), pages 2121–2128, July

2015. 2

[37] Wenbin Li, Sajad Saeedi, John McCormac, Ronald Clark,

Dimos Tzoumanikas, Qing Ye, Yuzhong Huang, Rui Tang,

and Stefan Leutenegger. InteriorNet: Mega-scale multi-

sensor photo-realistic indoor scenes dataset. In BMVC, 2018.

3

[38] David G. Lowe. Distinctive image features from scale-

invariant keypoints. IJCV, 60(2):91–110, 2004. 2

[39] Maxime Meilland, Christian Barat, and Andrew Comport.

3D high dynamic range dense visual SLAM and its applica-

tion to real-time object re-lighting. In ISMAR, 2013. 2

[40] Maxime Meilland, Andrew Comport, and Patrick Rives.

Real-time dense visual tracking under large lighting varia-

tions. In BMVC, 2011. 2

[41] Maxime Meilland and Andrew I. Comport. On unifying key-

frame and voxel-based dense visual SLAM at large scales. In

IROS, 2013. 2, 5, 6

[42] Maxime Meilland and Andrew I. Comport. Super-resolution

3D tracking and mapping. In ICRA, 2013. 2

[43] Maxime Meilland, Tom Drummond, and Andrew I. Com-

port. A unified rolling shutter and motion blur model for 3D

visual registration. In ICCV, 2013. 2

[44] Raul Mur-Artal and Juan D. Tardós. ORB-SLAM2: An

open-source SLAM system for monocular, stereo, and RGB-

D cameras. IEEE Transactions on Robotics, 33(5):1255–

1262, 2017. 1, 2, 6, 8

[45] Richard A. Newcombe, Shahram Izadi, Otmar Hilliges,

David Molyneaux, David Kim, Andrew J. Davison, Push-

meet Kohi, Jamie Shotton, Steve Hodges, and Andrew

Fitzgibbon. KinectFusion: Real-time dense surface mapping

and tracking. In ISMAR, 2011. 1, 2, 3

[46] Richard A. Newcombe, Steven J. Lovegrove, and Andrew J.

Davison. DTAM: Dense tracking and mapping in real-time.

In ICCV, 2011. 1

[47] Matthias Nießner, Michael Zollhöfer, Shahram Izadi, and

Marc Stamminger. Real-time 3D reconstruction at scale us-

ing voxel hashing. In SIGGRAPH Asia, 2013. 2, 6

[48] H. K. Nishihara. PRISM: A practical real-time imaging

stereo matcher. In Technical Report A.I. Memo 780, MIT,

Cambridge, MA, 1984. 7

[49] Jaesik Park, Qian-Yi Zhou, and Vladlen Koltun. Colored

point cloud registration revisited. In ICCV, 2017. 2

[50] Seonwook Park, Thomas Schöps, and Marc Pollefeys. Illu-

mination change robustness in direct visual SLAM. In ICRA,

2017. 6

[51] Stephan R. Richter, Zeeshan Hayder, and Vladlen Koltun.

Playing for benchmarks. In ICCV, 2017. 3

[52] Erik Ringaby and Per-Erik Forssén. Scan rectification for

structured light range sensors with rolling shutters. In ICCV,

2011. 6

[53] Olivier Saurer, Marc Pollefeys, and Gim Hee Lee. Sparse to

Dense 3D Reconstruction from Rolling Shutter Images. In

CVPR, 2016. 1, 7

[54] Johannes L. Schönberger and Jan-Michael Frahm. Structure-

from-Motion Revisited. In CVPR, 2016. 1, 4, 5

[55] Thomas Schöps, Johannes L. Schönberger, Silvano Galliani,

Torsten Sattler, Konrad Schindler, Marc Pollefeys, and An-

dreas Geiger. A multi-view stereo benchmark with high-

resolution images and multi-camera videos. In CVPR, 2017.

4

[56] David Schubert, Nikolaus Demmel, Vladyslav Usenko, Jörg

Stuckler, and Daniel Cremers. Direct sparse odometry with

rolling shutter. In ECCV, 2018. 1, 7

[57] David Schubert, Thore Goll, Nikolaus Demmel, Vladyslav

Usenko, Jörg Stueckler, and Daniel Cremers. The TUM VI

benchmark for evaluating visual-inertial odometry. In IROS,

2018. 3

[58] Yifei Shi, Kai Xu, Matthias Niessner, Szymon Rusinkiewicz,

and Thomas Funkhouser. PlaneMatch: Patch coplanarity

prediction for robust RGB-D registration. In ECCV, 2018.

7

[59] Miroslava Slavcheva, Wadim Kehl, Nassir Navab, and Slo-

bodan Ilic. SDF-2-SDF: Highly accurate 3D object recon-

struction. In ECCV, 2016. 2

[60] Jörg Stückler and Sven Behnke. Multi-resolution surfel maps

for efficient dense 3D modeling and tracking. Journal of Vi-

sual Communication and Image Representation, 25(1):137–

147, 2014. 1, 2, 6

[61] Jürgen Sturm, Nikolas Engelhard, Felix Endres, Wolfram

Burgard, and Daniel Cremers. A benchmark for the eval-

uation of RGB-D SLAM systems. In IROS, 2012. 1, 3, 6,

7

[62] Bill Triggs, Philip F. McLauchlan, Richard I. Hartley, and

Andrew W. Fitzgibbon. Bundle adjustment – a modern

synthesis. In International workshop on vision algorithms,

pages 298–372. Springer, 1999. 1, 5

[63] Shinji Umeyama. Least-squares estimation of transformation

parameters between two point patterns. PAMI, 13(4):376–

380, 1991. 7

[64] Antoni Rosinol Vidal, Henri Rebecq, Timo Horstschae-

fer, and Davide Scaramuzza. Ultimate SLAM? Combining

Events, Images, and IMU for Robust Visual SLAM in HDR

and High-Speed Scenarios. IEEE Robotics and Automation

Letters, 3(2):994–1001, 2018. 1

[65] Hao Wang, Jun Wang, and Liang Wang. Online reconstruc-

tion of indoor scenes from RGB-D streams. In CVPR, 2016.

2

[66] Oliver Wasenmüller, Marcel Meyer, and Didier Stricker.

CoRBS: Comprehensive RGB-D benchmark for SLAM us-

ing Kinect v2. In WACV, 2016. 3

[67] Thibaut Weise, Thomas Wismer, Bastian Leibe, and Luc

Van Gool. Online loop closure for real-time interactive 3D

scanning. CVIU, 115(5):635–648, 2011. 1, 2

[68] Thomas Whelan, Michael Kaess, Hordur Johannsson, Mau-

rice Fallon, John J. Leonard, and John McDonald. Real-

time large scale dense RGB-D SLAM with volumetric fu-

sion. IJRR, 2014. 1, 2, 6

[69] Thomas Whelan, Stefan Leutenegger, Renato F. Salas-

Moreno, Ben Glocker, and Andrew J. Davison. ElasticFu-

sion: Dense SLAM without a pose graph. In RSS, 2015. 1,

2, 3, 6, 7

143

[70] Zhixin Yan, Mao Ye, and Liu Ren. Dense visual SLAM with

probabilistic surfel map. TVCG, 23(11):2389–2398, 2017.

2, 6

[71] Yinda Zhang, Sameh Khamis, Christoph Rhemann, Julien

Valentin, Adarsh Kowdle, Vladimir Tankovich, Michael

Schoenberg, Shahram Izadi, Thomas Funkhouser, and Sean

Fanello. ActiveStereoNet: End-to-end self-supervised learn-

ing for active stereo systems. In ECCV, 2018. 7

[72] Qian-Yi Zhou and Vladlen Koltun. Simultaneous local-

ization and calibration: Self-calibration of consumer depth

cameras. In CVPR, 2014. 3

[73] Michael Zollhöfer, Patrick Stotko, Andreas Görlitz, Chris-

tian Theobalt, Matthias Nießner, Reinhard Klein, and An-

dreas Kolb. State of the art on 3D reconstruction with RGB-

D cameras. In Eurographics, 2018. 3, 4

144

