
Explainable and Explicit Visual Reasoning over Scene Graphs

Jiaxin Shi1∗ Hanwang Zhang2 Juanzi Li1

1Tsinghua University 2Nanyang Technological University

shijx12@gmail.com; hanwangzhang@ntu.edu.sg; lijuanzi@tsinghua.edu.cn

Abstract

We aim to dismantle the prevalent black-box neural ar-

chitectures used in complex visual reasoning tasks, into

the proposed eXplainable and eXplicit Neural Modules

(XNMs), which advance beyond existing neural module net-

works towards using scene graphs — objects as nodes and

the pairwise relationships as edges — for explainable and

explicit reasoning with structured knowledge. XNMs al-

low us to pay more attention to teach machines how to

“think”, regardless of what they “look”. As we will show

in the paper, by using scene graphs as an inductive bias,

1) we can design XNMs in a concise and flexible fash-

ion, i.e., XNMs merely consist of 4 meta-types, which sig-

nificantly reduce the number of parameters by 10 to 100

times, and 2) we can explicitly trace the reasoning-flow

in terms of graph attentions. XNMs are so generic that

they support a wide range of scene graph implementations

with various qualities. For example, when the graphs are

detected perfectly, XNMs achieve 100% accuracy on both

CLEVR and CLEVR CoGenT, establishing an empirical

performance upper-bound for visual reasoning; when the

graphs are noisily detected from real-world images, XNMs

are still robust to achieve a competitive 67.5% accuracy on

VQAv2.0, surpassing the popular bag-of-objects attention

models without graph structures.

1. Introduction

The prosperity of A.I. — mastering super-human skills

in game playing [22], speech recognition [1], and image

recognition [8, 20] — is mainly attributed to the “winning

streak” of connectionism, more specifically, the deep neu-

ral networks [15], over the “old-school” symbolism, where

their controversy can be dated back to the birth of A.I. in

1950s [18]. With massive training data and powerful com-

puting resources, the key advantage of deep neural networks

is the end-to-end design that generalizes to a large spec-

∗The work was done when Jiaxin Shi was an intern at Nanyang Tech-

nological University.

Q: How many brown metal 

cylinders have the same size 

as the purple cylinder?
A:1

Q: What is the man riding 

on?

A:horse

AttendNode AttendEdge

X Neural Modules

And, Or, Not

Transfer

Scene Graph

Logic

le
ft

, f
ro

nt
ri
gh

t, 
be

hi
nd

right, front

left, behind

left, front

right, behind

[

purple cylinder
large metal

]

<latexit sha1_base64="ZV8QTFG5RTZ/G4qR/yu4F+Zgnu4=">AAACW3icbVFNS8NAEN2kamv8qoonL6tF8VQSEfRY9OJRwarQlLLZTOvSzSbsTqQl5E960oN/RdzWIFp9y8LjzRtm9m2USWHQ998ct7a0vFJvrHpr6xubW83tnXuT5ppDl6cy1Y8RMyCFgi4KlPCYaWBJJOEhGl/N6g/PoI1I1R1OM+gnbKTEUHCGVho0dRjBSKgiShhqMSk9ahEiTLDIcp1JKOlxeDA7lcqndlQMuqRh+MMsmR5Z74I5AWSypF4IKv4eMWi2/LY/B/1Lgoq0SIWbQfMljFOeJ6CQS2ZML/Az7BdMo+B2QS/MDWSMj9kIepYqloDpF/NsSnpklZgOU22vQjpXf3YULDFmmkTWafd7Mou1mfhfrZfj8KJfCJXlCIp/DRrmkmJKZ0HTWGjgKKeWMK6F3ZXyJ6YZR/sdng0hWHzyX3J/2g4svz1rdS6rOBpknxySExKQc9Ih1+SGdAknr+TDqTsN592tuZ67/mV1napnl/yCu/cJPWazWw==</latexit><latexit sha1_base64="ZV8QTFG5RTZ/G4qR/yu4F+Zgnu4=">AAACW3icbVFNS8NAEN2kamv8qoonL6tF8VQSEfRY9OJRwarQlLLZTOvSzSbsTqQl5E960oN/RdzWIFp9y8LjzRtm9m2USWHQ998ct7a0vFJvrHpr6xubW83tnXuT5ppDl6cy1Y8RMyCFgi4KlPCYaWBJJOEhGl/N6g/PoI1I1R1OM+gnbKTEUHCGVho0dRjBSKgiShhqMSk9ahEiTLDIcp1JKOlxeDA7lcqndlQMuqRh+MMsmR5Z74I5AWSypF4IKv4eMWi2/LY/B/1Lgoq0SIWbQfMljFOeJ6CQS2ZML/Az7BdMo+B2QS/MDWSMj9kIepYqloDpF/NsSnpklZgOU22vQjpXf3YULDFmmkTWafd7Mou1mfhfrZfj8KJfCJXlCIp/DRrmkmJKZ0HTWGjgKKeWMK6F3ZXyJ6YZR/sdng0hWHzyX3J/2g4svz1rdS6rOBpknxySExKQc9Ih1+SGdAknr+TDqTsN592tuZ67/mV1napnl/yCu/cJPWazWw==</latexit><latexit sha1_base64="ZV8QTFG5RTZ/G4qR/yu4F+Zgnu4=">AAACW3icbVFNS8NAEN2kamv8qoonL6tF8VQSEfRY9OJRwarQlLLZTOvSzSbsTqQl5E960oN/RdzWIFp9y8LjzRtm9m2USWHQ998ct7a0vFJvrHpr6xubW83tnXuT5ppDl6cy1Y8RMyCFgi4KlPCYaWBJJOEhGl/N6g/PoI1I1R1OM+gnbKTEUHCGVho0dRjBSKgiShhqMSk9ahEiTLDIcp1JKOlxeDA7lcqndlQMuqRh+MMsmR5Z74I5AWSypF4IKv4eMWi2/LY/B/1Lgoq0SIWbQfMljFOeJ6CQS2ZML/Az7BdMo+B2QS/MDWSMj9kIepYqloDpF/NsSnpklZgOU22vQjpXf3YULDFmmkTWafd7Mou1mfhfrZfj8KJfCJXlCIp/DRrmkmJKZ0HTWGjgKKeWMK6F3ZXyJ6YZR/sdng0hWHzyX3J/2g4svz1rdS6rOBpknxySExKQc9Ih1+SGdAknr+TDqTsN592tuZ67/mV1napnl/yCu/cJPWazWw==</latexit><latexit sha1_base64="ZV8QTFG5RTZ/G4qR/yu4F+Zgnu4=">AAACW3icbVFNS8NAEN2kamv8qoonL6tF8VQSEfRY9OJRwarQlLLZTOvSzSbsTqQl5E960oN/RdzWIFp9y8LjzRtm9m2USWHQ998ct7a0vFJvrHpr6xubW83tnXuT5ppDl6cy1Y8RMyCFgi4KlPCYaWBJJOEhGl/N6g/PoI1I1R1OM+gnbKTEUHCGVho0dRjBSKgiShhqMSk9ahEiTLDIcp1JKOlxeDA7lcqndlQMuqRh+MMsmR5Z74I5AWSypF4IKv4eMWi2/LY/B/1Lgoq0SIWbQfMljFOeJ6CQS2ZML/Az7BdMo+B2QS/MDWSMj9kIepYqloDpF/NsSnpklZgOU22vQjpXf3YULDFmmkTWafd7Mou1mfhfrZfj8KJfCJXlCIp/DRrmkmJKZ0HTWGjgKKeWMK6F3ZXyJ6YZR/sdng0hWHzyX3J/2g4svz1rdS6rOBpknxySExKQc9Ih1+SGdAknr+TDqTsN592tuZ67/mV1napnl/yCu/cJPWazWw==</latexit>

[

brown cylinder
large metal

]

<latexit sha1_base64="2CiJGkUzVJY1UX7t3qOpKMFcJTo=">AAACWnicbVFdS8MwFE2rbrN+zY83X6JD8Wm0Iuij6IuPE5wK6xhpejeDaVqTW3WU/klfRPCvCGaziE5PCBzOPZd7cxJlUhj0/TfHnZtfqNUbi97S8srqWnN949qkuebQ5alM9W3EDEihoIsCJdxmGlgSSbiJ7s8n9ZtH0Eak6grHGfQTNlJiKDhDKw2aD2EEI6GKKGGoxXPpUYsQ4RmLSKdPqqT74c7kVCIf20kx6JKG4Q+vZHoEJZ0xJ4BMltQLQcXfEwbNlt/2p6B/SVCRFqnQGTRfwjjleQIKuWTG9AI/w37BNAouofTC3EDG+D0bQc9SxRIw/WIaTUn3rBLTYartVUin6s+OgiXGjJPIOu1+d2a2NhH/q/VyHJ70C6GyHEHxr0HDXFJM6SRnGgsNHOXYEsa1sLtSfsc042h/w7MhBLNP/kuuD9uB5ZdHrdOzKo4G2Sa75IAE5JickgvSIV3CySv5cGpO3Xl3XXfRXfqyuk7Vs0l+wd36BD3rsuE=</latexit><latexit sha1_base64="2CiJGkUzVJY1UX7t3qOpKMFcJTo=">AAACWnicbVFdS8MwFE2rbrN+zY83X6JD8Wm0Iuij6IuPE5wK6xhpejeDaVqTW3WU/klfRPCvCGaziE5PCBzOPZd7cxJlUhj0/TfHnZtfqNUbi97S8srqWnN949qkuebQ5alM9W3EDEihoIsCJdxmGlgSSbiJ7s8n9ZtH0Eak6grHGfQTNlJiKDhDKw2aD2EEI6GKKGGoxXPpUYsQ4RmLSKdPqqT74c7kVCIf20kx6JKG4Q+vZHoEJZ0xJ4BMltQLQcXfEwbNlt/2p6B/SVCRFqnQGTRfwjjleQIKuWTG9AI/w37BNAouofTC3EDG+D0bQc9SxRIw/WIaTUn3rBLTYartVUin6s+OgiXGjJPIOu1+d2a2NhH/q/VyHJ70C6GyHEHxr0HDXFJM6SRnGgsNHOXYEsa1sLtSfsc042h/w7MhBLNP/kuuD9uB5ZdHrdOzKo4G2Sa75IAE5JickgvSIV3CySv5cGpO3Xl3XXfRXfqyuk7Vs0l+wd36BD3rsuE=</latexit><latexit sha1_base64="2CiJGkUzVJY1UX7t3qOpKMFcJTo=">AAACWnicbVFdS8MwFE2rbrN+zY83X6JD8Wm0Iuij6IuPE5wK6xhpejeDaVqTW3WU/klfRPCvCGaziE5PCBzOPZd7cxJlUhj0/TfHnZtfqNUbi97S8srqWnN949qkuebQ5alM9W3EDEihoIsCJdxmGlgSSbiJ7s8n9ZtH0Eak6grHGfQTNlJiKDhDKw2aD2EEI6GKKGGoxXPpUYsQ4RmLSKdPqqT74c7kVCIf20kx6JKG4Q+vZHoEJZ0xJ4BMltQLQcXfEwbNlt/2p6B/SVCRFqnQGTRfwjjleQIKuWTG9AI/w37BNAouofTC3EDG+D0bQc9SxRIw/WIaTUn3rBLTYartVUin6s+OgiXGjJPIOu1+d2a2NhH/q/VyHJ70C6GyHEHxr0HDXFJM6SRnGgsNHOXYEsa1sLtSfsc042h/w7MhBLNP/kuuD9uB5ZdHrdOzKo4G2Sa75IAE5JickgvSIV3CySv5cGpO3Xl3XXfRXfqyuk7Vs0l+wd36BD3rsuE=</latexit><latexit sha1_base64="2CiJGkUzVJY1UX7t3qOpKMFcJTo=">AAACWnicbVFdS8MwFE2rbrN+zY83X6JD8Wm0Iuij6IuPE5wK6xhpejeDaVqTW3WU/klfRPCvCGaziE5PCBzOPZd7cxJlUhj0/TfHnZtfqNUbi97S8srqWnN949qkuebQ5alM9W3EDEihoIsCJdxmGlgSSbiJ7s8n9ZtH0Eak6grHGfQTNlJiKDhDKw2aD2EEI6GKKGGoxXPpUYsQ4RmLSKdPqqT74c7kVCIf20kx6JKG4Q+vZHoEJZ0xJ4BMltQLQcXfEwbNlt/2p6B/SVCRFqnQGTRfwjjleQIKuWTG9AI/w37BNAouofTC3EDG+D0bQc9SxRIw/WIaTUn3rBLTYartVUin6s+OgiXGjJPIOu1+d2a2NhH/q/VyHJ70C6GyHEHxr0HDXFJM6SRnGgsNHOXYEsa1sLtSfsc042h/w7MhBLNP/kuuD9uB5ZdHrdOzKo4G2Sa75IAE5JickgvSIV3CySv5cGpO3Xl3XXfRXfqyuk7Vs0l+wd36BD3rsuE=</latexit>

[

red cube
large rubber

]

<latexit sha1_base64="HlbRpz+eYCrmKpcpGcbxdlxSNnM=">AAACVXicbVFdS8MwFE3rd/2a+uhLdCg+SSuCPg598VHBOWEdI0nvZjBNS3IrjtI/uRfxn/gimM0iunlC4HDuucnNCc+VtBiG756/sLi0vLK6FqxvbG5tN3Z2H2xWGAFtkanMPHJmQUkNbZSo4DE3wFKuoMOfryf1zgsYKzN9j6MceikbajmQgqGT+g0VcxhKXfKUoZGvVUAdYoRXLA0kFT2ODyarlkTBoaJx/MulmBk6bcZoCs7BVDSIQSc/h/cbzfA0nILOk6gmTVLjtt8Yx0kmihQ0CsWs7UZhjr2SGZRCQRXEhYWciWc2hK6jmqVge+U0lYoeOSWhg8y4rZFO1d8dJUutHaXcOd18T3a2NhH/q3ULHFz2SqnzAkGL74sGhaKY0UnENJEGBKqRI0wY6Wal4okZJtB9ROBCiGafPE8ezk4jx+/Om62rOo5Vsk8OyQmJyAVpkRtyS9pEkDH58DzP9968T3/RX/62+l7ds0f+wN/+Al7BsXU=</latexit><latexit sha1_base64="HlbRpz+eYCrmKpcpGcbxdlxSNnM=">AAACVXicbVFdS8MwFE3rd/2a+uhLdCg+SSuCPg598VHBOWEdI0nvZjBNS3IrjtI/uRfxn/gimM0iunlC4HDuucnNCc+VtBiG756/sLi0vLK6FqxvbG5tN3Z2H2xWGAFtkanMPHJmQUkNbZSo4DE3wFKuoMOfryf1zgsYKzN9j6MceikbajmQgqGT+g0VcxhKXfKUoZGvVUAdYoRXLA0kFT2ODyarlkTBoaJx/MulmBk6bcZoCs7BVDSIQSc/h/cbzfA0nILOk6gmTVLjtt8Yx0kmihQ0CsWs7UZhjr2SGZRCQRXEhYWciWc2hK6jmqVge+U0lYoeOSWhg8y4rZFO1d8dJUutHaXcOd18T3a2NhH/q3ULHFz2SqnzAkGL74sGhaKY0UnENJEGBKqRI0wY6Wal4okZJtB9ROBCiGafPE8ezk4jx+/Om62rOo5Vsk8OyQmJyAVpkRtyS9pEkDH58DzP9968T3/RX/62+l7ds0f+wN/+Al7BsXU=</latexit><latexit sha1_base64="HlbRpz+eYCrmKpcpGcbxdlxSNnM=">AAACVXicbVFdS8MwFE3rd/2a+uhLdCg+SSuCPg598VHBOWEdI0nvZjBNS3IrjtI/uRfxn/gimM0iunlC4HDuucnNCc+VtBiG756/sLi0vLK6FqxvbG5tN3Z2H2xWGAFtkanMPHJmQUkNbZSo4DE3wFKuoMOfryf1zgsYKzN9j6MceikbajmQgqGT+g0VcxhKXfKUoZGvVUAdYoRXLA0kFT2ODyarlkTBoaJx/MulmBk6bcZoCs7BVDSIQSc/h/cbzfA0nILOk6gmTVLjtt8Yx0kmihQ0CsWs7UZhjr2SGZRCQRXEhYWciWc2hK6jmqVge+U0lYoeOSWhg8y4rZFO1d8dJUutHaXcOd18T3a2NhH/q3ULHFz2SqnzAkGL74sGhaKY0UnENJEGBKqRI0wY6Wal4okZJtB9ROBCiGafPE8ezk4jx+/Om62rOo5Vsk8OyQmJyAVpkRtyS9pEkDH58DzP9968T3/RX/62+l7ds0f+wN/+Al7BsXU=</latexit><latexit sha1_base64="HlbRpz+eYCrmKpcpGcbxdlxSNnM=">AAACVXicbVFdS8MwFE3rd/2a+uhLdCg+SSuCPg598VHBOWEdI0nvZjBNS3IrjtI/uRfxn/gimM0iunlC4HDuucnNCc+VtBiG756/sLi0vLK6FqxvbG5tN3Z2H2xWGAFtkanMPHJmQUkNbZSo4DE3wFKuoMOfryf1zgsYKzN9j6MceikbajmQgqGT+g0VcxhKXfKUoZGvVUAdYoRXLA0kFT2ODyarlkTBoaJx/MulmBk6bcZoCs7BVDSIQSc/h/cbzfA0nILOk6gmTVLjtt8Yx0kmihQ0CsWs7UZhjr2SGZRCQRXEhYWciWc2hK6jmqVge+U0lYoeOSWhg8y4rZFO1d8dJUutHaXcOd18T3a2NhH/q3ULHFz2SqnzAkGL74sGhaKY0UnENJEGBKqRI0wY6Wal4okZJtB9ROBCiGafPE8ezk4jx+/Om62rOo5Vsk8OyQmJyAVpkRtyS9pEkDH58DzP9968T3/RX/62+l7ds0f+wN/+Al7BsXU=</latexit>

Figure 1: The flowchart of using the proposed XNMs rea-

soning over scene graphs, which can be represented by de-

tected one-hot class labels (left) or RoI feature vectors (col-

ored bars on the right). Feature colors are consistent with

the bounding box colors. XNMs have 4 meta-types. Red

nodes or edges indicate attentive results. The final mod-

ule assembly can be obtained by training an off-the-shelf

sequence-to-sequence program generator [13].

trum of domains, minimizing the human efforts in domain-

specific knowledge engineering. However, large gaps be-

tween human and machines can be still observed in “high-

level” vision-language tasks such as visual Q&A [4, 6, 12],

which inherently requires composite reasoning (cf. Fig-

ure 1). In particular, recent studies show that the end-to-end

models are easily optimized to learn the dataset “shortcut

bias” but not reasoning [12].

18376



Neural module networks (NMNs) [3, 12, 10, 17, 9, 26]

show a promising direction in conferring reasoning abil-

ity for the end-to-end design by learning to compose the

networks on-demand from the language counterpart, which

implies the logical compositions. Take the question “How

many objects are left of the red cube?” as an example, we

can program the reasoning path into a composition of func-

tional modules [17]: Attend[cube], Attend[red],

Relate[left], and Count, and then execute them with

the input image. We attribute the success of NMNs to the

eXplainable and eXplicit (dubbed X) language understand-

ing. By explicitly parsing the question into an explainable

module assembly, NMNs effectively prevent the language-

to-reasoning shortcut, which are frequent when using the

implicit fused question representations [4, 6] (e.g., the an-

swer can be directly inferred according to certain language

patterns).

However, the vision-to-reasoning shortcut still exists as

an obstacle on the way of NMNs towards the real X visual

reasoning. This is mainly because that the visual percep-

tion counterpart is still attached to reasoning [17], which

is inevitably biased to certain vision patterns. For exam-

ple, on the CLEVR CoGenT task, which provides novel

object attributes to test the model’s generalization ability

(e.g., cubes are blue in the training set but red in the test

set), we observe significant performance drop of existing

NMNs [13, 17] (e.g., red cubes in the test set cannot be

recognized as “cube”). Besides, the reusability of the cur-

rent module design is limited. For example, the network

structure of the Relate module in [17] must be carefully

designed using a series of dilated convolutions to achieve

good performance. Therefore, how to design a complete

inventory of X modules is still an tricky engineering.

In this paper, we advance NMN towards X visual reason-

ing by using the proposed eXplainable and eXplicit Neural

Modules (XNMs) reasoning over scene graphs. By do-

ing this, we can insulate the “low-level” visual perception

from the modules, and thus can prevent reasoning shortcut

of both language and vision counterpart. As illustrated in

Figure 1, a scene graph is the knowledge representation of

a visual input, where the nodes are the entities (e.g., cylin-

der, horse) and the edges are the relationships between en-

tities (e.g., left, ride). In particular, we note that scene

graph detection per se is still a challenging task in com-

puter vision [28], therefore, we allow XNMs to accept scene

graphs with different detection qualities. For example, the

left-hand side of Figure 1 is one extreme when the visual

scene is clean and closed-vocabulary, e.g., in CLEVR [12],

we can have almost perfect scene graphs where the nodes

and edges can be represented by one-hot class labels; the

right-hand side shows another extreme when the scene is

cluttered and open-vocabulary in practice, the best we have

might be merely a set of object proposals. Then, the nodes

are RoI features and the edges are their concatenations.

Thanks to scene graphs, our XNMs only have 4 meta-

types: 1) AttendNode, finding the queried entities,

2) AttendEdge, finding the queried relationships, 3)

Transfer, transforming the node attentions along the at-

tentive edges, and 4) Logic, performing basic logical op-

erations on attention maps. All types are fully X as their

outputs are pure graph attentions that are easily traceable

and visible. Moreover, these meta modules are only spe-

cific to the generic graph structures, and are highly reusable

to constitute different composite modules for more complex

functions. For example, we do not need to carefully design

the internal implementation details for the module Relate

as in [17]; instead, we only need to combine AttendEdge

and Transfer in XNMs.

We conduct extensive experiments on two visual Q&A

benchmarks and demonstrate the following advantages of

using XNMs reasoning over scene graphs:

1. We achieve 100% accuracy by using the ground-truth

scene graphs and programs on both CLEVR [12]

and CLEVR-CoGent, revealing the performance upper-

bound of XNMs, and the benefits of disentangling

“high-level” reasoning from “low-level” perception.

2. Our network requires significantly less parameters while

achieves better performance than previous state-of-the-

art neural module networks, due to the conciseness and

high-reusability of XNMs.

3. XNMs are flexible to different graph qualities, e.g., it

achieves competitive accuracy on VQAv2.0 [6] when

scene graphs are noisily detected.

4. We show qualitative results to demonstrate that our

XNMs reasoning is highly explainable and explicit.

2. Related Work

Visual Reasoning. It is the process of analyzing

visual information and solving problems based on it.

The most representative benchmark of visual reasoning is

CLEVR [12], a diagnostic visual Q&A dataset for compo-

sitional language and elementary visual reasoning. The ma-

jority of existing methods on CLEVR can be categorized

into two families: 1) holistic approaches [12, 21, 19, 11],

which embed both the image and question into a feature

space and infer the answer by feature fusion; 2) neural mod-

ule approaches [3, 10, 13, 17, 9, 26], which first parse the

question into a program assembly of neural modules, and

then execute the modules over the image features for visual

reasoning. Our XNM belongs to the second one but replaces

the visual feature input with scene graphs.

Neural Module Networks. They dismantle a complex

question into several sub-tasks, which are easier to answer

and more transparent to follow the intermediate outputs.

Modules are pre-defined neural networks that implement

the corresponding functions of sub-tasks, and then are as-

28377



sembled into a layout dynamically, usually by a sequence-

to-sequence program generator given the input question.

The assembled program is finally executed for answer pre-

diction [10, 13, 17]. In particular, the program generator is

trained based on the human annotations of desired layout

or with the help of reinforcement learning due to the non-

differentiability of layout selection. Recently, Hu et al. [9]

proposed StackNMN, which replaces the hard-layout with

soft and continuous module layout and performs well even

without layout annotations at all. Our XNM experiments on

VQAv2.0 follows their soft-program generator.

Recently, NS-VQA [26] firstly built the reasoning over

the object-level structural scene representation, improving

the accuracy on CLEVR from the previous state-of-the-art

99.1% [17] to an almost perfect 99.8%. Their scene struc-

ture consists of objects with detected labels, but lacked the

relationships between objects, which limited its application

on real-world datasets such as VQAv2.0 [6]. In this pa-

per, we propose a much more generic framework for visual

reasoning over scene graphs, including object nodes and re-

lationship edges represented by either labels or visual fea-

tures. Our scene graph is more flexible and more powerful

than the table structure of NS-VQA.

Scene Graphs. This task is to produce graph represen-

tations of images in terms of objects and their relationships.

Scene graphs have been shown effective in boosting several

vision-language tasks [14, 24, 27, 5]. To the best of our

knowledge, we are the first to design neural module net-

works that can reason over scene graphs. However, scene

graph detection is far from satisfactory compared to object

detection [25, 28, 16]. To this end, our scene graph im-

plementation also supports cluttered and open-vocabulary

in real-world scene graph detection, where the nodes are

merely RoI features and the edges are their concatenations.

3. Approach

We build our neural module network over scene graphs

to tackle the visual reasoning challenge. As shown in Fig-

ure 2, given an input image and a question, we first parse

the image into a scene graph and parse the question into

a module program, and then execute the program over the

scene graph. In this paper, we propose a set of generic

base modules that can conduct reasoning over scene graphs

— eXplainable and eXplicit Neural Modules (XNMs) —

as the reasoning building blocks. We can easily assemble

these XNMs to form more complex modules under specific

scenarios. Besides, our XNMs are totally attention-based,

making all the intermediate reasoning steps transparent.

3.1. Scene Graph Representations

We formulate the scene graph of an image as (V, E),
where V = {v1, · · · ,vN} are graph nodes corresponding

to N detected objects, and vi denotes the feature represen-

tation of the i-th object. E = {eij |i, j = 1, · · · , N} are

graph edges corresponding to relations between each object

pairs, and eij denotes the feature representation of the rela-

tion from object i to object j (Note that edges are directed).

Our XNMs are generic for scene graphs of different qual-

ity levels of detection. We consider two extreme settings in

this paper. The first is the ground-truth scene graph with la-

bels, denoted by GT, that is, using ground-truth objects as

nodes, ground-truth object label embeddings as node fea-

tures, and ground-truth relation label embeddings as edge

features. In this setting, scene graphs are annotated with

fixed-vocabulary object labels and relationship labels, e.g.,

defined in CLEVR dataset [12]. We collect all the C labels

into a dictionary, and use an embedding matrix D ∈ R
C×d

to map a label into a d-dimensional vector. We represent

the nodes and edges using the concatenation of their corre-

sponding label embeddings.

The second setting is totally detected and label-agnostic,

denoted by Det, that is, using detected objects as nodes, RoI

visual features as node features, and the fusion of two node

features as the edge features. For example, the edge fea-

tures can be represented by concatenating the two related

node features, i.e., eij =
[

vi;vj

]

. As an another example,

in CLEVR where the edges are only about spatial relation-

ships, we use the difference between detected coordinates

of object pairs as the edge embedding. More details are in

Section 4.

We use the GT setting to demonstrate the performance

upper-bound of our approach when a perfect scene graph

detector is available along with the rapid development of

visual recognition, and use the Det setting to demonstrate

the practicality in open domains.

3.2. X Neural Modules

As shown in Figure 1, our XNMs have four meta-types

and are totally attention-based. We denote the node atten-

tion weight vector by a ∈ [0, 1]N and the weight of the i-th

node by ai. The edge attention weight matrix is denoted by

W ∈ [0, 1]N×N , where Wij represents the weight of edge

from node i to node j.

AttendNode[query]. This most basic and intuitive

operation is to find the relevant objects given an input query

(e.g., find all [“cubes”]). For the purpose of semantic com-

putation, we first encode the query into a vector q. This X

module takes the query vector as input, and produces the

node attention vector by the following function:

a = f(V,q). (1)

The implementation of f is designed according to a specific

scene graph representation, as long as f is differentiable and

range(f) = [0, 1].
AttendEdge[query]. Though object attention is a

widely-used mechanism for better visual understanding, it

is unable to capture the interaction between objects and thus

38378



Q: How many objects are right 

of the brown metal cylinder and 

left of the red cube?

le
ft

, f
ro

nt
ri
gh

t, 
be

hi
nd

right, front

left, behind

left, front

right, behind

[

purple cylinder
large metal

]

<latexit sha1_base64="ZV8QTFG5RTZ/G4qR/yu4F+Zgnu4=">AAACW3icbVFNS8NAEN2kamv8qoonL6tF8VQSEfRY9OJRwarQlLLZTOvSzSbsTqQl5E960oN/RdzWIFp9y8LjzRtm9m2USWHQ998ct7a0vFJvrHpr6xubW83tnXuT5ppDl6cy1Y8RMyCFgi4KlPCYaWBJJOEhGl/N6g/PoI1I1R1OM+gnbKTEUHCGVho0dRjBSKgiShhqMSk9ahEiTLDIcp1JKOlxeDA7lcqndlQMuqRh+MMsmR5Z74I5AWSypF4IKv4eMWi2/LY/B/1Lgoq0SIWbQfMljFOeJ6CQS2ZML/Az7BdMo+B2QS/MDWSMj9kIepYqloDpF/NsSnpklZgOU22vQjpXf3YULDFmmkTWafd7Mou1mfhfrZfj8KJfCJXlCIp/DRrmkmJKZ0HTWGjgKKeWMK6F3ZXyJ6YZR/sdng0hWHzyX3J/2g4svz1rdS6rOBpknxySExKQc9Ih1+SGdAknr+TDqTsN592tuZ67/mV1napnl/yCu/cJPWazWw==</latexit><latexit sha1_base64="ZV8QTFG5RTZ/G4qR/yu4F+Zgnu4=">AAACW3icbVFNS8NAEN2kamv8qoonL6tF8VQSEfRY9OJRwarQlLLZTOvSzSbsTqQl5E960oN/RdzWIFp9y8LjzRtm9m2USWHQ998ct7a0vFJvrHpr6xubW83tnXuT5ppDl6cy1Y8RMyCFgi4KlPCYaWBJJOEhGl/N6g/PoI1I1R1OM+gnbKTEUHCGVho0dRjBSKgiShhqMSk9ahEiTLDIcp1JKOlxeDA7lcqndlQMuqRh+MMsmR5Z74I5AWSypF4IKv4eMWi2/LY/B/1Lgoq0SIWbQfMljFOeJ6CQS2ZML/Az7BdMo+B2QS/MDWSMj9kIepYqloDpF/NsSnpklZgOU22vQjpXf3YULDFmmkTWafd7Mou1mfhfrZfj8KJfCJXlCIp/DRrmkmJKZ0HTWGjgKKeWMK6F3ZXyJ6YZR/sdng0hWHzyX3J/2g4svz1rdS6rOBpknxySExKQc9Ih1+SGdAknr+TDqTsN592tuZ67/mV1napnl/yCu/cJPWazWw==</latexit><latexit sha1_base64="ZV8QTFG5RTZ/G4qR/yu4F+Zgnu4=">AAACW3icbVFNS8NAEN2kamv8qoonL6tF8VQSEfRY9OJRwarQlLLZTOvSzSbsTqQl5E960oN/RdzWIFp9y8LjzRtm9m2USWHQ998ct7a0vFJvrHpr6xubW83tnXuT5ppDl6cy1Y8RMyCFgi4KlPCYaWBJJOEhGl/N6g/PoI1I1R1OM+gnbKTEUHCGVho0dRjBSKgiShhqMSk9ahEiTLDIcp1JKOlxeDA7lcqndlQMuqRh+MMsmR5Z74I5AWSypF4IKv4eMWi2/LY/B/1Lgoq0SIWbQfMljFOeJ6CQS2ZML/Az7BdMo+B2QS/MDWSMj9kIepYqloDpF/NsSnpklZgOU22vQjpXf3YULDFmmkTWafd7Mou1mfhfrZfj8KJfCJXlCIp/DRrmkmJKZ0HTWGjgKKeWMK6F3ZXyJ6YZR/sdng0hWHzyX3J/2g4svz1rdS6rOBpknxySExKQc9Ih1+SGdAknr+TDqTsN592tuZ67/mV1napnl/yCu/cJPWazWw==</latexit><latexit sha1_base64="ZV8QTFG5RTZ/G4qR/yu4F+Zgnu4=">AAACW3icbVFNS8NAEN2kamv8qoonL6tF8VQSEfRY9OJRwarQlLLZTOvSzSbsTqQl5E960oN/RdzWIFp9y8LjzRtm9m2USWHQ998ct7a0vFJvrHpr6xubW83tnXuT5ppDl6cy1Y8RMyCFgi4KlPCYaWBJJOEhGl/N6g/PoI1I1R1OM+gnbKTEUHCGVho0dRjBSKgiShhqMSk9ahEiTLDIcp1JKOlxeDA7lcqndlQMuqRh+MMsmR5Z74I5AWSypF4IKv4eMWi2/LY/B/1Lgoq0SIWbQfMljFOeJ6CQS2ZML/Az7BdMo+B2QS/MDWSMj9kIepYqloDpF/NsSnpklZgOU22vQjpXf3YULDFmmkTWafd7Mou1mfhfrZfj8KJfCJXlCIp/DRrmkmJKZ0HTWGjgKKeWMK6F3ZXyJ6YZR/sdng0hWHzyX3J/2g4svz1rdS6rOBpknxySExKQc9Ih1+SGdAknr+TDqTsN592tuZ67/mV1napnl/yCu/cJPWazWw==</latexit>

[

brown cylinder
large metal

]

<latexit sha1_base64="2CiJGkUzVJY1UX7t3qOpKMFcJTo=">AAACWnicbVFdS8MwFE2rbrN+zY83X6JD8Wm0Iuij6IuPE5wK6xhpejeDaVqTW3WU/klfRPCvCGaziE5PCBzOPZd7cxJlUhj0/TfHnZtfqNUbi97S8srqWnN949qkuebQ5alM9W3EDEihoIsCJdxmGlgSSbiJ7s8n9ZtH0Eak6grHGfQTNlJiKDhDKw2aD2EEI6GKKGGoxXPpUYsQ4RmLSKdPqqT74c7kVCIf20kx6JKG4Q+vZHoEJZ0xJ4BMltQLQcXfEwbNlt/2p6B/SVCRFqnQGTRfwjjleQIKuWTG9AI/w37BNAouofTC3EDG+D0bQc9SxRIw/WIaTUn3rBLTYartVUin6s+OgiXGjJPIOu1+d2a2NhH/q/VyHJ70C6GyHEHxr0HDXFJM6SRnGgsNHOXYEsa1sLtSfsc042h/w7MhBLNP/kuuD9uB5ZdHrdOzKo4G2Sa75IAE5JickgvSIV3CySv5cGpO3Xl3XXfRXfqyuk7Vs0l+wd36BD3rsuE=</latexit><latexit sha1_base64="2CiJGkUzVJY1UX7t3qOpKMFcJTo=">AAACWnicbVFdS8MwFE2rbrN+zY83X6JD8Wm0Iuij6IuPE5wK6xhpejeDaVqTW3WU/klfRPCvCGaziE5PCBzOPZd7cxJlUhj0/TfHnZtfqNUbi97S8srqWnN949qkuebQ5alM9W3EDEihoIsCJdxmGlgSSbiJ7s8n9ZtH0Eak6grHGfQTNlJiKDhDKw2aD2EEI6GKKGGoxXPpUYsQ4RmLSKdPqqT74c7kVCIf20kx6JKG4Q+vZHoEJZ0xJ4BMltQLQcXfEwbNlt/2p6B/SVCRFqnQGTRfwjjleQIKuWTG9AI/w37BNAouofTC3EDG+D0bQc9SxRIw/WIaTUn3rBLTYartVUin6s+OgiXGjJPIOu1+d2a2NhH/q/VyHJ70C6GyHEHxr0HDXFJM6SRnGgsNHOXYEsa1sLtSfsc042h/w7MhBLNP/kuuD9uB5ZdHrdOzKo4G2Sa75IAE5JickgvSIV3CySv5cGpO3Xl3XXfRXfqyuk7Vs0l+wd36BD3rsuE=</latexit><latexit sha1_base64="2CiJGkUzVJY1UX7t3qOpKMFcJTo=">AAACWnicbVFdS8MwFE2rbrN+zY83X6JD8Wm0Iuij6IuPE5wK6xhpejeDaVqTW3WU/klfRPCvCGaziE5PCBzOPZd7cxJlUhj0/TfHnZtfqNUbi97S8srqWnN949qkuebQ5alM9W3EDEihoIsCJdxmGlgSSbiJ7s8n9ZtH0Eak6grHGfQTNlJiKDhDKw2aD2EEI6GKKGGoxXPpUYsQ4RmLSKdPqqT74c7kVCIf20kx6JKG4Q+vZHoEJZ0xJ4BMltQLQcXfEwbNlt/2p6B/SVCRFqnQGTRfwjjleQIKuWTG9AI/w37BNAouofTC3EDG+D0bQc9SxRIw/WIaTUn3rBLTYartVUin6s+OgiXGjJPIOu1+d2a2NhH/q/VyHJ70C6GyHEHxr0HDXFJM6SRnGgsNHOXYEsa1sLtSfsc042h/w7MhBLNP/kuuD9uB5ZdHrdOzKo4G2Sa75IAE5JickgvSIV3CySv5cGpO3Xl3XXfRXfqyuk7Vs0l+wd36BD3rsuE=</latexit><latexit sha1_base64="2CiJGkUzVJY1UX7t3qOpKMFcJTo=">AAACWnicbVFdS8MwFE2rbrN+zY83X6JD8Wm0Iuij6IuPE5wK6xhpejeDaVqTW3WU/klfRPCvCGaziE5PCBzOPZd7cxJlUhj0/TfHnZtfqNUbi97S8srqWnN949qkuebQ5alM9W3EDEihoIsCJdxmGlgSSbiJ7s8n9ZtH0Eak6grHGfQTNlJiKDhDKw2aD2EEI6GKKGGoxXPpUYsQ4RmLSKdPqqT74c7kVCIf20kx6JKG4Q+vZHoEJZ0xJ4BMltQLQcXfEwbNlt/2p6B/SVCRFqnQGTRfwjjleQIKuWTG9AI/w37BNAouofTC3EDG+D0bQc9SxRIw/WIaTUn3rBLTYartVUin6s+OgiXGjJPIOu1+d2a2NhH/q/VyHJ70C6GyHEHxr0HDXFJM6SRnGgsNHOXYEsa1sLtSfsc042h/w7MhBLNP/kuuD9uB5ZdHrdOzKo4G2Sa75IAE5JickgvSIV3CySv5cGpO3Xl3XXfRXfqyuk7Vs0l+wd36BD3rsuE=</latexit>

[

red cube
large rubber

]

<latexit sha1_base64="HlbRpz+eYCrmKpcpGcbxdlxSNnM=">AAACVXicbVFdS8MwFE3rd/2a+uhLdCg+SSuCPg598VHBOWEdI0nvZjBNS3IrjtI/uRfxn/gimM0iunlC4HDuucnNCc+VtBiG756/sLi0vLK6FqxvbG5tN3Z2H2xWGAFtkanMPHJmQUkNbZSo4DE3wFKuoMOfryf1zgsYKzN9j6MceikbajmQgqGT+g0VcxhKXfKUoZGvVUAdYoRXLA0kFT2ODyarlkTBoaJx/MulmBk6bcZoCs7BVDSIQSc/h/cbzfA0nILOk6gmTVLjtt8Yx0kmihQ0CsWs7UZhjr2SGZRCQRXEhYWciWc2hK6jmqVge+U0lYoeOSWhg8y4rZFO1d8dJUutHaXcOd18T3a2NhH/q3ULHFz2SqnzAkGL74sGhaKY0UnENJEGBKqRI0wY6Wal4okZJtB9ROBCiGafPE8ezk4jx+/Om62rOo5Vsk8OyQmJyAVpkRtyS9pEkDH58DzP9968T3/RX/62+l7ds0f+wN/+Al7BsXU=</latexit><latexit sha1_base64="HlbRpz+eYCrmKpcpGcbxdlxSNnM=">AAACVXicbVFdS8MwFE3rd/2a+uhLdCg+SSuCPg598VHBOWEdI0nvZjBNS3IrjtI/uRfxn/gimM0iunlC4HDuucnNCc+VtBiG756/sLi0vLK6FqxvbG5tN3Z2H2xWGAFtkanMPHJmQUkNbZSo4DE3wFKuoMOfryf1zgsYKzN9j6MceikbajmQgqGT+g0VcxhKXfKUoZGvVUAdYoRXLA0kFT2ODyarlkTBoaJx/MulmBk6bcZoCs7BVDSIQSc/h/cbzfA0nILOk6gmTVLjtt8Yx0kmihQ0CsWs7UZhjr2SGZRCQRXEhYWciWc2hK6jmqVge+U0lYoeOSWhg8y4rZFO1d8dJUutHaXcOd18T3a2NhH/q3ULHFz2SqnzAkGL74sGhaKY0UnENJEGBKqRI0wY6Wal4okZJtB9ROBCiGafPE8ezk4jx+/Om62rOo5Vsk8OyQmJyAVpkRtyS9pEkDH58DzP9968T3/RX/62+l7ds0f+wN/+Al7BsXU=</latexit><latexit sha1_base64="HlbRpz+eYCrmKpcpGcbxdlxSNnM=">AAACVXicbVFdS8MwFE3rd/2a+uhLdCg+SSuCPg598VHBOWEdI0nvZjBNS3IrjtI/uRfxn/gimM0iunlC4HDuucnNCc+VtBiG756/sLi0vLK6FqxvbG5tN3Z2H2xWGAFtkanMPHJmQUkNbZSo4DE3wFKuoMOfryf1zgsYKzN9j6MceikbajmQgqGT+g0VcxhKXfKUoZGvVUAdYoRXLA0kFT2ODyarlkTBoaJx/MulmBk6bcZoCs7BVDSIQSc/h/cbzfA0nILOk6gmTVLjtt8Yx0kmihQ0CsWs7UZhjr2SGZRCQRXEhYWciWc2hK6jmqVge+U0lYoeOSWhg8y4rZFO1d8dJUutHaXcOd18T3a2NhH/q3ULHFz2SqnzAkGL74sGhaKY0UnENJEGBKqRI0wY6Wal4okZJtB9ROBCiGafPE8ezk4jx+/Om62rOo5Vsk8OyQmJyAVpkRtyS9pEkDH58DzP9968T3/RX/62+l7ds0f+wN/+Al7BsXU=</latexit><latexit sha1_base64="HlbRpz+eYCrmKpcpGcbxdlxSNnM=">AAACVXicbVFdS8MwFE3rd/2a+uhLdCg+SSuCPg598VHBOWEdI0nvZjBNS3IrjtI/uRfxn/gimM0iunlC4HDuucnNCc+VtBiG756/sLi0vLK6FqxvbG5tN3Z2H2xWGAFtkanMPHJmQUkNbZSo4DE3wFKuoMOfryf1zgsYKzN9j6MceikbajmQgqGT+g0VcxhKXfKUoZGvVUAdYoRXLA0kFT2ODyarlkTBoaJx/MulmBk6bcZoCs7BVDSIQSc/h/cbzfA0nILOk6gmTVLjtt8Yx0kmihQ0CsWs7UZhjr2SGZRCQRXEhYWciWc2hK6jmqVge+U0lYoeOSWhg8y4rZFO1d8dJUutHaXcOd18T3a2NhH/q3ULHFz2SqnzAkGL74sGhaKY0UnENJEGBKqRI0wY6Wal4okZJtB9ROBCiGafPE8ezk4jx+/Om62rOo5Vsk8OyQmJyAVpkRtyS9pEkDH58DzP9968T3/RX/62+l7ds0f+wN/+Al7BsXU=</latexit>

Scene Relate[left]Attend[cube] Attend[red]

Scene Attend[cylinder] Attend[metal] Attend[brown] Relate[right]

And Count

0 + 1 + 0 = 1

Attend[cube]

Attend[red]

Relate[left]

Attend[cylinder]

Attend[metal]

Attend[brown]

Relate[right]

And

Count

scene graph

parsing

program

generation

Figure 2: To answer a question about an image, we need to 1) parse the image into a scene graph, 2) parse the question into

a module program, and 3) reasoning over the scene graph. Here, we show the reasoning details of an example from CLEVR.

The nodes and edges in red are attended. Scene is a dummy placeholder module that attends all nodes. All intermediate

steps of our XNMs are explainable and explicit.

is weak in the complex visual reasoning [29]. This X mod-

ule aims to find the relevant edges given an input query (e.g.,

find all edges that are [“left”]). After encoding the query

into q, we compute the edge attention matrix by the follow-

ing function:

W = g(E ,q), (2)

where g is defined according to a specific scene graph rep-

resentation, as long as g is differentiable and range(g) =
[0, 1].

Transfer. With the node attention vector a and the

edge attention matrix W, we can transfer the node weights

along the attentive relations to find new objects (e.g., find

objects that are [“left”] to the [“cube”]). Thanks to the graph

structure, to obtain the updated node attention a′, we merely

need to perform a simple matrix multiplication:

a′ = norm(W⊤a), (3)

where norm assert the values in [0, 1] by dividing the max-

imum value if any entry exceeds 1. Here, Wij indicates

how many weights will flow from object i to object j, and

a′i =
∑N

j=1 Wjiaj is the total received weights of object i.

This module reallocates node attention in an efficient and

fully-differentiable manner.

Logic. Logical operations are crucial in complex reason-

ing cases. In XNM, logical operations are performed on one

or more attention weights to produce a new attention. We

define three logical X modules: And, Or, and Not. With-

out loss of generality, we discuss all these logical modules

on node attention vectors, and the extension to edge atten-

tion is similar. The And and Or modules are binary, that

is, take two attentions as inputs, while the Not module is

unary. The implementation of these logical X modules are

as follows:

And(a1,a2) = min(a1,a2),Not(a) = 1− a,

Or(a1,a2) = max(a1,a2).
(4)

These four meta-types of XNMs constitute the base of

our graph reasoning. They are explicitly executed on at-

tention maps, and all intermediate results are explainable.

Besides, these X modules are totally differentiable. We can

flexibly assemble them into composite modules for more

complex functions, which can be still trained end-to-end.

3.3. Implementations

To apply XNMs in practice, we need to consider these

questions: (1) How to implement the attention functions

f, g in Eq. (1) and Eq. (2)? (2) How to compose our X mod-

ules into composite reasoning modules? (3) How to predict

the answer according to the attentive results? (4) How to

parse the input question to an executable module program?

3.3.1 Attention Functions

We use different attention functions for different scene

graph settings. In the GT setting, as annotated labels are

mostly mutually exclusive (e.g., “red” and “green”), we

compute the node attention using the softmax function over

the label space. Specifically, given a query vector q ∈ R
d,

we first compute its attention distribution over all labels by

b = softmax(D · q), where length(b) = C and bc rep-

resents the weight of the c-th label. Then we capture the

48379



node and edge attention by summing up corresponding la-

bel weights:

ai = f(V,q)i =
∑

c∈Ci

bc, Wij = g(E ,q)ij =
∑

c∈Cij

bc,

(5)

where Ci and Cij denote the (multi-) labels of node i and

edge ij respectively.

In the Det setting, we use the sigmoid function to com-

pute the attention weights. Given the query q ∈ R
d, the

node and edge attentions are:

ai = f(V,q)i = sigmoid
(

MLP(vi)
⊤q

)

,

Wij = g(E ,q)ij = sigmoid
(

MLP(eij)
⊤q

)

,
(6)

where the MLP maps vi and eij to the dimension d.

3.3.2 Composite Reasoning Modules

We list our composite reasoning modules and their imple-

mentations (i.e., how they are composed by basic X mod-

ules) in the top section of Table 1. For example, Samemod-

ule is to find other objects that have the same attribute value

as the input objects (e.g., find other objects with the same

[“color”]). In particular, Describe used in Same is to

obtain the corresponding attribute value (e.g., describe one

object’s [“color”]), and will be introduced in the following

section.

3.3.3 Feature Output Modules

Besides the above reasoning modules, we also need an-

other kind of modules to map the intermediate attention

to a hidden embedding h for feature representation, which

is fed into a softmax layer to predict the final answer, or

into some modules for further reasoning. We list our out-

put modules in the bottom section of Table 1. Exist and

Count sum up the node attention weights to answer yes/no

and counting questions. Compare is for attribute or num-

ber comparisons, which takes two hidden features as in-

puts. Describe[query] is to transform the attentive

node features to an embedding that describes the specified

attribute value (e.g., what is the [“color”] of attended ob-

jects).

To implement the Describe module, we first obtain

the “raw” attentive node feature by

v̄ =

N
∑

i=1

aivi

/

N
∑

i=1

ai, (7)

and then project it into several “fine-grained” sub-spaces

— describing different attribute aspects such as color and

shape — using different transformation matrices. Specif-

ically, we define K projection matrices M1, · · · ,MK to

map v̄ into different aspects (e.g., M1v̄ represents the

color, M2v̄ represents the shape, etc.), where K is a hyper-

parameter related to the specific scene graph vocabulary.

The output feature is computed by

Describe(a,q) =
K
∑

k=1

ck(Mkv̄), (8)

where c = Softmax(MLP(q)) represents a probability dis-

tribution over these K aspects, and ck denotes the k-th prob-

ability. The mapping matrixes can be learned end-to-end

automatically.

Table 1: Our composite modules (the top section) and out-

put modules (the bottom section). MLP() consists of sev-

eral linear and ReLU layers.

Modules In → Out Implementation

Intersect a1
,a2

→ a′ And(a1
,a2)

Union a1
,a2

→ a′ Or(a1
,a2)

Filter a, q → a′ And(a,AttendNode(q))

Same a, q → a′ Filter(Not(a), Describe(a,q))

Relate a, q → a′ Transfer(a, AttendEdge(q))

Exist

Count
a → h MLP(

∑
i
ai)

Compare h1
,h2

→ h′ MLP(h1
− h2)

Describe a, q → h Eq. (8)

3.3.4 Program Generation & Training

For datasets that have ground-truth program annotations

(e.g., CLEVR), we directly learn an LSTM sequence-to-

sequence model [23] to convert the word sequence into the

module program. However, there is no layout annotations in

most real-world datasets (e.g., VQAv2.0). In this case, fol-

lowing StackNMN [9], we make soft module selection with

a differentiable stack structure. Please refer to their papers

for more details.

We feed our output features from modules (cf. Table 1)

into a softmax layer for the answer prediction. We use

the cross entropy loss between our predicted answers and

ground-truth answers to train our XNMs.

4. Experiments

4.1. CLEVR

Settings. The CLEVR dataset [12] is a synthetic diag-

nostic dataset that tests a range of visual reasoning abilities.

In CLEVR, images are annotated with ground-truth object

positions and labels, and questions are represented as func-

tional programs that consists of 13 kinds of modules. Ex-

cept the “Unique” module, which does not have actual op-

eration, all the remaining 12 modules can correspond to our

modules in Table 1. CLEVR modules “Equal attribute”,

“Equal integer”, “Greater than” and “Less than” have the

same implementation as our Compare, but with different

58380



Table 2: Comparisons between neural module networks on the CLEVR dataset. Top section: results of the official test set;

Bottom section: results of the validation set (we can only evaluate our GT setting on the validation set since the annotations

of the test set are not public [12]). The program option “scratch” means totally without program annotations, “supervised”

means using trained end-to-end parser, and “GT” means using ground-truth programs. Our reasoning modules are composed

with highly-reusable X modules, leading to a very small number of parameters. Using the ground-truth scene graphs and

programs, we can achieve a perfect reasoning on all kinds of questions.

Method Program #Modules #Param. Overall Count
Compare

Numbers
Exist

Query

Attribute

Compare

Attribute

Human [12] - - - 92.6 86.7 86.4 96.6 95.0 96.0

N2NMN [10] scratch 12 - 69.0 - - - - -

N2NMN [10] supervised 12 - 83.7 - - - - -

PG+EE [13] supervised 39 40.4M 96.9 92.7 98.7 97.1 98.1 98.9

TbD-net [17] supervised 39 115M 99.1 97.6 99.4 99.2 99.5 99.6

StackNMN [9] scratch 9 7.32M 93.0 - - - - -

StackNMN [9] supervised 9 7.32M 96.5 - - - - -

XNM-Det supervised 12 0.55M 97.7 96.0 98.0 98.7 98.4 97.6

NS-VQA [26] supervised 12 - 99.8 99.7 99.9 99.9 99.8 99.8

XNM-Det supervised 12 0.55M 97.8 96.0 98.1 98.6 98.7 97.8

XNM-Det GT 12 0.55M 97.9 96.2 98.1 98.8 98.7 97.8

XNM-GT supervised 12 0.22M 99.9 99.9 99.9 99.8 99.8 99.9

XNM-GT GT 12 0.22M 100 100 100 100 100 100

parameters. There are 4 attribute categories in CLEVR, so

we set the number of mapping matrixes K = 4.

We reused the trained sequence-to-sequence program

generator of [13, 17], which uses prefix-order traversal to

convert the program trees to sequences. Note that their

modules are bundled with input, e.g., they regard Filter[red]

and Filter[green] as two different modules. This will cause

serious sparseness in the real-world case. We used their pro-

gram generator, but unpack the module and the input (e.g.,

Filter[red] and Filter[green] are the same module with dif-

ferent input query).

In the GT setting, we performed reasoning over the

ground-truth scene graphs. In the Det setting, we built the

scene graphs by detecting objects and using RoI features

as node embeddings and the differences between detected

coordinates as edge embeddings. Since CLEVR does not

provide the bounding box or segmentation annotations of

objects, it is hard to directly train an object detector. NS-

VQA [26] trained a Mask R-CNN [7] for object segmenta-

tion by “hacking” the rendering process [12], which could

perform very well due to the simplicity of visual scenes of

CLEVR. However, as we expected to explore X modules

in a noisier case, we chose the trained attention modules of

TbD-net [17] as our object detector. Specifically, we enu-

merated all possible combinations of object attributes (e.g.,

red, cube, metal, large), and tried to find corresponding ob-

jects using their attention modules (e.g., intersection of the

output mask of Attend[red], Attend[cube], Attend[metal]

and Attend[large], and then regarded each clique as a single

object). The detected results have some frequent mistakes,

such as inaccurate position, wrongly merged nodes (two ad-

jacent objects with the same attribute values are recognized

as one). These detection noises allow us to test whether our

XNMs are robust enough.

Goals. We expect to answer the following questions ac-

cording to the CLEVR experiments: Q1: What is the upper

bound of our X reasoning when both the vision and lan-

guage perceptions are perfect? Q2: Are our XNMs robust

for noisy detected scene graphs and parsed programs? Q3:

What are the parameter and data efficiency, and the conver-

gence speed of XNMs? Q4: How is the explainability of

XNMs?

Results. Experimental results are listed in Table 2.

A1: When using the ground-truth scene graphs and pro-

grams, we can achieve 100% accuracy, indicating an in-

spiring upper-bound of visual reasoning. By disentangling

“high-level” reasoning from “low-level” perception and us-

ing XNMs, we may eventually conquer the visual reasoning

challenge with the rapid development of visual recognition.

A2: With noisy detected scene graphs, we can still

achieve a competitive 97.9% accuracy using the ground-

truth programs, indicating that our X reasoning are robust

to different quality levels of scene graphs. When replacing

the ground-truth programs with parsed programs, the accu-

68381



racy drops by 0.1% in both GT and Det settings, which is

caused by minor errors of the program parser.

A3: Due to the conciseness and high-reusability of X

modules, our model requires significantly less parameters

than existing models. Our GT setting only needs about

0.22M parameters, taking about 500MB memory with batch

size of 128, while PG+EE [13] and TbD-net [17] bundle

modules and inputs together, leading to a large number of

modules and parameters.

0.1 0.2 0.3 0.4 0.5

training ratio

50

60

70

80

90

100

ac
cu
ra
cy
(%

)

Accuracy when trained with different
ratios of training data.

1 2 3 4 5 6 7 8 9 10

epoch

50

60

70

80

90

100

ac
cu
ra
cy
(%

)

Accuracy at different epochs.

TbD-net StackNMN XNMs-Det XNMs-GT

Figure 3: Comparison of data efficiency and convergence

speed.

To explore the data efficiency, we trained our model with

a partial training set and evaluated on the complete valida-

tion set. Results are displayed in the left part of Figure 3.

We can see that our model performs much better than other

baselines when the training set is small. Especially, our GT

setting can still achieve a 100% accuracy even with only

10% training data. The right part shows the accuracy at each

training epoch. We can see that our X reasoning converges

very fast.

A4: As our XNMs are attention-based, the reasoning

process is totally transparent and we can easily show inter-

mediate results. Figure 4 displays two examples of CLEVR.

We can see all reasoning steps are clear and intuitive.

4.2. CLEVR­CoGenT

Settings. The CLEVR-CoGenT dataset is a benchmark

to study the ability of models to recognize novel combi-

nations of attributes at test-time, which is derived from

CLEVR but has two different conditions: in Condition A

all cubes are colored one of gray, blue, brown, or yellow,

and all cylinders are one of red, green, purple, or cyan; in

Condition B the color palettes are swapped. The model is

trained using the training set of Condition A, and then is

tested using Condition B to check whether it can generalize

well to the novel attribute combinations. We train our model

on the training set of Condition A, and report the accuracy

of both conditions.

Goals. Q1: Can our model perform well when meeting

the novel attribute combinations? Q2: If not, what actually

Table 3: Comparisons between NMNs on CLEVR-

CoGenT. Top section: results of the test set; Bottom sec-

tion: results of the validation set. Using the ground-truth

scene graphs, our XNMs generalize very well and do not

suffer from shortcuts at all.

Method Program Condition A Condition B

PG+EE [13] supervised 96.6 73.7

TbD-net [17] supervised 98.8 75.4

XNM-Det supervised 98.1 72.6

NS-VQA [26] supervised 99.8 63.9

XNM-Det supervised 98.2 72.1

XNM-Det GT 98.3 72.2

XNM-GT supervised 99.9 99.9

XNM-GT GT 100 100

causes the reasoning shortcut?

Results. Results of CLEVR-CoGenT are displayed in

Table 3. A1: When using the ground-truth scene graphs,

our XNMs perform perfectly on both Condition A and Con-

dition B. Novel combinations of attributes in Condition B

do not cause the performance drop at all. However, when

using the detected scene graphs, where node embeddings

are RoI features that fuse all attribute values, our generaliza-

tion results on Condition B drops to 72.1%, suffering from

the dataset shortcut just like other existing models [13, 17].

Filter

[cylinder]

Filter

[purple]

Filter

[cube]

Query

[shape] cylinder

(a) (b) (c)

Figure 5: Failure cases of our Det setting on Condition B of

CoGenT.

A2: Figure 5 shows some typical failure cases of our

Det setting on Condition B. In case (a), our model cannot

recognize purple cubes as “cube” because all cubes are col-

ored one of gray, blue, brown, or yellow in the training data.

Similarly, in case (b) and (c), whether an object is recog-

nized as a “cube” or a “cylinder” by our model is actually

determined by its color. However, in our GT setting, which

is given the ground-truth visual labels, we can achieve a

perfect performance. This gap reveals that the challenge of

CLEVR-CoGenT mostly comes from the vision bias, rather

than the reasoning shortcut.

78382



Filter

[small]

Filter

[yellow]

Filter

[metal]

Same

[shape]

Filter

[small]

Filter

[metal]

Query

[color]

Anser:cyan

Filter

[large]

Filter

[gray]

Filter

[cube]

Relate

[behind]

Filter

[large]

Filter

[small]

Filter

[brown]

Filter

[rubber]

Filter

[sphere]

Union Count

Anser: 3

Figure 4: Reasoning visualizations of two CLEVR samples. Question 1: What number of objects are either big objects that

are behind the big gray block or tiny brown rubber balls? Question 2: The other small shiny thing that is the same shape

as the tiny yellow shiny object is what color? We plot a dot for each object and darker (red) dots indicate higher attention

weights.

4.3. VQAv2.0

Settings. VQAv2.0 [6] is a real-world visual Q&A

dataset which does not have annotations about scene graphs

and module programs. We used the grounded visual fea-

tures of [2] as node features, and concatenated node em-

beddings as edge features. We set K = 1 and fused the

question embedding with our output feature for answer pre-

diction. Following [2], we used softmax over objects for

node attention computation.

Goals. We used VQAv2.0 to demonstrate the generality

and robustness of our model in the practical case.

Results. We list the results in Table 4. We follow Stack-

NMN [9] to build the module program in a stacked soft

manner, but our model can achieve better performance as

our reasoning over scene graphs is more powerful than their

pixel-level operations.

Recall that [13, 17] are not applicable in open-

vocabulary input, and [26] relies on the fixed label represen-

tation, so it is hard to apply them on practical datasets. In

contrast, our XNMs are flexible enough for different cases.

5. Conclusions

In this paper, we proposed X neural modules (XNMs)

that allows visual reasoning over scene graphs, represented

by different detection qualities. Using the ground-truth

Table 4: Single-model results on VQAv2.0 validation set

and test set. †: values reported in the original papers.

Method expert layout validation(%) test(%)

Up-Down [2] no 63.2† 66.3

N2NMN [10] yes - 63.3†

StackNMN [9] no - 64.1†

XNMs no 64.7 67.5

scene graphs and programs on CLEVR, we can achieve

100% accuracy with only 0.22M parameters. Compared

to existing neural module networks, XNMs disentangle the

“high-level” reasoning from the “low-level” visual percep-

tion, and allow us to pay more attention to teaching A.I. how

to “think”, regardless of what they “look”. We believe that

this is an inspiring direction towards explainable machine

reasoning. Besides, our experimental results suggest that vi-

sual reasoning benefits a lot from high-quality scene graphs,

revealing the practical significance of the scene graph re-

search.

Acknowledgments. The work is supported by NSFC

key projects (U1736204, 61661146007, 61533018), Min-

istry of Education and China Mobile Research Fund (No.

20181770250), THUNUS NExT Co-Lab, and Alibaba-

NTU JRI.

88383



References

[1] D. Amodei, S. Ananthanarayanan, R. Anubhai, J. Bai,

E. Battenberg, C. Case, J. Casper, B. Catanzaro, Q. Cheng,

G. Chen, et al. Deep speech 2: End-to-end speech recogni-

tion in english and mandarin. In International Conference

on Machine Learning, 2016. 1

[2] P. Anderson, X. He, C. Buehler, D. Teney, M. Johnson,

S. Gould, and L. Zhang. Bottom-up and top-down atten-

tion for image captioning and visual question answering. In

CVPR, 2018. 8

[3] J. Andreas, M. Rohrbach, T. Darrell, and D. Klein. Neural

module networks. In CVPR, 2016. 2

[4] S. Antol, A. Agrawal, J. Lu, M. Mitchell, D. Batra,

C. Lawrence Zitnick, and D. Parikh. Vqa: Visual question

answering. In ICCV, 2015. 1, 2

[5] L. Chen, H. Zhang, J. Xiao, X. He, S. Pu, and S.-

F. Chang. Scene dynamics: Counterfactual critic multi-

agent training for scene graph generation. arXiv preprint

arXiv:1812.02347, 2018. 3

[6] Y. Goyal, T. Khot, D. Summers-Stay, D. Batra, and

D. Parikh. Making the v in vqa matter: Elevating the role of

image understanding in visual question answering. In CVPR,

2017. 1, 2, 3, 8

[7] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask r-cnn.

In ICCV, 2017. 6

[8] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In CVPR, 2016. 1

[9] R. Hu, J. Andreas, T. Darrell, and K. Saenko. Explainable

neural computation via stack neural module networks. In

ECCV, 2018. 2, 3, 5, 6, 8

[10] R. Hu, J. Andreas, M. Rohrbach, T. Darrell, and K. Saenko.

Learning to reason: End-to-end module networks for visual

question answering. In ICCV, 2017. 2, 3, 6, 8

[11] D. A. Hudson and C. D. Manning. Compositional attention

networks for machine reasoning. ICLR, 2018. 2

[12] J. Johnson, B. Hariharan, L. van der Maaten, L. Fei-Fei, C. L.

Zitnick, and R. Girshick. Clevr: A diagnostic dataset for

compositional language and elementary visual reasoning. In

CVPR, 2017. 1, 2, 3, 5, 6

[13] J. Johnson, B. Hariharan, L. van der Maaten, J. Hoffman,

L. Fei-Fei, C. L. Zitnick, and R. B. Girshick. Inferring and

executing programs for visual reasoning. In ICCV, 2017. 1,

2, 3, 6, 7, 8

[14] J. Johnson, R. Krishna, M. Stark, L.-J. Li, D. Shamma,

M. Bernstein, and L. Fei-Fei. Image retrieval using scene

graphs. In CVPR, 2015. 3

[15] Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. nature,

521(7553):436, 2015. 1

[16] Y. Li, W. Ouyang, B. Zhou, J. Shi, C. Zhang, and X. Wang.

Factorizable net: an efficient subgraph-based framework for

scene graph generation. In ECCV, 2018. 3

[17] D. Mascharka, P. Tran, R. Soklaski, and A. Majumdar.

Transparency by design: Closing the gap between perfor-

mance and interpretability in visual reasoning. In CVPR,

2018. 2, 3, 6, 7, 8

[18] M. L. Minsky. Logical versus analogical or symbolic versus

connectionist or neat versus scruffy. AI magazine, 12(2):34,

1991. 1

[19] E. Perez, F. Strub, H. De Vries, V. Dumoulin, and

A. Courville. Film: Visual reasoning with a general con-

ditioning layer. AAAI, 2018. 2

[20] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-cnn: Towards

real-time object detection with region proposal networks. In

NIPS, 2015. 1

[21] A. Santoro, D. Raposo, D. G. Barrett, M. Malinowski,

R. Pascanu, P. Battaglia, and T. Lillicrap. A simple neural

network module for relational reasoning. In NIPS, 2017. 2

[22] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre,

G. Van Den Driessche, J. Schrittwieser, I. Antonoglou,

V. Panneershelvam, M. Lanctot, et al. Mastering the game

of go with deep neural networks and tree search. nature,

529(7587):484, 2016. 1

[23] I. Sutskever, O. Vinyals, and Q. V. Le. Sequence to sequence

learning with neural networks. In NIPS, 2014. 5

[24] D. Teney, L. Liu, and A. van den Hengel. Graph-

structured representations for visual question answering.

arXiv preprint, 2017. 3

[25] D. Xu, Y. Zhu, C. B. Choy, and L. Fei-Fei. Scene graph

generation by iterative message passing. In CVPR, 2017. 3

[26] K. Yi, J. Wu, C. Gan, A. Torralba, P. Kohli, and J. B. Tenen-

baum. Neural-symbolic vqa: Disentangling reasoning from

vision and language understanding. NIPS, 2018. 2, 3, 6, 7, 8

[27] X. Yin and V. Ordonez. Obj2text: Generating visually de-

scriptive language from object layouts. In EMNLP, 2017.

3

[28] R. Zellers, M. Yatskar, S. Thomson, and Y. Choi. Neural

motifs: Scene graph parsing with global context. In CVPR,

2018. 2, 3

[29] Y. Zhang, J. Hare, and A. Prügel-Bennett. Learning to

count objects in natural images for visual question answer-

ing. arXiv preprint arXiv:1802.05766, 2018. 4

98384


