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Abstract

The recently proposed audio-visual scene-aware dialog

task paves the way to a more data-driven way of learning

virtual assistants, smart speakers and car navigation sys-

tems. However, very little is known to date about how to

effectively extract meaningful information from a plethora of

sensors that pound the computational engine of those devices.

Therefore, in this paper, we provide and carefully analyze a

simple baseline for audio-visual scene-aware dialog which

is trained end-to-end. Our method differentiates in a data-

driven manner useful signals from distracting ones using an

attention mechanism. We evaluate the proposed approach on

the recently introduced and challenging audio-visual scene-

aware dataset, and demonstrate the key features that permit

to outperform the current state-of-the-art by more than 20%

on CIDEr.

1. Introduction

We are interacting with a dynamic environment which

constantly stimulates our brain via visual and auditory sig-

nals. Despite the huge amount of different information that

is permanently occupying our nervous system, we are often

easily able to quickly discern important cues from data that

is irrelevant. Telling apart useful information from distract-

ing aspects is also an important ability for virtual assistants,

car navigation systems, or smart speakers. However present

day technology uses a chain of components from speech

recognition and dialog management to sentence generation

and speech synthesis, making it hard to design a holistic and

entirely data-driven approach.

For instance, in computer vision, a tremendous amount of

recent work has focused on image captioning [68, 30, 11, 16,

75, 45, 77, 31, 69, 4, 15, 10], visual question generation [36,

48, 47, 28], visual question answering [5, 19, 59, 54, 44, 73,

74, 76, 57, 58, 49, 50], and very recently visual dialog [13,

14, 27, 46]. While those meticulously engineered algorithms

have shown promising results in their specific domain, little

is known about the end-to-end performance of an entire

system. This is partly due to the fact that little data is publicly

available to design such an end-to-end algorithm.

Recent work on audio-visual scene aware dialog [2, 25]

partly addresses this shortcoming and proposes a novel

Question: what color is the rag ?

Answer: it appears to be white .

MultiModal-Attention:

Question: where is the video taking place ? 

MultiModal-Attention:

Answer: the video starts with a man

in the kitchen .

Question:does he speak at all ?

Answer: no he does not speak .

MultiModal-Attention:

Question: do they get up from the chair?

MultiModal-Attention:

Answer: no , they stay sitting in the chair .

Figure 1: We present 4 different questions and the generated an-

swer. Our attention unit is illustrated as well. Our model samples 4

frames, and attends to each frame separately, along with the ques-

tion and the audio. We observe attention for each frame to differ,

where first and fourth frames are widespread, while the second

and third are more specific. Also, the question attention attends to

relevant words. We also include the audio modality as input to the

attention computation.

dataset. Different from classical datasets like MSCOCO [39],

VQA [5] or Visual Dialog [13], this new dataset contains

short video clips, the corresponding audio stream and a se-

quence of question-answer pairs. While development of an

end-to-end data driven system isn’t feasible just yet due to

the missing speech signal, the new audio-visual scene aware

dialog dataset at least permits to develop a holistic dialog

management and sentence generation approach taking audio

and video signals into account.

In recent work [2, 25], a baseline for a system based on

audio, video and language data was proposed. Compelling

results were achieved, demonstrating accurate question an-

swering. The authors demonstrate that multimodal features

based on I3D-Kinetics (RGB+Flow) [9] refined via a care-

fully designed attention-based mechanism improve the qual-

ity of the generated dialog.

However, since much effort was dedicated to collecting

the dataset, little analysis of such a holistic system was pro-

vided. Moreover, due to tremendous amounts of available

data (certainly a ten-fold increase compared to classical vi-
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sual dialog data) this is by no means trivial. To provide

this missing information and to share some insights with the

community about how and where to improve, in this paper,

we follow the spirit of [26] and demonstrate (1) that simply

using the question as a signal already permits to outperform

the current state-of-the-art; (2) that it is crucial to maintain

spatial features for the video signal (either VGG19 [63] or

I3D-Kinetics [9]). Reducing every video frame into a single

representation drops performance significantly; (3) that tem-

porally subsampling the video frames improves the accuracy;

(4) that using attention over all available data (including dif-

ferent frames) is beneficial. To this end we analyze how to

fuse the attended vectors for different data modalities.

Our simple baseline, which consists of three jointly

trained components (data representation extraction, atten-

tion and answer generation) outperforms state-of-the-art by

a large margin of 20% on CIDEr. Improvements of the

proposed approach are largely due to the aforementioned

four points. Results of generated answers are contrasted to

the current state-of-the-art in Fig. 1. We observe plausible

answers to many questions and attention that focuses on

important parts in both video and text.

2. Related Work

A significant amount of research has been conducted re-

garding image captioning, visual question generation, visual

question answering, visual dialog, video data, audio data

and multimodal attention models. We briefly review those

related areas in the following.

Image Captioning: Originally image captioning was for-

mulated as a retrieval problem. The best fitting caption

from a set of considered options was found by matching fea-

tures obtained from the available textual descriptions and the

given image. Importantly, the matching function is typically

learned using a dataset of image-caption pairs. While such a

formulation permits end-to-end training, assessing the fit of

image descriptors to a large pool of captions is computation-

ally expensive. Moreover, it’s likely prohibitive to construct

a database of captions that is sufficient for describing even a

modestly large fraction of plausible images.

To address this challenge, recurrent neural nets (RNNs)

decompose captions into a product space of individual words.

This technique has recently found widespread use for image

captioning because remarkable results have been demon-

strated which are, despite being constructed word by word,

syntactically correct most of the time. For instance, a CNN

to extract image features and a language RNN that shares a

joint embedding layer was trained [45]. Joint training of a

CNN with a language RNN to generate sentences one word

at a time was demonstrated in [75], and subsequently ex-

tended [75] using additional attention parameters which iden-

tify salient objects for caption generation.A bi-directional

RNN was employed along with a structured loss function in a

shared vision-language space [31]. Diversity was considered,

e.g., by Wang et al. [69] and Deshpande et al. [15].

Visual Question Answering: Beyond generating a caption

for an image, a large amount of work has focused on an-

swering a question about a given image. On a plethora of

datasets [43, 54, 5, 19, 81, 29], models with multi-modal

attention [41, 76, 3, 12, 18, 59, 74, 57, 58], deep net archi-

tecture developments [8, 44, 42] and memory nets [73] have

been investigated.

Visual Question Generation: In spirit similar to question

answering is the task of visual question generation, which

is still very much an open-ended topic. For example, Ren

et al. [54] discuss a rule-based method, converting a given

sentence into a corresponding question which has a single

word answer. Mostafazadeh et al. [48] learned a question

generation model with human-authored questions rather than

machine-generated descriptions. Vijayakumar et al. [67]

have shown results for this task as well. Different from the

two aforementioned techniques, Jain et al. [28] argued for

more diverse predictions and use a variational auto-encoder

approach. Li et al. [36] discuss VQA and VQG as dual tasks

and suggest a joint training. They take advantage of the

state-of-the art VQA model by Ben-younes et al. [8] and

report improvements for both VQA and VQG.

Visual Dialog: Visual dialog [13] combines the three afore-

mentioned tasks. Strictly speaking it requires both gener-

ation of questions and corresponding answers. Originally,

visual dialog required to only predict the answer for a given

question, a given image and a provided history of question-

answer pairs. While this resembles the VQA task, different

approaches, e.g., also based on reinforcement learning, have

been proposed recently [35, 14, 27, 46, 72].

Video Data: A variety of tasks like video paragraph cap-

tioning [78], video object segmentation [53], pose esti-

mation [79], video classification [32], and action recogni-

tion [62] have used video data for a long time. Probably

most related to our approach are video classification and

action recognition since both techniques also extract a repre-

sentation from a video. While the extracted representation is

subsequently used for either classification or action recog-

nition, we employ the representation to more accurately

answer a question. Commonly used feature representations

for either video classification or action recognition are I3D-

based features by Carreira et al. [9], extracted from an action

recognition dataset. With proper fine-tuning the I3D-based

features proved to be better than the classical approaches,

such as C3D [65] that capture spatiotemporal information

via a 3D CNN. In this work, we assess a naı̈ve feature ex-

tractor based on VGG [63], and demonstrate that for video-

reasoning, careful reduction of the spatial dimension is more

crucial than the type of extracted features used to embed the

video frames. Wang et al. [70] showed that working with

video frame samples, achieves not only efficiency, but also

improves performance compared to a conservative dense

temporal representation. Recently, Zhou et al. [80] further
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Figure 2: Overview of our approach for the AVSD task. More details can be found in Sec. 3.

extended those ideas, and suggested to capture relational

temporal relationships between the sampled frames, relying

on the relational-networks concept [56]. We follow those

ideas by also sub-sampling a small set of frames uniformly.

Our model further advances those concepts, by exploiting

spatial relationships between sampled temporal frames via a

high-order multimodal attention module, where each video

frame is treated as a separate modality. Li et al. [37] propose

the Video-LSTM model, which uses attention to emphasis

relevant locations, during LSTM video encoding. Our ap-

proach differs in that attention on one frame can influence

attention on other frames which isn’t the case in their model.

Audio Data: Audio data gained popularity in the vision

community recently. For instance, prediction of pose given

audio input [60], learning of audio-visual object models

from unlabeled video for audio source separation in novel

videos [20, 51], use of video and audio data for acoustic

scene/object classification [6], source separation was also

considered in [17] and learning to see using audio [52].

Multimodal Attention: Multimodal attention has been a

prominent component in tasks which operate on different

input data. Xu et al. [75] showed an encoder decoder at-

tention model for image captioning, which was extended to

visual question answering [74]. Yang et al. [76] propose a

multi-step reasoning system using an attention model. Mul-

timodal pooling methods were also explored [18, 33]. Lu et

al. [41] suggest to produce co-attention for the image and

question separately, using a hierarchical and parallel formu-

lation. Schwartz et al. [57, 58] later extend this approach to

high-order attention applied over image, question and answer

modalities via potentials. Similarly, in the visual dialog task,

co-attention models have held the state-of-the-art [71, 40]

attending over image, question and history in hierarchical

manner. For audio-visual scene-aware dialog, [25] also use

a sum-pooling type of attention, using the question feature
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Figure 3: Our decoder for audio-visual scene-aware dialog. We

start with encoding of attended audio and video vectors using the

Aud-Vis LSTM (orange colored), followed by the Ans-Generation

LSTM that receives the textual data concatenated with the previous

answer word (green colored).

along with audio and video modalities separately. In contrast,

here we compute attention over each modality via local and

cross data evidence, letting all the modalities interact with

each other.

3. Audio Visual Scene-Aware Dialog Baselines

Our method has three building blocks: answer generation,

attention and data representation as shown in Fig. 2.

3.1. Answer Generation

We are interested in predicting an answer y =
(y1, . . . , yn) consisting of n words yi ∈ Yi = {1, . . . , |Yi|}
each arising from a vocabulary of possible words Yi. Given

data x = (Q, V,A,H) which subsumes, a question Q, a sub-

sampled video V = (V1, . . . , VF ) composed of F frames,

the corresponding audio signal A, and a history of past

question-answer pairs H , we construct a probability model

over the set of possible words for the answer generation

task. To this end, we formulate prediction of the answer as

inference in a recurrent model where the joint probability is
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Figure 4: Multimodal Attention model for audio-visual scene-aware

dialog. We treat each frame as a modality, along with audio and

question modality, to total of 6 modalities. Each element attention

score is affected not only from local evidence, but also via cross-

data interactions of all other elements.

given by the product of conditionals, i.e.,

p(y|x) =
n
∏

i=1

p(yi|y<i, x).

Note that, for now, we condition on all the data x for read-

ability and provide details later. Instead of conditioning the

probability of the current word p(yi|y<i, x) on its entire past

y<i, we combine two recurrent nets: an audio-visual recur-

rent net that generates the temporal information which is fed

as an initialization to the answer generating recurrent net.

See Fig. 3 for a schematic.

Audio-visual LSTM-net: It operates on an attended audio

embedding aA and attended video embeddings aV1
, ..., aVF

for each of the F frames f ∈ {1, . . . , F}. This LSTM-net

has F+1 units, the first unit’s input is the attended audio vec-

tor, and the input to the F subsequent units are the attended

video representations aV1
, . . . , aVF

. The context vector that

is generated from this LSTM, i.e., (h0, c0) summarizes the

audio-visual attention and is provided as input to the answer

generation LSTM-net.

Answer generation LSTM-net: It computes conditional

probabilities for the possible words yi ∈ Yi of the answer

y = (y1, . . . , yn). This probability considers the last word

and captures context via a representation hi−1 obtained from

the previous time-step.

p(yi|yi−1, hi−1, x) = gw(yi, yi−1, hi−1, x).

We illustrate the LSTM-net gw in Fig. 3. Using the initial

state (h0, c0), the LSTM-net gw predicts in its i-th step a

probability distribution p(yi|yi−1, hi−1, x) over words yi ∈
Yi using as input yi−1 and the textual attention vector aT =
(aQ, rH): the attended textual vector is a concatenation of

the attended question vector aQ and the history vector rH ,

which represents information about question and history

data. The output of the LSTM-net is transformed via a FC-

layer with a dropout and a softmax to obtain the probability

distribution p(yi|yi−1, hi−1, x).

3.2. Attention

The attention step provides an attended representation

for the data components, i.e., aVf
∈ R

dV for frame f ∈

{1, . . . , F} of the video data, aA ∈ R
dA for the audio data,

and aT ∈ R
dT for the textual data. These attended repre-

sentations are obtained by transforming the representations

extracted from the raw data, i.e., rVf
∈ R

nV ×dV for the

video data, rA ∈ R
nA×dA for the audio data, and for the

textual data, rQ ∈ R
nQ×dQ as well as rH ∈ R

dH which

capture signals from the question and history respectively.

We outline the general procedure in Fig. 4.

Formally, we obtain the attended representation

aα =

nα
∑

k=1

αkpα(k),

where α ∈ {A,Q,V1, . . . ,VF } is used to index the available

data components (audio, question, visual frames), nα is the

number of entities in a data component (e.g., the number

of words in a question), and pα(k) ≥ 0 ∀α is a probability

distribution (
∑nα

k=1
pα(k) = 1 ∀α) over the nα entity repre-

sentations of data α. For instance, if we let α = A we obtain

the attended audio representation aA =
∑nA

k=1
AkpA(k).

We compute the attention via a factor graph attention

approach [57, 58]. The attention probability distribution

over a data source α consists of a log-prior distribution πα, a

local evidence lα that relies solely on its data representation

rα and a cross data evidence cα that accounts for correlations

between the different data representations rα, rβ , for β ∈
{A,Q,V1, . . . ,VF }. This probability distribution takes the

form:

pα(k) ∝ exp (ŵαπα(k) + lα(k) + cα(k)) .

The local evidence is lα(k) = wα

(

v⊤α relu(Vααk)
)

, the

log-prior is πα(k) and the cross data evidence is

cα(k) =
∑

β∈D

wα,β

nβ

nβ
∑

j=1

(

(

Lααk

‖Lααk‖

)⊤(
Rββj

‖Rββj‖

)

)

.

The set D = {A,Q,V1, . . . ,VF } consists of the possible

data types. The trainable parameters of the model are: (1)

Vα, Lα, Rα which re-embed the data representation to tune

the attention; (2) vα which scores the local modality; and

(3) ŵα, wα, wα,β which weight the three components with

respect to each other.

We found the use of attention for history to not yield im-

provements. Therefore, we obtain the attended textual repre-

sentation aT ∈ R
dT by concatenating the attended question

representation aQ ∈ R
dQ with the history representation

rH ∈ R
dH . Consequently, dT = dQ + dH .

3.3. Data Representation

The proposed approach relies on representations rα ob-

tained for a variety of data components which we briefly

discuss subsequently.
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Video: Containing both temporal and spatial information,

video data is among the most memory consuming. Common

practice is to reduce the spatial information while maintain-

ing attention over the temporal dimension. Instead, we first

reduce the temporal dimension, maintaining the ability for

spatial attention to reason about the video content. To ensure

fast training, we reduce the temporal dimension by sampling

F frames uniformly. For each sampled frame we extract a

representation from a deep net trained on ImageNet (in our

case VGG19). We then fine tune the representation of each

frame using a 1D conv layer with a bias term. This conv

layer is identical for all the F frames. Consequently, we ob-

tain the video representation rV ∈ R
F×nV ×dV , where F is

the number of sampled frames, nV is the spatial dimension

and dV is the embedding dimension.

Audio: For audio, we extracted features from a strong audio

classification model (i.e., VGGish [24]) by taking the last

representation before the final FC-layer. This representa-

tion has adaptive temporal length. For each batch we find

the maximal temporal length of the audio signal, and zero-

padded the shorter audio representations. We then fine-tune

each audio file using a 1D conv layer with a bias. We ob-

tain the audio representation rA ∈ R
nA×dA , where nA is

the maximal temporal length of a given batch and dA is the

embedding dimension.

Question: We start with an adaptive-length list of 1-hot

word-representations. For each batch we find the longest

sentence, and zero-pad shorter ones. We embed each word

using a linear-embedding layer, followed by a single layer

LSTM-net with dropout. The last hidden state of the LSTM

is the question representation rQ ∈ R
nQ×dQ , where nQ is

the length of the maximal sentence for the given batch and

dQ is the embedding dimension.

History: The history data source consists of the past

T question-answer pairs, which we denote by H =
(Q,A)t∈{1,...,T}. The history embedding consists of two

components: we first embed each question-answer pair

(Q,A)t using a LSTM-net to get T representations of the

history. We then feed these representations into another

LSTM-net to obtain the vector representation rH ∈ R
dH ,

where dH is the history embedding dimension.

We embed each question-answer pair (Q,A)t following

the question embedding above. A question-answer pair starts

with a list of 1-hot word-representations of the words in

the question followed by 1-hot word-representations of the

words in the answer. For each batch we find the longest

question-answer sequence, and zero-pad the shorter ones.

We embed each 1-hot vector using a linear-embedding layer,

followed by a two layer LSTM-net with a dropout. The last

hidden state of this LSTM-net is the vector representation of

(Q,A)t, which we denote by rt.

We embed the history by feeding r1, . . . , rT to a one layer

LSTM-net with dropout, in order to capture the temporal

aspect of the question-answer history. To deal with the
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Figure 5: Perplexity values for our model vs. baseline [25].

adaptive length of history interactions, for each batch we

find the interaction with the longest history, and zero-pad

question-answer pairs with shorter history. The final LSTM-

net hidden state is the history representation rH ∈ R
dH ,

where dH is the history embedding dimension.

4. Results

In the following we evaluate the discussed baseline on

the Audio Visual Scene-Aware Dialog (AVSD) dataset. We

follow the proposed protocol and assess the generated an-

swers to a user question given a dialog context [2, 25]. This

context consists of a dialog history (previous questions and

answers) in addition to video and audio information about

the scene. Our code is publicly available1.

4.1. AVSD v0.1 Dataset

The AVSD dataset consists of annotated conversations

about short videos. The dataset contains 9,848 videos taken

from CHARADES, a multi-action dataset with 157 action

categories [61]. Each dialog is obtained from two Amazon

Mechanical Turk (AMT) workers, who discuss about events

in a video. One of the workers takes the role of an answerer

who had already watched the video. The answerer replies to

questions asked by another AMT worker, the questioner.

The questioner was not shown the whole video but only

the first, middle and last frames of the video. The dialog

revolves around the events in and other aspects of the video.

The AVSD v0.1 dataset is split into 7,659 train dialogs, 1,787

validation and 1,710 test dialogs. Because the test set doesn’t

currently include ground truth, we follow [25] and evaluate

on the ‘prototype test-set’ with 733 dialogs. Because the

‘prototype test-set’ is part of the ‘v0.1 validation-set,’ we

use the ‘prototype validation-set’ with 732 dialogs, which

doesn’t overlap with the ‘prototype test-set.’

4.2. Implementation Details

Our system relies on textual, visual and audio data rep-

resentations, i.e., rα for α ∈ {A,Q,V1, . . . ,VF }. For the

video representation we randomly sample F = 4 equally

spaced frames, and use the last conv layer of a VGG19

having a dimensions of 7 × 7 × 512. Therefore the visual

embedding dimension is dV = 512. After flattening the 2D

1https://github.com/idansc/simple-avsd
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Table 1: Results for the AVSD dataset for CIDEr, BLEU1, . . . ,

BLEU4, ROUGE-L, METEOR. We provide a comparison to the

baseline and a detailed ablation study separated into categories and

discussed in Sec. 4.5. We also report the number of parameters for

each baseline.
Model C B4 B3 B2 B1 R M P

baseline[25]2 0.766 0.084 0.117 0.173 0.273 0.291 0.117 6.15M

basic baselines

q 0.815 0.088 0.122 0.178 0.279 0.297 0.121 3.1M

q+h 0.843 0.089 0.123 0.178 0.277 0.296 0.122 4.51M

q+h+vgg-spatial 0.869 0.089 0.124 0.180 0.279 0.302 0.123 5.12M

q+h+vgg-spatial+audio 0.874 0.091 0.125 0.182 0.282 0.305 0.124 5.23M

basic baselines+attention

q+att 0.849 0.090 0.124 0.179 0.278 0.298 0.121 3.35M

q+h+att 0.861 0.090 0.124 0.177 0.271 0.298 0.122 4.57M

q+h+vgg-spatial+att 0.908 0.093 0.129 0.185 0.283 0.307 0.125 7.4M

attention-model

w/o-cross-data-evidence 0.896 0.095 0.131 0.190 0.292 0.309 0.128 7.5M

w/o-local-evidence 0.917 0.096 0.132 0.191 0.293 0.309 0.128 8.35M

w/o-question-prior 0.906 0.096 0.132 0.190 0.292 0.309 0.127 8.35M

sharing–weights 0.923 0.097 0.133 0.191 0.293 0.309 0.127 6.18M

video-fusion

temporal-attention 0.877 0.091 0.126 0.182 0.281 0.302 0.124 8.4M

summation 0.890 0.093 0.128 0.183 0.283 0.303 0.124 7.35M

weighted-summation 0.876 0.094 0.130 0.187 0.289 0.304 0.126 7.85M

video-audio-lstm 0.865 0.076 0.101 0.141 0.210 0.286 0.108 8.35M

decoder-input

q-first-state 0.704 0.078 0.110 0.163 0.257 0.279 0.112 8.35M

all-first-state 0.714 0.079 0.114 0.171 0.271 0.276 0.113 10.1M

all-concat-decoder-input 0.797 0.089 0.125 0.183 0.285 0.297 0.121 9.53M

q+h+a-concat-input 0.857 0.090 0.123 0.177 0.274 0.298 0.121 7.72M

i3d-features-&-spatial-temporal

i3d-rgb-temporal 0.886 0.094 0.130 0.188 0.289 0.306 0.126 7.23M

i3d-rgb-flow-temporal 0.851 0.091 0.127 0.185 0.286 0.303 0.125 7.82M

i3d-rgb-spatial-10 0.928 0.097 0.133 0.190 0.290 0.310 0.127 6.58M

vgg-spatial-1 0.919 0.095 0.130 0.187 0.287 0.309 0.126 6.18M

vgg-spatial-16 0.903 0.093 0.128 0.186 0.287 0.307 0.127 28.88M

initialization

default 0.877 0.090 0.123 0.178 0.274 0.300 0.121 8.35M

xavier 0.848 0.087 0.119 0.171 0.262 0.297 0.119 8.35M

he 0.913 0.095 0.131 0.189 0.290 0.308 0.127 8.35M

beam-search hyper-parameters

w/o beam 0.924 0.082 0.109 0.152 0.226 0.298 0.114 8.35M

2-width 0.934 0.094 0.128 0.183 0.279 0.311 0.126 8.35M

4-width 0.931 0.096 0.131 0.188 0.287 0.310 0.127 8.35M

5-width 0.926 0.096 0.132 0.188 0.289 0.309 0.127 8.35M

Ours 0.941 0.096 0.131 0.187 0.285 0.311 0.128 8.35M

spatial dimension, we obtain the spatial dimension nV = 49.

For audio features we use VGGish that operates on 0.96s

log-Mel spectrogram patches extracted from 16kHz audio,

and outputs a dA = 128 dimensional vector. VGGish inputs

overlap by 50%, therefore an output is provided every 0.48s.

Dropout parameters before the last FC layer, and the LSTM

layers are set to 0.5. For the question representation we set

the word embedding dimension to 128. The questions are

embedded to dQ = 256 dimensional vectors, extracted from

the last hidden state of their LSTM-net. The history con-

sists of T = 10 question-answer pairs, which we denote by

H = (Q,A)t∈{1,...,T}. We use an LSTM-net with a hidden

state of dH = 128 to encode the history.

4.3. Training

We use a cross-entropy loss on the probabilities,

p(yi|y<i, x) to train the answer generator, the attention and

the embedding layers jointly end-to-end. The total amount

of trainable parameters are 8,359,107. We use the Adam

optimizer [34] with a learning rate of 0.001 and a batch size

of 64. During training after each epoch we evaluate our

performance on the validation set using a perplexity metric.

We stop our training after two consecutive epochs with no

improvement.

We use a standard machine with an Nvidia Tesla M40

GPU for all our experiments. Training our system takes 4

epochs to converge vs. 9 epochs for the baseline (see Fig. 5).

Each epoch takes 8 minutes vs. 13 minutes for the baseline.

In total, training our model takes approximately 30 minutes.

4.4. Performance Evaluation:

We evaluate the performance of our system using several

metrics. Our prime metric is CIDEr, the Consensus-based

Image Description Evaluation, which measures the similar-

ity of a sentence to the consensus [66]. We also evaluate

our performance on the ROUGE-L metric (Recall Oriented

Understudy of Gisting Evaluation). This is a recall-based

metric that measures the longest common subsequence of

tokens [38]. The METEOR metric is a unigram precision

and recall that allows for matchings between candidates and

references [7]. We also evaluate our performance using the

traditional BLEU score, which measures the effective over-

lap between a reference sentence and a candidate sentence.

We measure the geometric mean of the effective n-gram

precision scores, for n = 1, . . . , 4 and refer to these as

BLEU1,. . ., BLEU4.

4.5. Quantitative Results and Insights for a Good
Baseline

We compare to the baseline discussed in [25]. In the fol-

lowing we explore the various components of audio-visual

dialog systems and present our insights for constructing a

simple and effective baseline. These insights cover all as-

pects of our system: feature embedding, attention, fusion

and training techniques. We particularly emphasize the im-

portance of spatial features for AVSD, which we contrast

with the action recognition based I3D features.

Question Bias and Basic Baselines: We revisit the scores

published by [25] and assess a basic seq2seq-type baseline,

with no attention [64]. In this variant, which we call q in

Tab. 1, we encode the question using a word embedding

(with embedding dimension of 128) and a 1-layer LSTM-net

(with hidden state dimension of 256 compared to a dimen-

sion of 128 in the baseline), without any video or history

related features. For decoding, another 1-layer LSTM-net

(with hidden state dimension of 256 compared to a dimen-

sion of 128 in the baseline) is used. Surprisingly, this model

alone was able to surpass the current baseline of [25]. Sim-

ilar results are also reported in [55]. This indicates that

there might be bias-problem within the AVSD dataset, no

visual information is needed. For instance a common ques-

tion is “How many people are in the video?”, but videos

in many cases feature only one person. Another example

are questions of the form “is it indoor?” which are mean-

ingless since the CHARADES dataset focuses on indoor

activities. Another possible explanation for this good result

is the encoding of the answer in the question. For instance,

a question “this person is standing in a kitchen correct?” is
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GT:  the pillow is brown in the video .

Ours: it appears to be a brown pillow . 

q+h+att: the pillow is white in the video . 

baseline: it appears to be black .

q+h+vgg-spatial+audio: the blanket is 

white and white .

i3d-rgb-temporal: it looks to be white  .

Q: what color is the pillow ? Q: is he holding something in his hand ? 

GT: a sandwich and then he gets a drink .

Ours: yes , he is holding a sandwich in 

his hand .

q+h+att: yes , he is holding a broom . 

baseline: yes , he is holding a book .

i3d-rgb-temporal: yes , he is holding a cell 

phone in his hands .

q+h+vgg-spatial+audio: yes , he is holding a 

bag of chips . 

GT: i think shes wearing a 

sweatshirt and sweatpants
Ours: she is wearing a black 

sweatshirt and jeans 

q+h+att: she is wearing a 

blue shirt and jeans .

baseline: she is wearing a blue shirt 

q+h+vgg-spatial+audio: she is wearing a

blue shirt and jeans.

i3d-rgb-temporal: she is wearing a 

blue shirt and black pants

Q: whats she wearing ? 

GT: he looks like he is watching 

television at the end .

Ours: yes he is watching television .

q+h+att: yes , he is watching tv . 

baseline:  no , he is not talking in the video 

q+h+vgg-spatial+audio: yes he is watching 

something on the laptop . 

i3d-rgb-temporal: no , he is not 

watching tv .

Q: is he watching tv ?

GT: she looks like she is alone

Ours: no , she is alone in the video .

q+h+att: no she is the only one 

in the video .

Baseline: no , she is the only one 

in the video 

q+h+vgg-spatial+audio: she is the only 

one in the video

i3d-rgb-temporal: no one else 

is in the video 

Q: is anyone else with her ? 

GT: no i do not see that .

Ours: no he does not put it in the sink .

q+h+att: yes , he puts it down 

on the counter .

Baseline: no he does not put it 

on the table .

q+h+vgg-spatial+audio: no he does not 

put the cup down .

i3d-rgb-temporal: no he does not 

put it down .

Q: does he put the glass in the sink ? 

Figure 6: An illustration of out 4-framed samples from a video along with the relevant attention variables. Our attention treats any frame as

different component. This allows the attention module to learn different attention behaviors for different temporal locations. We observe

the first and fourth samples are noisier, while the second and third attend to specific interesting locations. Our multimodal attention also

generates attention for questions, illustrated over the question via a word heat map. We provide generated answers for different baseline

models: q+h+att, is a model with only history and question input; i3d-rgb-temporal is a model with temporal features instead of spatial;

q+h+vgg-spatial+audio is a model without attention. We also compare to the generated answer by [25]. the ground-truth is denoted by GT,

and our final model denoted by Ours.

answered with “yes he is in the kitchen.” Moreover, genera-

tive evaluation is also more prone to biases, as the evaluation

emphasizes correct sentence structure rather than correctness

of the answer. Very recently, a discriminative approach was

proposed [1]. The bias problem is not unique to AVSD, and

was also discussed for Visual Question Answering [22].

To further improve the most basic baseline q, we add

more modalities. We use the fusion and embedding tech-

niques of the proposed model but omit attention. Instead of

attention, we use a mean over the representation for visual

and auditory data sources, and the last hidden state of the

LSTM-net is used to represent the question data source. We

found that our model can utilize any modality supplement,

even without attention. In the ‘basic baselines+attention’

section of Tab. 1 we assess versions with attention, which

brings us closer to our full model.

Spatial vs. Temporal Information: Current methods focus

on temporal models and often naı̈vely reduce the spatial di-

mension [25, 70, 80]. In contrast, for closely related visual

reasoning tasks, such as visual dialog and visual question

answering, it is broadly accepted that spatial attention is

necessary. Therefore, it is unlikely that video reasoning is ef-

fective when simply reducing the spatial dimension. Indeed,

we find better results when reducing the temporal dimen-

sion with sampling techniques and employing attention to

reduce the spatial dimension. In Fig. 6 we observe that a

small subset of frames (e.g., 4) is usually enough for an

almost complete understanding of the video. In the ‘i3d-

features-&-spatial-temporal’ section of Tab. 1, we compare

spatial-based features to temporal-based ones. The temporal

features are computed on a stack of 16 video frames, and are

treated as an input modality to our attention mechanism. At-

tention choses the relevant temporal locations. The temporal

attended representation was fed to the Aud-Vis LSTM-net

along with the audio attended-features. For the i3d-rgb-flow

version we also use the I3D model based on optical flow

features as an additional data component. This resulted in

a drop in performance compared to the spatial-based i3d-

features reported in the i3d-rgb-spatial-10 line of Tab. 1. We

also test different number of sampled frames. Interestingly,

only one frame is already very useful for AVSD, and too

many VGG-frames harm performance. Note that each frame

is coupled to an attention-score and treated as a modality,

which explains why too many frames can add noise to the

inferred multimodal probability.

I3D Features vs. VGG: I3D features are widely used as

video-based feature extractor (cf . [9]), discarding the classi-

cal image-based features, e.g., VGG. They are extracted from

a model trained on the Kinetics Dataset, a dataset for action

recognition, and have been shown to improve many video

tasks. We find that while I3D features have repeatedly been

shown to improve on action-recognition tasks, they are not

as useful in the answer generation task of AVSD. Equipped

with VGG features we were able to achieve comparable re-
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sults to the i3d-rgb-spatial-20 version. The i3d-rgb-spatial

features are 4 times bigger (7x7x512 vs. 2x7x7x1024), as

well as more complicated to extract. Seeking simplicity,

we report scores with the VGG-based features subsequently.

This may also indicate a weakness in the dataset, as this

solution seems to be sub-optimal for action-related ques-

tions (e.g., classifying sequences of actions). Not only do

we naı̈vely sample temporal frames, but also do we not use

I3D features that were extracted from a network trained for

action-recognition, yet we achieve good results.

Attention Model: We assess different components of the

attention model. See Sec. 3.2 for details about local evidence

and cross data evidence. We found that every component

contributes to the model, especially the cross-data compo-

nent. The cross-data component determines the attention

score of an element by considering interactions with other

modalities. For instance, a region in the second frame can

affect a region in the third frame, or perhaps a word in the

question.

To find the simplest attention module, we also explored

the option of grouping together the parameters for all video

frames, i.e., VV1
= . . . = VVF

, LV1
= . . . = LVF

, and

RV1
= . . . = RVF

, which yields good results despite 2

million fewer parameters. This version allows to increase

the number of processed frames, with no additional memory

cost. Those results are reported in the ‘sharing-weights’ line

of Tab. 1.

Multimodal Decoding Fusion: We experimented with sev-

eral variants that reduce aA, aV1
, . . . , aVF

. In Tab. 1, section

‘decoder-input,’ we show a version that uses an additional

multimodal attention step over the video-related attended

vector, called temporal-attention. Another attempt is sum-

mation polling of the vectors, and weighted summation

with scalers. Instead, we note the sequential information

of aV1
, . . . , aVF

that naturally calls for the use of an ad-

ditional LSTM unit, which we call Aud-Vis (see Fig. 4).

We think audio is a more general cue while frames have

more specific information. Ordering is guided by the intu-

ition that LSTM-based encoding commonly starts with more

general information. To verify this intuition, in video-audio-

lstm, we performed additional experiments with ordering of

aV1
, . . . , aVF

, aA.

Next we find a good way to input elements into the answer

generation LSTM-net. We first analyze the basic q model. A

classic decoder, where encoded q are fed as first hidden state

to the LSTM-net is reported in the ‘q-first-state’ row in Tab. 1

(decoder-input section). This suggest that textual data should

be concatenated to the decoder inputs. Concatenating all

modalities to the input, which is reported in the ‘all-concat-

input’ line in Tab. 1 drops the performance, suggesting that

a dichotomy of video-related and textual-related features is

useful. To incorporate the audio signal, we find it’s best to

use it as a first state in the Aud-Vis LSTM-net. A version

where we concatenated the audio attended vector to aT is

referred to as ‘q+h+a-concat-input+s-first-state.’ The model

behaves the best when the fused video related features were

used as the initial state h0 of the Ans-Generation LSTM-

net. Our state-of-the-art model further improves the fusion

technique by using the Aud-Vis LSTM-net to generate h0

which captures the temporal information of audio attention

aA and the visual attention aV1
, . . . , aVF

.

Weight Initialization: An important aspect is the initializa-

tion of the deep net parameters. We observed a significant

improvement using Kaiming normal initialization or Xavier

initialization for all LSTM models [23, 21].

Beam Search Width: In an attempt to improve the overall

evaluation time, we experimented with different beam width.

We found that although beam search is useful for generation,

a width of 2 achieves almost as good results. Our version

use 3-width beam search.

4.6. Qualitative Results

In Fig. 6, we show several examples of generated answers

of five models, our final model, a version without any at-

tention (q+h+vgg-spatial+audio), a version with temporal

I3D features (i3d-rgb-temporal), a version with only textual

modalities (q+h+att), and the baseline [25]. The ground-

truth is referred to via GT. Additionally, we take advantage

of the interpretability of attention modules to also illustrate

the attention probabilities of our final modal on 5 different

modalities, i.e., our 4-frames, and the question. First, we

observe an interesting behavior of our attention model: each

sampled frame is attended a differently, which captures dif-

ferent features from different frames. The first and fourth

frames are noisier and extract general concepts, while the

second and third capture unique aspects of the video, e.g., a

person, a couch. This behavior can be associated with the

temporal aspect of the frames. Meaning it is more important

to capture general aspects at the end and at the beginning,

but in the middle we reveal the important specific concepts.

Additionally, the question attention attends to the informa-

tive words. Our generated answers are usually more aware

of the scene, and less prone to bias. For instance, in the first

row, the question is “what color is the pillow?.” We observe

our model to be able to answer the correct color, while all

other model variants answer with white, the most-common

color of a pillow. In another question “whats she is wearing,”

our model was the only one to relate to her black sweatshirt.

5. Conclusion

We propose a simple baseline for Audio-Visual Scene-

Aware Dialog that surpasses current techniques by 20% on

the CIDEr metric. Pioneering on this task, we carefully

evaluated our approach. We hope our analysis can bridge the

gap between video-reasoning and image-reasoning.
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