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Abstract

Dialog is an effective way to exchange information, but

subtle details and nuances are extremely important. While

significant progress has paved a path to address visual dia-

log with algorithms, details and nuances remain a challenge.

Attention mechanisms have demonstrated compelling results

to extract details in visual question answering and also pro-

vide a convincing framework for visual dialog due to their

interpretability and effectiveness. However, the many data

utilities that accompany visual dialog challenge existing at-

tention techniques. We address this issue and develop a

general attention mechanism for visual dialog which oper-

ates on any number of data utilities. To this end, we design

a factor graph based attention mechanism which combines

any number of utility representations. We illustrate the ap-

plicability of the proposed approach on the challenging and

recently introduced VisDial datasets, outperforming recent

state-of-the-art methods by 1.1% for VisDial0.9 and by 2%

for VisDial1.0 on MRR. Our ensemble model improved the

MRR score on VisDial1.0 by more than 6%.

1. Introduction

Dialog is an effective way for humans to exchange infor-

mation. Due to this effectiveness it is an important research

goal to develop artificial intelligence based agents for human-

computer conversation. However, when humans talk to each

other, subtle details and nuances are often very important.

This importance of subtle details and nuances makes devel-

opment of agents for visual dialog a challenging endeavor.

Recent efforts to facilitate human-computer conversation

about images focus on image captioning, visual question an-

swering, visual question generation and very recently also vi-

sual dialog. To this end, Das et al. [10] collected, curated and

provided to the general public an impressive dataset, which

allows to design virtual assistants that can converse. Differ-

ent from image captioning datasets, such as MSCOCO [29],

or visual question answering datasets, such as VQA [5], the

visual dialog dataset contains short dialogs about a scene

between two people. To direct the dialog, the dataset was

collected by showing a caption to the first person (‘ques-

tioner’) which attempts to inquire more about the hidden

image. The second person (‘answerer’) could see both the
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Figure 1: Illustration of our factor graph attention. We show two

consecutive questions in a dialog. The image attention correlates

well with the question. Attention over history interactions allows

our model to attend to subtle nuances. The caption focuses on the

last word due to given potential priors. Attention over the answers

focuses on specific options. The attended options usually correlate

with the correct answer. Note: for readability, we chose to display

only the top-10 answers out of 100 possible ones.

image and its caption to provide answers to these questions.

Beyond releasing the Visual Dialog dataset, to ensure a fair

comparison, Das et al. [10] propose a particular task that can

be evaluated precisely. It asks the AI system to predict the

next answer given the image, the question, and a history of

question-answer pairs. A variety of discriminative and gen-

erative techniques have been discussed, ranging from deep

nets with Long-Short-Term-Memory (LSTM) units [18] to

more involved ones with memory nets [51] and hierarchical

LSTM architectures [45].

One of the successful techniques to improve visual ques-

tion answering is the attention mechanism [33]. Due to the

similarity of visual question answering and visual dialog,

we envision similar improvements to be realizable. In fact,

some approaches point in this direction and use a subset of

the available data utilities to direct question answering [32].

However, in visual dialog many more “data parts,” i.e., the

image, the question, the history and the caption are involved

and have been referred to as ‘modalities.’ To avoid confu-

sion with the original convention/sense of the word modality,

we coin the term “utilities” to refer to different parts of the

available data. Taking all utilities into account makes it

computationally and conceptually much more challenging

to develop an effective attention mechanism. While ignoring

utilities when computing attention is always an option, we

argue that subtle details and nuances can only be captured
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adequately if we focus on all available signals.

To address this issue we develop a general factor graph

based attention mechanism which combines representations

of any number of utilities. Inspired by graphical models,

we use a graph based formulation to represent the attention

framework, where nodes correspond to utilities and factors

model their interactions. A message passing like procedure

aggregates information from modalities which are connected

by edges in the graph.

We demonstrate the efficacy of the proposed multi-utility

attention mechanism on the challenging and recently intro-

duced Visual Dialog dataset, realizing improvements up to

1.1% on MRR. Moreover, we examine our model behavior

using question generation proposed by [21]. Examples of

the computed attention for visual question answering are

illustrated in Fig. 1.

2. Related Work

In recent years various machine learning techniques

were developed to tackle cognitive-like multimodal tasks,

which involve both vision and language processing. Im-

age captioning [36, 56, 24, 50, 7, 4, 13] was an instru-

mental language+vision task, followed by visual question

answering [33, 42, 25, 34, 41, 5, 15, 59, 23, 3, 9, 14,

46, 55, 42, 54, 39, 40, 43] and visual question genera-

tion [41, 38, 22, 49, 28, 6].

Instrumental to cognitive tasks are attention models, that

enable interpretation of the machine’s cognition and often

improve performance. While attention mechanisms have

been applied to visual question answering [14, 33, 42, 26,

55, 58], few works have addressed visual dialog because

of the many different data utilities. Here, we develop an

attention mechanism for visual dialog, a cognitive task that

was created to imitate human-like decisions [10]. We build

a general attention mechanism that is capable of capturing

details. In the following we briefly review visual question

answering and visual dialog, focusing on the use of attention.

Visual Question Answering (VQA): Visual question an-

swering is considered a simplified version of visual dialog

since it consists of a single interaction with a given image.

Some discriminative approaches include a pre-trained convo-

lutional neural network with question embedding to predict

the correct answer [47, 35]. Quickly, attention mechanisms

have emerged as a tool to augment the spatial attention of the

image. Yang et al. [57] created a multi-step reasoning system

via an attention model. Fukui et al. [14] and Kim et al. [25]

suggested an efficient multi-modal pooling method before

applying attention using a compact outer product which was

later improved using the Hadamard product. Zhu et al. [58]

treated image attention as a structured prediction task over

regions, by first generating attention beliefs via unary and

pairwise potentials, for which a probability distribution is

inferred via loopy belief propagation.

Alternatively, Lu et al. [33] suggested to produce Co-

Attention for the image and question separately, using a

hierarchical formulation. Schwartz et al. [42] later extended

this approach for the multiple-choice VQA variant, apply-

ing attention over image, question and answer via unary,

pairwise and ternary potentials.

Visual Dialog: D. Geman et al. [16] were among the first

to generate dialogs over images. These early attempts used

only street scene images, and also restricted the conversation

to templated, binary questions. A discriminative and genera-

tive approach was later introduced by Das et al. [10], along

with the largest visual dialog dataset, VisDial. Concurrently,

GuessWhat, another visual dialog dataset was published [11].

GuessWhat is a goal driven dialog dataset for object identi-

fication, while VisDial focuses on human-like interactions.

For instance, in Fig. 1, the answer for the question “are kids

wearing hats?” is “0 of them wearing hats,” while a goal-

driven interaction will answer with a simple “no.” While

both types of dialogs are challenging, VisDial interactions

typically consider more subtle nuances. Another work by

Mostafazadeh et al. [37], focuses on conversation generation

around images, instead of the content visible in images.

The VisDial dataset is accompanied with three baselines.

A vanilla approach which encodes the image, dialog and

history separately and combines them subsequently (i.e., late

fusion). A more complex approach based on a memory net-

work [51], which maintains previous question and answer as

facts in a memory bank, and learns to retrieve the appropri-

ate fact. Lastly, a hierarchical encoding approach to capture

the history [45]. Seo et al. [44] propose a memory network

based on attention, which also addressed co-referential is-

sues. Later, Lu et al. [32, 33] combined a generative and

discriminative model to choose generated answers, and also

proposed history attention conditioned on the image using

hierarchical co-attention developed for visual question an-

swering. Wu et al. [53] apply attention over image, question

and history representation using a Generative Adversarial

Network (GAN) to create a more human-like response. Jain

et al. [21] developed a discriminative model that produces

a binary score for each possible answer by concatenating

representations of all utilities. While Jain et al. [21] also con-

sider all utilities for interaction prediction, our work differs

in important aspects: (1) we develop an attention mechanism

that weights different representations; (2) when predicting

an answer, we take information from other possible answers

into account. Recently, Kottur et al. [27] focused on visual

co-reference resolution for visual dialog. Their approach

relies on a weak supervision of a parser for reasoning [20],

and a co-referential solver [8]. While co-reference resolution

is not the focus of our work, we found our attention model

to exhibit some co-reference resolution abilities.

Among all attention-based techniques for Visual Dialog,

the most relevant to our approach is work by Wu et al. [53]

and Lu et al. [32]. Both generate Co-Attention over the

image, the question and the history representation in a hi-

erarchical fashion. Their hierarchical approach is based

on a sequential process, computing attention for one utility

first and using the obtained result to generate attention for
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another utility subsequently. As the ordering is important,

their framework is not straightforward to extend to a general

multi-utility setting.

In contrast, we develop a general attention model for

any number of utilities. In the visual dialog setting, those

utilities are the question in the history (10 utilities), each

answer in the history (10 utilities), the caption (1 utility), the

image (1 utility) and the answer representation (1 utility).

To work with a total of 23 utilities, we constructed a general

attention framework that may be applied to any high-order

utility setting. With our general purpose attention model we

improve results and achieve state-of-the-art performance.

To demonstrate the generality of the approach, we also

follow Jain et al. [21] and evaluate the proposed approach on

choosing an appropriate question given the previous question

and answer. There too we obtain state-of-the-art results.

Attention in General: More generally, attention models

have been applied to graphical data structures. For example,

Graph Attention Networks use an MRF approach to embed

graph-structured data, e.g., protein-protein interactions [48].

Also, attention for non-structured tasks (e.g., chain, tree)

were discussed in the past [26]. These works differ from

ours in important aspects: they are used to embed a struc-

ture based model, e.g., a graph, and provide a probability

distribution across nodes of the graph. Instead, our model

provides attention for entities within each node of the graph,

e.g., the words of a question or the pixels in an image.

3. Factor Graph Attention

In the following we describe a general framework to

construct a multi-utility attention model using factor graphs.

The factor graph is defined over utilities, which, in

the visual dialog setting, consists of an image I , an an-

swer A, a caption C, and a history of past interactions
(

HQt
, HAt

)

t∈{1,...,T}
. We subsume all utilities within the

set U = {I, A,C,
(

HQt
, HAt

)

t∈{1,...,T}
}. In our work we

have 23 utilities (10 history questions, 10 history answers,

the image, answer and caption). For notational convenience

and to demonstrate the generality of the formulation we also

refer to the set of utilities via U = {U1, . . . , U|U|}. Each

utility Ui ∈ U , for i ∈ {1, . . . , |U|} consists of basic entities,

e.g., a question is composed of a sequence of words and an

image is composed of spatially ordered regions.

Formally, the i-th utility Ui is a di × ni matrix which

consists of ni entities ûi ∈ Ui, which are the di-dimensional

columns of the matrix. Each vector ûi ∈ Ui is embedded in

its respective Euclidean space, i.e., ûi ∈ R
di , where di is the

embedding dimension of the i-th utility. We use the index

ui ∈ {1, . . . , ni} to refer to a specific column inside the

matrix Ui, i.e., we extract the ui-th column via ûi = Ui,ui
.

The |U| nodes in the factor graph each represent attention

distributions over their ni utility elements, which we call

beliefs. To infer the probability we take into account two

types of factors: 1) Local factors which capture information

within a utility, such as their entity representation and their

local interactions. 2) Joint factors which capture interactions

of any subset of utilities. Due to the high number of utilities,

in our attention model, we limit ourselves to pairwise factors.

Next we will explain our construction of local factors and

joint factors. Note, bias terms are omitted for readability.

3.1. Local factors

The local factors capture the local information in an em-

ployed utility Ui. Each utility contains entities, i.e., words

in a sentence or regions in an image. There are two types of

information within a utility Ui: Entity information, which is

extracted from an entity’s vector representation ûi ∈ Ui and

Entity interactions, which capture dependencies between

two entities, such as two words in the same question or two

regions in the same image.

Entity information: This representation is obtained as the

result of an embedding model, such as a Long-Short-Term-

Memory (LSTM) net for sentences or a convolutional layer

for image regions. Each vector representation ûi ∈ Ui has

the potential to focus the model’s attention to the entity

the vector is representing. The potential function ψi(ui) is

parametrized by the i-th utility’s parameters Vi and vi, and

is obtained via

ψi(ui) = v⊤i relu(Viûi).

Hereby, vi ∈ R
di , Vi ∈ R

di×di are trainable parameters.

Recall that the index ui ∈ {1, . . . , ni} refers to a specific

entity. During training we also apply a dropout operation

after the first linear embedding (i.e., Viûi).
Entity interactions: The factor dependency between two

elements is extracted from their vector representation. Given

two indices u1i , u
2

i ∈ {1, . . . , ni}, we embed the two cor-

responding entity representation vectors û1i , û
2

i in the same

Euclidean space, and compute the factor dependency on both

entities using the dot product operation, i.e.,

ψii(u
1

i , u
2

i ) =

(

Liû
1

i

‖Liû1i ‖

)⊤
(

Riû
2

j

‖Riû2i ‖

)

,

where Li ∈ R
di×di , Ri ∈ R

di×di are trainable parameters,

governing the left and right arguments respectively.

3.2. Joint factors

Joint factors capture interactions between two elements

of different utilities, e.g., between a word in the question and

a region in the image. Similarly to entity interaction factors

within a utility, we use

ψij(ui, uj) =

(

Lij ûi
‖Lij ûi‖

)⊤(
Rjiûj

‖Rjiûj‖

)

,

where Lij ∈ R
di×d, Rji ∈ R

dj×d are trainable parameters.

For simplicity we let d = max{di, dj} be the maximum

dimension between the two utilities.
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Figure 2: Our state-of-the-art architecture for the Visual Dialog

task. Implementations details can be found in Sec. 4.

To avoid a situation where pairwise scores (e.g., image

and question) negatively bias another one (e.g., image and

caption), proper normalization is necessary. Since the pair-

wise interaction scores are generated during training, we

chose a batch normalization [31] operation which fixes the

bias during training. Additionally, we applied an L2 normal-

ization on ui and uj to be of unit norm before the multipli-

cation, i.e., we use the cosine similarity.

3.3. Attention, messages and beliefs

For each utility Ui we infer the amount of attention that

should be given to each of its elements ûi ∈ Ui. Motivated

by classical message-passing algorithms, we first collect all

dependencies of a given utility element via

µj→i(ui) =
∑

uj∈{1,...,nj}

Wij(ui, uj)ψij(ui, uj),

where Wij(ui, uj) ∈ R is a trainable parameter. We aggre-

gate these messages from all pairwise factor dependencies

and send them to a utility, in order to infer its attention belief.

The inferred attention belief

bi(ui) ∝ exp



ŵipi(ui) + wiψi(ui) +

|U|
∑

j=1

wijµj→i(ui)



,

also uses local entity information.

Hereby wij , wi are scalar weights learned per utility.

These scalars reflect the importance of one utility with re-

spect to the others. For instance, for the image belief, we

find by examining these weights that the question utility is

more important than the caption utility. This makes sense

since we want to look at relevant places for the question.

Moreover, pi is a prior potential for the i-th utility, and ŵi

is a trainable parameter to calibrate the prior potential’s im-

portance. For instance, the question utility prior encourages

focus of its attention onto the last word in the question, a

common practice in LSTM networks. Using priors, we are

able to steer the desired belief for a utility, while still allow-

ing guidance of other utilities via pairwise interactions. We
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Figure 3: A graphical representation of our attention unit. Each

node represents an attention probability over the utilities’ entities.

To infer the probability we aggregate two types of messages: 1) A

joint factor message, constructed from interactions of entities from

different utilities, e.g., ΨQ,I . 2) A local factor: learned from the

entity representation, e.g., ΨQ, and the self entity interactions, e.g.,

ΨQ,Q. T is the number of history dialog interactions.

also experimented with priors that are updated after we infer

the attention through steps, but we didn’t find it to improve

the results in our setup.

Once the attention belief bi(ui) is computed for each

entity representation ûi ∈ Ui, we obtain the attended vector

of this utility as the average representation. This reduces the

utility representation to a single vector, which is dependent

on the other utilities via the belief bi(ui):

ai =
∑

ui∈{1,...,ni}

bi(ui) · ûi.

Note that ai is the attended representation of utility Ui.

4. Visual Dialog

We use visual dialog to demonstrate the generality of the

discussed attention mechanism because many utilities are

available. A general overview of the approach is illustrated in

Fig. 2. We detail next how the general factor graph attention

model is applied to visual dialog by describing (1) the utility

embeddings, (2) the attention module, and (3) the fusion of

attended representations for prediction.

4.1. Utilities and Embeddings

In the following, we describe the embeddings of the im-

age and textual utilities.

Image utility: To represent the image regions, we use a

conv net, pre-trained on ImageNet [12]. Taking the output

of the last convolutional layer we obtain a representation of
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7 × 7 × 512. Specifically, 7 × 7 is the spatial dimension

of the convolutional layer and 512 is the number of chan-

nels/features of the representation. Following our notation

in Sec. 3, the visual utility Ui has dimensions ni = 49 and

di = 512. To fine-tune this representation to our task, we

feed it into another convolutional layer, with a 1× 1 kernel,

followed by a ReLU activation and a dropout.

Textual utilities: Our textual utilities are the caption, the

question, the possible answers and the history interactions.

For each textual utility Ui we embed up to ni words. Sen-

tences with a shorter length are zero padded, while sentences

of longer length are truncated. The embedding starts with a

one-hot encoding representation of the word index, followed

by a linear transformation. The linear transformation embeds

the word index into the Euclidean space. This embedding

is identical for all textual utilities. Intuitively, usage of the

same embedding ensures a better consistency between the

textual utilities and we also found it to improve the results.

Each embedded representation for each textual utility is

fed into an LSTM layer, which yields a representation with

the appropriate embedding dimension. The caption utility

C and the question utility Q are generated by applying a

dedicated LSTM on the respective embedded representation.

In contrast, we embed all history questions
(

HQt

)

t∈{1,...,T}

using the same LSTM model. We also embed all history

answers
(

HAt

)

t∈{1,...,T}
using another LSTM model.

The answer utility subsumes nA possible answers and it

consists of the final decision of the model in our visual dialog

system. Our answer utility uses the same LSTM to embed

each of the nA = 100 answers separately, the embedding of

each possible answer is the LSTM hidden state of the last

word in the answer.

4.2. Attention module

The attention step infers the importance of each entity in

each utility, using our Factor Graph Attention (see Sec. 3),

and creates an attended representation. In the visual dialog

setting, for each answer generation step we use an image

I , a question Q, an answer A, a caption C, and a history

of past interactions
(

HQt
, HAt

)

t∈{1,...,T}
(see Fig. 3 for

an illustration). In the following we describe the special

treatment of the different entities as well as their respective

priors.

Group utilities and dependency-relaxation: Our factor

graph attention model may have a large number of trainable

parameters, as it grows quadratically with the number of util-

ities. To address this concern, we observe that we can group

some utilities, e.g., the history answers
(

HAt

)

t∈{1,...,T}
, and

the history questions
(

HQt

)

t∈{1,...,T}
. To take advantage

of the dependency between the group of utilities, we share

the factor weights across all the group utilities. For example,

for two utilities Ui1 , Ui2 ∈ HAt
we enforce the parame-

ter sharing vi1 = vi2 , Vi1 = Vi2 , Li1 = Li2 , Ri1 = Ri2 ,

Li1,j = Li2,j and Rj,i1 = Rj,i2 . Not only did it contribute

to a reduced memory consumption, but we also observed

this grouping to improve the results. We attribute the im-

provement to better generalization of the factors.

The answer utility Ui encodes each of the possible ni

answers in a di-dimensional vector, using the LSTM hidden

state at the last word. Fig. 1 shows that the attention beliefs

correlate with the correct answer. Note that we didn’t attend

separately to each possible answer. Doing so would have

resulted in increased computational demand and we didn’t

find improved model performance. We conjecture that due

the fact that the number of words within an answer is usually

small, a complete attention model on each and every word

of the answer does not seem to be necessary.

Priors: The prior potentials for the question and caption

utilities are important in practice. For both utilities we set

the prior to emphasize the last word by focusing the energy

onto the last hidden state index. We use a one hot vector

with the high bit set for the last hidden state index.

4.3. Fusion Step

The fusion step, outlined in Fig. 2 combines

the attended representations ai from all utilities

{I, A,C,
(

HQt
, HAt

)

t∈{1,...,T}
} to find the best an-

swer. This is performed by creating a probability

distribution p(uA|I,Q,C,A,H) for each answer index

uA ∈ {1, . . . , nA}, where nA = 100 is the number of

possible answers.

We denote by aI ∈ R
dI the attended image vector,

aA ∈ R
dA the attended answer vector, and aC ∈ R

dC

the attended caption vector. We construct the attended his-

tory vector aH ∈ R
dI from the attended history utilities

(

HQt
, HAt

)

t∈{1,...,T}
. For this purpose, we start by con-

catenating the attended vector of each history question aQt

with the concurrent history answer aAt
, and fuse them us-

ing a linear transformation with a bias term to obtain at,
which is a dt-dimensional vector. We then concatenate

the attended history vectors at for the entire dialog history

t ∈ {1, . . . , T}, which results in an attended history repre-

sentation aH ∈ R
dH . Note that dH =

∑T

t=1
dt. We concate-

nate the image, question, caption and history attended repre-

sentations, which yields an attention representation a ∈ R
L

of length L = dI + dQ + dC + dA + dH .

Next, we combine the image, question, caption and his-

tory attended representation a ∈ R
L with the nA = 100

possible answers to compute a probability for each an-

swer. Let UA ∈ R
nA×dA be the answer utility, with

N = nA = 100 answers, while each answer is embed-

ded in a dA-dimensional space. For each answer, we de-

note by ûA ∈ R
dA its embedded vector. We concatenate

each answer embedding with the system attention (a, ûA)
to obtain a (L+ dA)-dimensional vector and feed it into a

multi-layer perception with two layers of size (L+ dA)/2
and (L + dA)/4 respectively. Between each layer we per-

form batch normalization followed by a ReLU activation.

We used a dropout layer before the last fully connected layer.

The obtained scores are turned into probabilities, for each
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Table 1: Performance of discriminative models on VisDial v0.9.

Higher is better for MRR and recall@k, while lower is better for

mean rank. (*) denotes use of external knowledge.

Model MRR R@1 R@5 R@10 Mean

LF [10] 0.5807 43.82 74.68 84.07 5.78

HRE [10] 0.5846 44.67 74.50 84.22 5.72

HREA [10] 0.5868 44.82 74.81 84.36 5.66

MN [10] 0.5965 45.55 76.22 85.37 5.46

HieCoAtt-QI [33] 0.5788 43.51 74.49 83.96 5.84

AMEM [44] 0.6160 47.74 78.04 86.84 4.99

HCIAE-NP-ATT [32] 0.6222 48.48 78.75 87.59 4.81

SF-QIH-se-2 [21] 0.6242 48.55 78.96 87.75 4.70

CorefNMN [27]* 0.636 50.24 79.81 88.51 4.53

CoAtt-GAN-w/ Rinte-TF [53] 0.6398 50.29 80.71 88.81 4.47

CorefNMN (ResNet-152) [27]* 0.641 50.92 80.18 88.81 4.45

FGA (Ours) 0.6525 51.43 82.08 89.56 4.35

Ensemble of 9 FGA (Ours) 0.6892 55.16 86.26 92.95 3.39

Table 2: Performance on the question generation task. Higher is

better for MRR and recall@k, while lower is better for mean rank.

Model MRR R@1 R@5 R@10 Mean

SF-QIH-se-2 [21] 0.4060 26.76 55.17 70.39 9.32

FGA(Ours) 0.4138 27.42 56.33 71.32 9.1

answer, using a softmax (·) operation, which yields the pos-

terior probability for each answer p(uA|I,Q,C,A,H). The

approach is trained using maximum likelihood.

5. Results

In the following we evaluate the proposed factor graph

attention (FGA) approach on the Visual dialog dataset, which

we briefly describe first. Our code is publicly available1.

Visual Dialog Dataset: We used VisDial v0.9 to train the

model. The dataset consists of approx. 120k images from

COCO [29]. Each image is annotated with a dialog of 10

questions and corresponding answers, for a total of approx.

1.2M dialog question-answer pairs. In the discriminative

setup, each question-answer pair is given 100 plausible possi-

ble answers, the model needs to choose from. We follow [10]

and split the data into 80k images for train, 40k for test and

3k for validation.

Experimental setup: We used a batch size of 64. We set

the word embedding dimension to dE = 128, and the utility

embeddings to dQ = 512 and dC = 128. For each ques-

tion or answer in the history we use dHQi
= dHAi

= 128.

For each possible answer we use da = 512. The lengths

are set equally for all textual utilities nQ = nC = na =
nHQ

= nHA
= 20. The VisDial history consists of T = 10

questions with their answers. For our image representation

we use the last conv layer of VGG having dimensions of

7 × 7 × 512. After flattening the 2D spatial dimension,

nI = 49. The dropout parameter after the image embedding

is set to 0.5, the dropout parameter before the last fc layer is

set to 0.3.

Training: The total amount of trainable parameters in our

model is 17, 848, 416. We initialized all the weights in the

model using Kaiming normal initialization [17]. To train the

model we used a multi-class cross entropy loss, where each

1https://github.com/idansc/fga

Table 3: Performance of discriminative models on VisDial v1.0 test-

std. Higher is better for MRR and recall@k, while lower is better

for mean rank and NDCG. (*) denotes use of external knowledge.

Model MRR R@1 R@5 R@10 Mean NDCG

LF [10] 0.554 40.95 72.45 82.83 5.95 0.453

HRE [10] 0.542 39.93 70.45 81.50 6.41 0.455

MN [10] 0.555 40.98 72.30 83.30 5.92 0.475

CorefNMN (ResNet-152) [27]* 0.615 47.55 78.10 88.80 4.40 0.547

NMN (ResNet-152) [20]* 0.588 44.15 76.88 86.88 4.81 0.581

FGA (Ours) 0.637 49.58 80.975 88.55 4.51 0.521

Ensemble of 5 FGA (Ours) 0.673 53.40 85.28 92.70 3.54 0.545

Table 4: Attention-related ablation analysis.

Model MRR R@1 R@5 R@10 Mean

No Attention 0.6249 48.67 78.95 87.73 4.69

No BatchNorm 0.6301 49.23 79.65 88.32 4.55

No Local-Interactions 0.6369 50.17 79.92 88.33 4.55

No Local-Information 0.6425 50.12 81.49 89.34 4.37

No Priors 0.6451 50.57 81.37 89.00 4.47

FGA 0.6525 51.43 82.08 89.56 4.35

Table 5: Utility-related ablation analysis.

Model MRR R@1 R@5 R@10 Mean

No Answer Utility 0.6294 49.35 79.31 88.10 4.63

No History Attention 0.6449 50.74 81.07 88.86 4.48

Answers Fine-attention 0.6478 50.80 81.86 89.25 4.46

History No Fine-attention 0.6494 51.17 81.56 89.13 4.43

FGA 0.6525 51.43 82.08 89.56 4.35

possible answer represents a class. We used Adam optimizer

with a learning rate of 10−3. We evaluate our performance

on the validation set after each epoch to determine when to

stop our training.

5.1. Quantitative Evaluation

Evaluation metrics: Evaluating dialog systems, or any

other generative tasks is challenging [30]. We follow [10]

and evaluate each individual response at each of the T = 10
rounds in a multiple-choice setup. The model is hence eval-

uated on retrieval metrics: Recall@k is the percentage of

questions where the human response was part of the top k
predicted answers. Mean rank is the average rank allotted

by a model to the human response, hence a lower score

is desired. Mean Reciprocal Rank (MRR) is defined as
1

|Q|

∑|Q|
i=1

1

ranki
, where ranki is the rank of the human re-

sponse, and Q is the set of all questions. The perfect score,

i.e., MRR = 1 is achieved when the human response is con-

sistently ranked first.

Visual question answering comparison: We first compare

against a variety of baselines (see Tab. 1). Note that almost

all of the baselines (except LF, HRE and MN and SF-QIH-se-

2) use attention, i.e., attention is an important element in any

model. Note that our model uses the entire set of answers to

predict each answer’s score, i.e., we use p(ui|A, I,Q,C,H)
This is in contrast to SF-QIH-se-2, which doesn’t use atten-

tion and models p(ui|ûi, I, Q,C,H). Notable as well, the

current state-of-the-art model, CoAtt-GAN [53], used the

largest amount of utilities to attend to, i.e., image, question

and history. Because CoAtt-GAN uses a hierarchical ap-

proach, the ability to further improve the reasoning system

is challenging and manual work. In contrast, our general
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are there any other

people besides the 2 ?

are there any animals ? are any wearing glasses ? are there any buildings ? is there trees ?can you see cars ?

A: yes

GT: yes

A: no

GT: no

A: no

GT: no

A: yes

GT: yes
A: yes

GT: yes

A: yes

GT: yes

how old does the

child appear to be ?

what color is the bat ? are there any other

people in the photo ?

is there any grass visible ? what is the

child 's expression ?

what is the 

child wearing ?

A: 5

GT: 10

A: no

GT: no

A: brown , black 

and white
GT:light brown

A: yes

GT: yes

A: smile

GT: smile

A: shirt pants

GT: shirt pants

what color is the bus ? are the bikes on the

street or sidewalk ?

what is the weather like ? can you see storefronts ? are there any street signs ?are there any 

other vehicles ?

A: the bikes are parked

on the side walkway
GT: the bikes are 

parked on the side 

walkway

A: black and white 

GT: white with tinted 
windows

A: cloudy

GT: it looks sunny and 
warm

A: no

GT: yes , there are a 
couple cars

A: yes , but i ca n't read 

any of their signs
GT: yes , but i ca n't

read any of their signs

A: yes but too far away 

to read
GT: yes but too far away 

to read

Figure 4: An illustration of question and image attention over a series of interactions for the same dialog. In addition we provide the ground

truth answer, i.e., GT, and our predicted answer, i.e., A.

attention mechanism allows to attend to the entire set of cues

in the dataset, letting the model automatically choose the

more relevant cues. We refer the readers to the appendix

for analysis of utility-importance via importance score. As

can be seen from Tab. 1, this results in a significant im-

provement of performance, even when compared to the very

recently published baselines [21, 53, 27]. We also report an

ensemble of 9 models which differ only by the initial seed.

We emphasize that our approach only uses VGG16. Lastly,

some baselines report to use GloVe to initialize the word

embeddings, while we didn’t use any pre-trained embedding

weights.

Our attention model is very efficient to train. Our state-

of-the-art score is achieved after only 4 epochs. Each epoch

takes approximately 2 hours on a standard machine with

an Nvidia Tesla M40 GPU. In contrast, CorefNMN [27],

has 100M parameters and takes 33 hours to train on a Titan

X. Both [32, 53] report that more than 25 epochs 101M

parameters and 50 hours were required for training.

Visual question generation comparison: To assess ques-

tion generation, [21] proposed to predict the next question

given the previous question and answer. Their introduced

question prediction dataset is based on VisDial v0.9, along

with a collected set of 100 question candidates.

We adapted to this task, by changing the input utilities to

the previous interaction (Q+ A)t−1 instead of the current

question Qt. Our model also improves previous state-of-the-

art results (see Tab. 2).

Visual Dialog Challenge: Recently, VisDial v1.0 was re-

leased as part of the Visual Dialog challenge, where 123,287

images are used for training, 2,000 images for validation,

and 8,000 images for testing. For the test split each image

consists of only 1 interaction, at some point of time in the

dialog. Furthermore, an additional metric, normalized dis-

counted cumulative gain (NDCG), was introduced. NDCG

uses dense annotations, i.e., the entire set of candidate an-

swers is annotated as true or wrong. The metric penalizes

low ranking correct answers, addressing issues when the set

of answers contains more than one plausible result.

Our submission to the challenge significantly improved

all metrics except for NDCG. We report our results in Tab. 3

on test-std, a 4,000 image split, the other 4,000 image split

was preserved for the challenge. While the challenge did

allow use of any external resources to improve the model, we

only changed our approach to use an ensemble of 5 trained

Factor Graph Attention models which were initialized ran-

domly. All other top teams used external data in form of

detection features on top of ResNet-152, inspired by Top-

Bottom attention [2]. These features are expensive to extract,

and use external detector information.

Our model used only the single ground truth answer to

train. Therefore it is expected that our model isn’t optimized

w.r.t. the NDCG metric. However, given the small subset of

densely annotated samples (2,000 out of the 123,287 train

images), it is hard to carefully analyze this result.

Ablation Study: We asses (1) design choices of our factor

graph attention; and (2) utility ablation focusing on history

and answer cues as they are a unique aspect of our work.

(1) In Tab. 4 we see that FGA improves the MRR of a

model without attention by 3% (0.6249 vs. 0.6653). This
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Q: how old is the skateboarder ?

A: teens

Q: what is the skateboarder 's gender ?

A: male

Q: what is the skateboarder wearing ?

A: tee shirt and jeans ,hat and glasses and 

sneakers

Q: what is the skateboarder wearing ?

Q: are the people watching

on chairs or the floor ?

Q: can you see what game he is playing ?

A: no

Q: how many people are watching ?

A: about 4

Q: are the people watching on chairs

or the floor ?

A: on sofas

Q: can you see what game he is 

playing?

A: no

Q: how many people are watching ?

A: about 4

Q: are they eating ?

Q: how old is the skateboarder ?

A: teens

Q: what is the skateboarder 's 

gender ?

A: male

Q: is this at a skateboard park ?

Figure 5: Illustration of history attention for 2 interactions. We

observe small nuances of history to be useful to answer questions,

and improve co-reference resolution.

ablation study shows that attention is crucial for VisDial.

Removing local-information drops MRR to 0.6425. When

omitting local-interactions, i.e., a score based on interactions

of embedding representations of a utility, the MRR drops

to 0.6369. BatchNorm over pairwise interactions is crucial.

Without BatchNorm MRR drops to 0.6301. Removing prior

information, e.g., a high prior potential for the last word

in the question is less crucial, dropping MRR to 0.6451.

(2) Our history attention attends separately to questions and

answers in the history. In contrast, classical methods [52, 44]

attend over history locations only. Based on Tab. 5, we note

that our fine-grained history attention improves MRR from

0.6494 to 0.6525. Without the answers utility, performance

on MRR drops significantly from 0.6525 to 0.6294. If we

attend to each word in the answers separately, i.e., ‘Answers

Fine-Attention,’ performance drops to 0.6478.

Other Datasets: When we replace the attention unit of other

methods with our FGA unit we observe improvements in

visual question answering (VQA) and audio-visual scene

aware dialog (AVSD) [5, 1]. For VQA v1.0 we increase

validation set accuracy from 57.0 to 57.3 (no tuning) by

replacing the alternating and parallel attention [33]. For

AVSD, we improve Hori et al. [19] which report a CIDEr

score of 0.733 to 0.806. We used FGA to attend to all video

cues as well as the question. This differs from Hori et al.

who mix the question representation with video-related cues

(e.g., I3D features, optical flow and audio features), and

aggregate them to generate attention. Other components

remain the same. Our flexible framework is instrumental for

this improvement.

5.2. Qualitative Evaluation

Attention is an important tool not only because it boosts

performance, but also because it yields a weak form of in-

terpretability. By illustrating the attention beliefs, we can

observe the reasoning process of the model. In Fig. 4 we

provide co-attention of image and question. The first row

shows dialogs with yes/no questions. We observe the ques-

tion attention to focus on the indicative word, e.g., people,

animals, buildings, cars, etc., while the image attention per-

forms detection and attends to the relevant area of the image.

For the second row, again we observe plausible attention

behavior. An interesting failure-case: when asked about the

color of the bat, the ground-truth answer was “light brown,”

Q: +
Given:

Predicted:

is there any design on her tie ?

what color is her tie ? A: purple
C: a woman in a tie and blue hair .

H:

Q: how old is

the woman ?

A: less than 60

Question options

C: a woman in a tie and blue hair .

Q: how old is the woman ? A: less than 60+
Given:

Predicted:

what color is her tie ?

Question options

Q: +
Given:

Predicted:

is it a laptop or desktop ?

at what angle is the man sitting ? A: leaning over slightly

C: a man sitting at a desk on a laptop computer 

H:

Q: can you 

see the 

ceiling ?

A: no

C: a man sitting at a desk on a laptop computer 
Q: can you see the ceiling ? A: no+
Given:

Predicted:

at what angle is the man sitting ?

Question options Question options

Figure 6: Illustration of 2 step interaction using visual question

generation and illustration of the involved modalities. The classifier

receives the previous question and answer, to predict a new one.

while our model answered “brown, black and white” instead.

A possible explanation is related to the fact that the image

is in black and white. The last line shows that question-

answering type of task is always debatable. For the question

“what is the weather like?” the model answered “cloudy,”

while the ground truth is “it looks sunny and warm.” While

it does look sunny, the model attends to clouds and the model

answer likely isn’t entirely wrong.

Next, in Fig. 5, we show how attention is useful when

applied over each question in the history. In the first row, for

the question “is this at a skateboarder park?”, the skateboard

related terms in the history are given more weight. Another

use case of attention is co-reference resolution. We highlight

those results in the second row: the word “they” in the second

question refers to people in the background, which remain

the focus of the attention model.

Lastly, in Fig. 6, we evaluate question generation and let

the model interact with the answer predictor. We show how

complete dialogs can be generated in a discriminative man-

ner. We first observe that attention for question generation

is noisier. This seems intuitive because asking a question

requires a broader focus than answering. Nonetheless, visual

input is important. For the second row second image, “at

what angle is the man sitting?” the model attends mostly

to the man, and for the question “is it a laptop or desktop?”

image attention focuses on the laptop. Also, in both cases the

caption attention is useful. For instance, in the first row, the

word “tie” is picked to generate two relevant questions. This

nicely illustrates how the proposed model adapts to tasks,

when the importance of different data cues changes.

6. Conclusion

We developed a general factor graph based attention

mechanism which can operate on any number of utilities.

We showed applicability of the proposed attention mecha-

nism on the recently introduced visual dialog dataset and

outperformed existing baselines by 1.1% on MRR.
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