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Abstract

Despite significant progress in Visual Question Answer-

ing over the years, robustness of today’s VQA models leave

much to be desired. We introduce a new evaluation protocol

and associated dataset (VQA-Rephrasings) and show that

state-of-the-art VQA models are notoriously brittle to lin-

guistic variations in questions. VQA-Rephrasings contains

3 human-provided rephrasings for 40k questions spanning

40k images from the VQA v2.0 validation dataset. As a

step towards improving robustness of VQA models, we pro-

pose a model-agnostic framework that exploits cycle con-

sistency. Specifically, we train a model to not only answer

a question, but also generate a question conditioned on the

answer, such that the answer predicted for the generated

question is the same as the ground truth answer to the orig-

inal question. Without the use of additional annotations, we

show that our approach is significantly more robust to lin-

guistic variations than state-of-the-art VQA models, when

evaluated on the VQA-Rephrasings dataset. In addition,

our approach outperforms state-of-the-art approaches on

the standard VQA and Visual Question Generation tasks on

the challenging VQA v2.0 dataset.

1. Introduction

Visual Question Answering (VQA) applications allow a

human user to ask a machine questions about images – be it

a user interacting with a visual chat-bot or a visually im-

paired user relying on an assistive device. As this tech-

nology steps out of the realm of curated datasets towards

real-world settings, it is desirable that VQA models be ro-

bust to and consistent across reasonable variations in the

input modalities. While there has been significant progress

in VQA over the years [1, 17, 2, 9, 19, 41, 3, 4], today’s

VQA models are, however, far from being robust.

VQA is a task that lies at the intersection of language

and vision. Existing works have studied the robustness and

sensitiveness of VQA models to meaningful semantic vari-

ations in images [9], changing answer distributions [2] and

adversarial attacks [39] to images. However, to the best of

our knowledge, no work has studied the robustness of VQA

        Prediction 
What is in the basket?

             What does the basket mainly contain?

 banana

remote

     What is contained in the basket?

                   What can be seen inside the basket?

   paper     

  pizza       

Is it safe to turn left?

   Would turning left considered safe in this picture?

   Yes

   No

         Can one safely turn left?

                    Would it be safe to turn left?

    Yes     

    No       

Figure 1. Existing VQA models are brittle. Shown above are ex-

amples from our new large-scale VQA-Rephrasings dataset that

enables systematic evaluation of robustness of VQA models to lin-

guistic variations in the input question. Also shown are answers

predicted by a state-of-the-art VQA model [41]. We see that the

model predicts different answers for different reasonable rephras-

ings of the same question. We propose a novel model-agnostic

framework that exploits cycle consistency in question answering

and question generation to make VQA models more robust, with-

out using additional annotation. Moreover, it outperforms state-

of-the-art models on the standard VQA and Visual Question Gen-

eration tasks on the VQA v2.0 dataset.

models to linguistic variations in the input question. This is

important both from the perspective of VQA being a bench-

mark to test multi-modal AI capabilities (do our VQA mod-

els really “understand” the question when answering it?)

and for applications (human users are likely to phrase the

same query in a variety of different linguistic forms). How-

ever, today’s state-of-the-art VQA models are brittle to such

linguistic variations as can be seen in Fig. 1.

One approach to make VQA models more robust is to

collect a dataset with diverse rephrasings of questions to

train VQA models. Alternatively, an automatic approach

that does not require additional human intervention but re-

sults in a VQA model that is robust to linguistic variations

observed in the natural language questions is desirable.

We propose a novel model-agnostic framework that re-

lies on cycle consistency to learn robust VQA models with-

out requiring additional annotation. Specifically, we train
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the model to not just answer a question, but also to generate

diverse, semantically similar variations of questions condi-

tioned on the answer. We enforce that the answer predicted

for a generated question matches the ground truth answer

to the original question. In other words, the model is being

trained to predict the same (correct) answer for a question

and its (generated) rephrasing.

Advantages of our proposed approach are two-fold.

First, enforcing consistent correctness across diverse

rephrasings allows models to generalize to unseen seman-

tically equivalent variations of questions at test time. The

model achieves this by generating linguistically diverse

rephrasings of questions on-the-fly and training with these

variations. Second, a model trained generatively to generate

a valid question given a candidate answer and image has a

stronger multi-modal understanding of vision and language.

Questions tend to have less learnable biases [26]. As a re-

sult, models that can jointly perform the task of question

generation and question answering are less prone to taking

“shortcuts” and exploiting linguistic priors in questions. In-

deed, we find that models trained with our approach out-

perform existing state-of-the-art models on both VQA and

Visual Question Generation (VQG) tasks on VQA v2.0 [9].

We also observed that one reason for limited devel-

opment of VQA models robust to linguistic variations

in input questions is due to the lack of a benchmark to

measure robustness. A lack of such a benchmark makes

it hard to quantitatively realize the inflated capabilities

and limited multi-modal understanding of modern VQA

models . To enable quantitative evaluation of robustness

and consistency of VQA models across linguistic variations

in input questions, we collect a large-scale dataset –

VQA-Rephrasings (Section 4) based of the VQA v2.0

dataset [9]. VQA-Rephrasings contains 3 human-provided

rephrasings for ∼40k questions on ∼40k images from the

validation split of the VQA v2.0 dataset. We also propose

metrics to measure the robustness of VQA models across

different question rephrasings. Further, we benchmark

several state-of-the-art VQA models [3, 5, 19, 41] on

our proposed VQA-Rephrasings dataset to highlight the

fragility of VQA models to question rephrasings. We

observe a significant drop when VQA models are required

to be consistent in addition to being correct (Section 5),

which reinforces our belief that existing VQA models do

not understand language ”enough”. We show that VQA

models trained with our approach are significantly more

robust across question rephrasings than their existing

counterparts on the proposed VQA-Rephrasings dataset.

In this paper, our contributions are the following:

• We propose a model-agnostic cycle-consistent training

scheme that enables VQA models to be more robust

to linguistic variations observed in natural language

open-ended questions.

• To evaluate the robustness of VQA models to lin-

guistic variations, we introduce a large-scale VQA-

Rephrasings dataset and an associated consensus

score. VQA-Rephrasings consists of 3 rephrasings for

∼40k questions on ∼40k images from the VQA v2.0

validation dataset, resulting in a total of ∼120k ques-

tion rephrasings by humans.

• We show that models trained with our approach out-

perform state-of-the-art on the standard VQA and

Visual Question Generation tasks on the VQA v2.0

dataset and are significantly more robust to linguistic

variations on VQA-Rephrasings.

2. Related Work

Visual Question Answering. There has been tremen-

dous progress in building models for VQA using LSTMs

[13] and convolutional networks [22]. VQA models span-

ning paradigms like attention networks [40, 19], module

networks [14, 4, 17], relational networks [32] and multi-

modal fusion [5] have been proposed. Our method is model-

agnostic and is applicable with any VQA architecture.

Robustness. Robustness of VQA models has been stud-

ied in several contexts [2, 39, 9]. For example, [2] studies

the robustness of VQA models to changes in the answer dis-

tributions across training and test settings; [42] analyzes the

extent of visual grounding in VQA models by studying ro-

bustness of VQA models to meaningful semantic changes

in images; [39] shows that despite the use of an advanced

attention mechanism, it is easy to fool a VQA model with

very minor changes in the image. Our work, however,

aims to complete the study in robustness by benchmark-

ing and improving robustness of VQA models to linguis-

tic and compositional variations in questions in the form

of rephrasings. Robustness has also been studied in natu-

ral language processing (NLP) systems [7, 12] in contexts

of bias [35, 34], domain-shift [23] and syntactic variations

[15]. We study this in the context of visual question an-

swering which is a multi-modal task which grounds lan-

guage into the visual world.

(Visual) Question Generation. Generating questions

conditioned on an image was introduced in [29] and a large-

scale VQG dataset was collected by [30] to evaluate visually

grounded question generation capabilities of models. More

recently, there has been work on generating questions that

are diverse [16, 40]. While these techniques generate ques-

tions about an image in an answer-agnostic manner, tech-

niques like [26] propose a variational LSTM based model

trained with reinforcement learning to generate answer-

specific questions for an image. More recently, [24] gen-

erates answer-specific questions for specific question-types

by modelling question generation as a dual task of question
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Q A′ Q′  A′′

Question Consistency 
Loss

VQA Loss A
Answer 

Consistency 
Loss

F: VQA

G: VQG

F: VQA

LSTM

A′ Attention I

      Ɲ(0, 1)

 Answer Encoder  Image Encoder

      (a)       (b)

Q′

Figure 2. (a) Abstract representation of the proposed cycle-consistent training scheme: Given a triplet of image I , question Q, and

ground truth answer A, a VQA model is a transformation F : (Q, I) 7→ A′ used to predict the answer A′. Similarly, a VQG model

G : (A′, I) 7→ Q′ is used to generate a rephrasing Q′ of Q. The generated rephrasing Q′ is passed through F to obtain A′′ and consistency

is enforced between Q and Q′ and between A′ and A′′. Image I is not shown for clarity. (b) Detailed architecture of our visual question

generation module G. The predicted answer A′ and image I are embedded to a lower dimension using task-specific encoders and the

resulting feature maps are summed up with additive noise and fed to an LSTM to generate questions rephrasings Q′.

answering. Unlike [24], our method is not restricted to gen-

erating questions only for specific question types. Different

from previous works, the goal of our VQG component is to

automatically generate question rephrasings that make the

VQA models more robust to linguistic variations. To the

best of our knowledge, we are the first to demonstrate that

the VQG module can be used to improve VQA accuracy in

a cycle-consistent setting.

Cycle-Consistent Learning. Using cycle-consistency to

regularize the training of models has been used extensively

in object tracking [36], machine translation [10], unpaired

image-to-image translation [43] and text-based question an-

swering [37]. Consistency enables learning of robust mod-

els by regularizing transformations that map one intercon-

nected modality or domain to the other. While cycle con-

sistency has been used vastly in the domains involving a

single modality (text-only or image-only), it hasn’t been ex-

plored in the context of multi-modal tasks like VQA. Cycle-

consistency in VQA can be also thought of as an online

data-augmentation technique where the model is trained on

several generated rephrasings of the same question.

3. Approach

We now introduce our cycle-consistent scheme to train

robust VQA models. Given a triplet of image I , question

Q, and ground truth answer A, a generic VQA model can

be formulated as a transformation F : (Q, I) 7→ A′, where

A′ is the answer predicted by the model as in Fig. 2(a). Sim-

ilarly, a generic VQG model can be formulated as a trans-

formation G : (A, I) 7→ Q′ as in Fig. 2(b). For a given

(I,Q,A) triplet, we first obtain an answer prediction A′ us-

ing the VQA model F for the original question Q. We then

use the predicted answer A′ and the image I to generate a

question Q′ which is semantically similar to Q using the

VQG model G. Lastly, we obtain a answer prediction A′′

for the generated question Q′.

Our design of consistency components is inspired by two

beliefs. Firstly, a model which can generate a semantically

and syntactically correct question given a answer and an im-

age, has a better understanding of the cross-modal connec-

tions among the image, the question and the answer, which

make them a valid (I,Q,A) triplet. Secondly, assuming the

generated question Q′ is a valid rephrasing of the original

question, a robust VQA model should answer this rephras-

ing with the same answer as the original question Q. In

practice, however, there are several challenges that inhibit

enforcement of cycle-consistency in VQA. We discuss these

challenges and describe the key components of our frame-

work geared to tackle them in the following sections.

3.1. Question Generation Module

Since VQA is a setting where there is high disparity in

the information content of involved modalities (a question

and answer pair is a very lossy compressed representation of

the image), learning transformations that map one modality

to another is non-trivial. In cycle-consistent models dealing

with single-modalities, transformations need to be learned

across different domains of the same modality (image or

text) with roughly similar information contents. However

in a multi-modality transformation like VQG, learning a

transformation from a low information modality (such as

answer) to high information modality (question) needs ad-

ditional supervision. We provide this additional supervision

to the VQG model in the form of attention. To generate a

rephrasing Q′, the VQG is guided to attend at regions of the

image which were used by the VQA model to answer the

original question Q. Unlike [24], this enables our models
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to generate questions more similar to the original question

from answers like “yes”, which could possibly have a large

space of plausible questions.

We model the question generation module G in a fash-

ion similar to a conditional image captioning model. The

question generation module consists of two linear encoders

that transform attended image features obtained from VQA

model and the distribution over answer space to lower di-

mensional feature vectors. We sum these feature vectors

with additive noise and pass them through an LSTM which

is trained to reconstruct the original question and optimized

by minimizing the negative log likelihood with teacher-

forcing. Note that unlike [26, 24] we do not pass the one-

hot vector representing the answer obtained, or an embed-

ding of the answer obtained to the question generation, but

rather the predicted distribution over answers. This enables

the question generation module to learn to map the model’s

confidence over answers to the generated question.

Throughout the paper, Q-consistency implies addition

of a VQG module G on top of the base VQA model

F to generate rephrasings Q′ from the image I and the

predicted answer A′ with an associated Q-consistency

loss LG(Q,Q′). Similarly, A-consistency implies pass-

ing all questions generated Q′ by the VQG Model G to

the VQA model F and an associated A-consistency loss

Lcycle(A,A
′′). The overall loss can be written as:

Ltotal = LF (A,A′) + λGLG(Q,Q′)

+λCLcycle(A,A′′)
(1)

where LF (A,A
′) and Lcycle(A,A′′) (i.e. A-Consistency

Loss) are cross-entropy losses, LG(Q,Q′) (i.e. Q-

Consistency Loss) is sequence generation loss [28] and λG,

λC are tunable hyperparameters.

3.2. Gating Mechanism

One of the assumptions of our proposed cycle-consistent

training scheme is that the generated question is always se-

mantically and syntactically correct. However, in practice

this is not always true. Previous attempts [18] at naively

generating questions conditioned on the answer and using

them without filtering to augment the training data have

been unsuccessful. Like the visual question answering

module, the visual question generation module is also not

perfect. Therefore not all questions generated by the ques-

tion generator are coherent and consistent with the image,

the answer and the original question. To overcome this is-

sue, we propose a gating mechanism, which automatically

filters undesirable questions generated by the VQG model

before passing them to the VQA model for A-consistency.

The gating mechanism is only relevant when used in con-

junction with A-consistency. We retain only those ques-

tions which either the VQA model F can answer correctly

or have a cosine similarity with the original question encod-

ing greater than a threshold Tsim.

3.3. Late Activation

One key component of designing cycle consistent mod-

els is to prevent mode collapse. Learning cycle-consistent

models in complex settings like VQA needs a carefully

chosen training scheme. Since cycle-consistent models

have several interconnected sub-networks learning differ-

ent transformations, it is important to ensure that each of

these sub-networks are working in harmony. For example,

if the VQA model F and VQG model G are jointly trained

and consistency is enforced in early stages of training, it

is possible that both models can just “cheat” by both pro-

ducing undesirable outputs. We overcome this by activating

cycle-consistency at later stages of training, to make sure

both VQA and VQG models have been sufficiently trained

to produce reasonable outputs. Specifically, we enable the

loss associated with cycle-consistency after a fixed Aiter it-

erations in the training process.

We find these design choices for question generation

module, gating mechanism and late activation to be crucial

for effectively training our model. We demonstrate this em-

pirically via ablation studies in Table 2. As we want to in-

crease the robustness of the VQA model to all generated

variations, the weights between VQA models which an-

swer the original question and the generated rephrasing are

shared. Our formulation of cycle-consistency in VQA can

be also thought of as an online data-augmentation technique

where the model is trained on several generated rephras-

ings of the same question and hence is more robust to such

anomalies during inference. We show that with clever train-

ing strategy, coupled with attention and carefully chosen ar-

chitecture for question generation, incorporating cycle con-

sistency for VQA is possible and not only leads to models

that are better performing, but also more robust and consis-

tent. In addition, we show that this robustness also imparts

VQA models the ability to better predict their own failures.

4. VQA-Rephrasings Dataset

In this section, we introduce the VQA-Rephrasings

dataset, which is the first dataset that enables evaluation

of VQA models for robustness and consistency to different

rephrasings of questions with the same meaning.

We use the validation split of VQA v2.0 [9] as our base

dataset which contains a total of 214,354 questions span-

ning over 40,504 images. We randomly sample 40,504

questions (one question per image) from the base dataset

to form a sampled subset. We collect 3 rephrasings of

each question in the sampled subset using human annota-

tors in two stages. In the first stage, humans were primed

with the original question and the corresponding true an-

swer and asked to rephrase the question such that answer
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● Does this harbor cater to luxury 
yachts or fishing boats?

● Are there more yachts or fishing 
boats?

● What type of boats are mainly in 
the harbour?

● Would this harbour be better for 
yachts or fishing boats?

● Do the pillows match the 
bedspread?

● Does the bedspread match the 
pillows?

● Is the pattern on pillows and 
bedspread similar?

● Are the pillows matching the 
bedspread?

● How many parking meters do 
you see?

● Do you know how many parking 
meters are there?

● What number of parking meters 
are seen in the photo.

● What is the quantity of parking 
meters present?

How many birds are there? (2)
Is the bird looking at the camera? (no)
What kind of birds are there? (crane)

Is the man wearing a backpack? (yes)
What is the dog doing? (sleeping)
How many people in the picture? (2)

What is the name of the airline? (lufthansa)
What is the plane doing? (landing)
Is it a cloudy day? (yes)

What is the name of the computer? (toshiba)
Is the computer on? (yes)
How many books are on the table? (1)

(a) (b)
Figure 3. (a) Qualitative examples from our VQA-Rephrasings dataset. The first question (shown in gray) in each block is the

original question from VQA v2.0 validation set, the questions that follow (shown in black) are rephrasings collected in VQA-Rephrasings.

(b) Qualitative examples of answer conditioned question generation (input answer) by our VQG module

to the rephrased question remains the same as the original

answer. To ensure rephrasings from first stage are syntacti-

cally correct and semantically inline with the original ques-

tion, we filter the collected responses in the next stage.

In the second stage, humans were primed with the orig-

inal question and it’s rephrasing and were asked to label

the rephrasing invalid if: (a) the plausible answer to the

original question and it’s rephrasing is different (i.e. if the

question and it’s rephrasing have different intents) or (b)

if the rephrasing is grammatically incorrect. We collected

121,512 rephrasings from the original 40504 questions in

the first stage. Of these, 1320 rephrasings were flagged as

invalid in the second stage and were rephrased again in the

first stage. The final dataset consists of 162,016 questions

(including the original 40,504 questions) spanning 40,504

images with an average of ∼3 rephrasings per original ques-

tion. A few qualitative examples from the collected dataset

can be seen in Fig. 3(a). Additional details about the data

collection, interfaces used and exhaustive dataset statistics

can be found in supplementary materials.

Consensus Score. Intuitively, for a VQA model to be

consistent across various rephrasings of the same question,

the answer to all rephrasings should be the same. We mea-

sure this by a Consensus Score CS(k). For every group Q

consisting of n rephrasings, we sample all subsets of size

k. The consensus score CS(k) is defined as the ratio of the

number of subsets where all the answers are correct and the

total number of subsets of size k. The answer to a question

is considered correct if it has a non-zero VQA Accuracy θ

as defined in [1]. CS(k) is formally defined as:

CS(k) =
∑

Q′⊂Q,|Q′|=k

S(Q′)
nCk

(2)

S(Q′) =

{

1 if ∀q ∈ Q′ θ(q) > 0,

0 otherwise.
(3)

Where nCk is number of subsets of size k sampled from

a set of size n. As consensus score is a all-or-nothing score,

to achieve a non-zero consensus score at k for a group of

questions Q, the model has to answer at least k questions

correctly in a group of questions Q. When k = |Q| (e.g.

when k = 4 in VQA-Rephrasings), the model needs to an-

swer all rephrasings of a question and the original question

correctly in order to get a non-zero consensus score. It is

evident that a model with higher average consensus score at

high values of k is quantitatively more robust to linguistic

variations in questions than a model with a lower score.

5. Experiments

5.1. Consistency Performance

We start by benchmarking a variety of existing VQA

models on our proposed VQA-Rephrasings dataset.

MUTAN [5] 1 parametrizes bilinear interactions be-

tween visual and textual representations using a multi-

modal low-rank decomposition. MUTAN uses skip-thought

[20] sentence embeddings to encode the question and

Resnet-152 [11] to encode images. MUTAN achieves

63.20% accuracy on VQA v2.0 test-dev. Among all models

we analyze, MUTAN is the only model which uses sentence

embeddings to encode questions.

Bottom-Up Top-Down Attention (BUTD) [3] 2 in-

corporates bottom-up attention in VQA by extracting fea-

tures associated with image regions proposed by Faster-

RCNN [33] pretrained on Visual Genome [21]. BUTD

1https://github.com/Cadene/vqa.pytorch
2https://github.com/hengyuan-hu/bottom-up-attention-vqa
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Model CS(k) VQA Accuracy

k=1 k=2 k=3 k=4 ORI REP

MUTAN [5] 56.68 43.63 38.94 32.76 59.08 46.87

BUTD [3] 60.55 46.96 40.54 34.47 61.51 51.22

BUTD + CC 61.66 50.79 44.68 42.55 62.44 52.58

Pythia [41] 63.43 52.03 45.94 39.49 64.08 54.20

Pythia + CC 64.36 55.45 50.92 44.30 64.52 55.65

BAN [19] 64.88 53.08 47.45 39.87 64.97 55.87

BAN + CC 65.77 56.94 51.76 48.18 65.87 56.59

Table 1. Consensus performance on VQA-Rephrasings dataset.

CS(k) as defined in Eq. 2 is consensus score which is non-zero

only if at least k rephrasings are answered correctly, zero other-

wise; averaged across all group of questions. ORI represent a split

of questions from VQA-Rephrasings which are original questions

from VQA v2.0 and their corresponding rephrasings are repre-

sented by the split REP. Models trained with our cycle-consistent

(CC) framework consistently outperform their baseline counter-

parts at all values of k.

model won the VQA Challenge in 2017 and achieves

66.25% accuracy on VQA v2.0 test-dev.

Pythia [41] 3 extends the BUTD model by incorporat-

ing co-attention [27] between question and image regions.

Pythia uses features extracted from Detectron [8] pretrained

on Visual Genome. An ensemble of Pythia models won the

2018 VQA Challenge using extra training data from Visual

Genome [21] and using Resnet[11] features. In this study,

we use Pythia models which do not use Resnet features.

Bilinear Attention Networks (BAN) [19] 4 combines

the idea of bilinear models and co-attention [27] between

image regions and words in questions in a residual setting.

Similar to [3], it uses Faster-RCNN [33] pretrained on Vi-

sual Genome [21] to extract image features. In all our exper-

iments, for a fair comparison, we use BAN models which do

not use additional training data from Visual Genome. BAN

achieves the current state-of-the-art single-model accuracy

of 69.64 % on VQA v2.0 test-dev without using additional

training data from Visual Genome.

Implementation Details For all models trained with our

cycle-consistent framework, we use the values Tsim=0.9,

λG=1.0, λC=0.5 and Aiter=5500. When reporting results

on the validation split and VQA-Rephrasings we train on

the training split and when reporting results on the test split

we train on both training and validation splits of VQA v2.0.

Note that we never explicitly train on the collected VQA-

Rephrasings dataset and use it purely for evaluation pur-

poses. We use publicly available implementations of each

backbone VQA model.

We measure the robustness of each of these models on

3https://github.com/facebookresearch/pythia
4https://github.com/jnhwkim/ban-vqa

Model val test-dev

MUTAN [5] 61.04 63.20

BUTD [3] 65.05 66.25

+ Q-consistency 65.38 66.83

+ A-consistency 60.84 62.18

+ Gating 65.53 67.55

Pythia [41] 65.78 68.43

+ Q-consistency 65.39 68.58

+ A-consistency 62.08 63.77

+ Gating 66.03 68.88

BAN [19] 66.04 69.64

+ Q-consistency 66.27 69.69

+ A-consistency 64.96 66.31

+ Gating 66.77 69.87

Table 2. VQA Performance and ablation studies on VQA v2.0

validation and test-dev splits. Each row in blocks represents a

component of our cycle-consistent framework added to the pre-

vious row. First row in each block represents the baseline VQA

model F . Q-consistency implies addition of a VQG module G

to generate rephrasings Q′ from the image I and the predicted an-

swer A′ with an associated VQG loss Lvqg(Q,Q′). A-consistency

implies passing all the generated questions Q′ to the VQA model

F and an associated loss Lcycle(A,A′). Gating implies the use

of gating mechanism to filter undesirable generated questions in

Q′ and passing the remaining to VQA model F . Last row in each

block is equivalent to the base VQA model (first row in each block)

+ cycle-consistency (CC) as used in other tables. Models trained

with our cycle-consistent (last row in each block) framework con-

sistently outperform baselines.

our proposed VQA-Rephrasings dataset using the consen-

sus score (Eq. 2). Table 1 shows the consensus scores at dif-

ferent values of k for several VQA models. We see that all

models suffer significantly when measured for consistency

across rephrasings. For e.g., the performance of Pythia

(winner of 2018 VQA challenge) has a consensus score of

39.49% at k = 4. Similar trends are observed for MU-

TAN, BAN and BUTD. The drop increases with increasing

k, the number of rephrasings used to measure consistency.

Models like BUTD, BAN and Pythia which use word-level

encodings of the question suffer significant drops. It is in-

teresting to note that even MUTAN which uses skip-thought

based sentence encoding [20] suffers a drop when checked

for consistency across rephrasings (from k = 1 to k = 4).

We observe that BAN + CC model trained with our pro-

posed cycle-consistent training framework outperforms its

counterpart BAN and all other models at all values of k.

Fig 4 qualitatively compares the textual and visual atten-

tion (over image regions) over 4 rephrasings of a question.

The top row shows attention and predictions from a Pythia

model, while the bottom row shows attention and predic-
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Ground Truth: yellow 
Predicted:        yellow

Ground Truth: yellow 
Predicted:        yellow

Ground Truth: yellow 
Predicted:        yellow

Ground Truth: yellow 
Predicted:        yellow

Ground Truth: yellow 
Predicted:        yellow

Ground Truth: yellow 
Predicted:        yellow

Ground Truth: yellow 
Predicted:        blue

Ground Truth: yellow 
Predicted:        blue

Figure 4. Visualization of textual and image region attention across question variants: The top row shows attention and predictions

from a Pythia [41] model, the bottom row shows attention and predictions from the same Pythia model, but trained using our cycle-

consistent approach. Our model attends to relevant image regions for all rephrasings and answers them correctly. The baseline Pythia

counterpart, however, fails to attend over relevant image regions for some rephrasings.

Model BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE-L METEOR CIDER

iQAN* [24] 0.582 0.467 0.385 0.320 0.617 0.276 2.222

Pythia + CC* 0.708 0.561 0.438 0.339 0.627 0.284 2.301

iVQA [26] 0.430 0.326 0.256 0.208 0.468 0.205 1.714

Pythia + CC 0.486 0.368 0.287 0.226 0.556 0.225 1.843

Table 3. Question Generation Performance on VQA v2.0 validation set, * signifies results on a constrained subset as done in [24]. CC

represents models trained with our approach.

tions from the same Pythia model, but trained using our

framework. Our model attends at relevant image regions

for all rephrasings and answers all of them correctly. This

qualitatively demonstrates the robustness of models trained

with our framework.

5.2. Visual Question Answering Performance

We now evaluate our approach and various ablations

on the standard task of question answering on VQA v2.0

dataset [9]. We compare the performance of several VQA

models on the validation and test-dev splits of VQA v2.0.

Table 2 shows the VQA scores of different models on vali-

dation and test-dev splits. We show that BUTD, Pythia and

BAN models trained with our cycle-consistent framework

outperform their corresponding baselines.

We show the impact of each component of our cycle-

consistent framework by performing ablation studies on

our models. We study the marginal effect of components

like question consistency (Q-consistency), answer consis-

tency (A-consistency) and gating mechanism by adding

them step-by-step to the base VQA model F . Q-consistency

implies addition of a VQG module G to generate rephras-

ings Q′ from the image I and the predicted answer A′ with

an associated VQG loss Lvqg(Q,Q′). As shown in Table 2,

we see that addition of question consistency slightly im-

proves performance of each VQA model. Inline with ob-

servations in [24], this shows that indeed models which can

generate questions from the answer have better multi-modal

understanding and in turn are better at visual question an-

swering. A-consistency implies passing all the generated

questions Q′ to the VQA model F and an associated loss

Lcycle(A,A′). As seen in Table 2, we see that naively pass-

ing all the generated questions to the VQA model F leads

to significant reduction in performance than the base model

F . This goes in line with our earlier discussion that not

all questions generated are valid rephrasings of the origi-

nal question and hence enforcing consistency between the

answers of two invalid pairs of questions naturally leads to

degradation in performance. Finally, we show the effect of

using our gating mechanism to filter undesirable generated

questions in Q′ and passing the remaining to VQA model

F . We see that all VQA models perform consistently better

when using a gating than just using Q-consistency.

We also experimented with Pythia model configurations
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where the VQG model uses unattended image features (un-

like the default setting which uses image features with at-

tention from the VQA model). We found that with this con-

figuration, our approach still shows improved performance

over the baseline. However, the question generation qual-

ity is relatively poor, and the overall gain is smaller (3.58%

in consistency CS(k = 4) and 0.2% in VQA accuracy)

compared to when using attention (8.08% and 0.5% respec-

tively) – likely because attention helps in generating more-

focused rephrasings.

5.3. Visual Question Generation Performance

Recall that our model also includes a VQG component

which generates questions conditioned on an answer and

image. Since the overall performance of our framework re-

lies highly on the performance of question generation mod-

ule, we evaluate our VQG component performance as well

on commonly used image captioning metrics. We compare

our VQG component to several answer-conditional VQG

models on the VQA v2.0 dataset. We use standard image

captioning metrics CIDEr [38], BLEU [31], METEOR [6]

and ROUGE-L [25] as used in [26]. We compare our ap-

proach to two recently proposed visual question generation

approaches. iVQA [26] uses a variational LSTM model

trained with reinforcement learning to generate answer-

specific questions for an image. Syntactic correctness, di-

versity and intent of the generated question are used to allo-

cate rewards. iQAN [24] generates answer-specific ques-

tions by modelling question generation as a dual task of

question answering and sharing parameters between ques-

tion answering and question generation modules. Since

iQAN can only generate a specific type of questions, for

a fair comparison, we compare to iQAN only on a subset of

the dataset containing questions from these specific types.

As shown in Table 3, we observe that our question gen-

eration module trained with cycle-consistency consistently

outperforms iVQA [26] and iQAN [24] on all metrics. A

few qualitative examples of answer conditioned questions

generated by our VQG model can be seen in Fig. 3(b).

5.4. Failure Prediction Performance

In previous results, we show that by training models

to generate and answer questions while being consistent

across both tasks leads to improvement in performance and

robustness. Another way of testing robustness of these mod-

els is to see if models can predict their own failures. A ro-

bust model is less confident about an incorrect answer and

vice versa. Motivated by this, we seek to verify if mod-

els trained with our cycle-consistent framework can iden-

tify their own failures i.e. correctly identify if they’re wrong

about a prediction. To this end, we use two failure predic-

tions schemes. First, we naively threshold the confidence

of the predicted answer. All answers above a particular

Model Precision Recall F1

BUTD [3] 0.71 0.78 0.74

+ FP 0.74 0.85 0.79

BUTD + CC 0.73 0.79 0.76

+ FP 0.78 0.83 0.80

Pythia [41] 0.74 0.79 0.76

+ FP 0.76 0.88 0.82

Pythia + CC 0.77 0.81 0.77

+ FP 0.82 0.84 0.83

Table 4. Failure prediction performance on VQA v2.0 valida-

tion dataset. Each row in blocks represents a component added

to the previous row. CC represents models trained with our cycle-

consistent framework and FP represents models with an additional

binary classification Failure Prediction submodule to predict if the

predicted answer A′ is correct given a question and image pair (Q,

I). For models trained without the FP module, scores are obtained

by thresholding the answer confidences.

threshold are marked as correctly answered and vice versa.

Second, we design a failure prediction binary classification

module (FP), which predicts for a given image I , question

Q and answer A′ (predicted by the base VQA model F ),

whether the predicted answer is correct for the given (I,Q)
pair. The FP module is trained keeping the parameters

of the base VQA model frozen. In Table 4, we show the

failure prediction performance of the baseline VQA models

and models trained with our proposed framework. It shows

that the cycle consistency framework, even without an ex-

plicit failure predictor module, makes the models more cal-

ibrated – more capable of detecting their own failures. In

both settings: (a) when using naive confidence thresholding

(not marked as “+ FP” in the Table) and (b) using a specif-

ically designed submodule to detect failures (marked as “+

FP”), models trained with our cycle-consistent training have

higher F1 scores than their corresponding baselines. We see

similar improvements in detecting failures for both BUTD

and Pythia models, which shows that our cycle-consistency

framework is model agnostic. This also shows that not only

does cycle-consistent training make models robust to lin-

guistic variations, but also allows them to be failure-aware.

6. Conclusion

In this paper, we propose a novel model-agnostic training

strategy to incorporate cycle consistency in VQA models to

make them robust to linguistic variations and self-aware of

their failures. We also collect a large-scale dataset, VQA-

Rephrasings and propose a consensus metric to measure ro-

bustness of VQA models to linguistic variations of a ques-

tion. We show that models trained with our training strategy

are robust to linguistic variations, and achieve state-of-the-

art performance in VQA and VQG on VQA v2.0 dataset.
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