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Abstract

Indoor scenes exhibit rich hierarchical structure in 3D

object layouts. Many tasks in 3D scene understanding can

benefit from reasoning jointly about the hierarchical context

of a scene, and the identities of objects. We present a varia-

tional denoising recursive autoencoder (VDRAE) that gen-

erates and iteratively refines a hierarchical representation

of 3D object layouts, interleaving bottom-up encoding for

context aggregation and top-down decoding for propaga-

tion. We train our VDRAE on large-scale 3D scene datasets

to predict both instance-level segmentations and a 3D ob-

ject detections from an over-segmentation of an input point

cloud. We show that our VDRAE improves object detection

performance on real-world 3D point cloud datasets com-

pared to baselines from prior work.

1. Introduction

The role of context in 3D scene understanding is central.

Much prior work has focused on leveraging contextual cues

to improve performance on various perception tasks such as

object categorization [12], semantic segmentation [35], and

object relation graph inference from images [62]. However,

the benefit of hierarchical context priors in 3D object detec-

tion and 3D instance-level segmentation using deep learn-

ing is significantly less explored. A key challenge in using

deep network formulations for capturing the patterns of hi-

erarchical object layout is that these patterns involve chang-

ing numbers of objects with varying semantic identities and

relative positions. In this paper, we propose a recursive au-

toencoder1 (RAE) approach that is trained to predict and

iteratively “denoise” a hierarchical 3D object layout for an

entire scene, inducing 3D object detections and object in-

stance segmentations on an input point cloud.

*corresponding author
1Also known as a recursive neural network (RvNN) autoencoder.
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Figure 1: We present a hierarchy-aware variational denois-

ing recursive autoencoder (VDRAE) for predicting 3D ob-

ject layouts. The input is a point cloud which we over-

segment (top left). Our VDRAE constructs and refines a

3D object hierarchy, inducing semantic segmentations (top

right, category-colored point cloud), and 3D instance ori-

ented bounding boxes (bottom). The refined 3D bounding

boxes tightly and fully contain observed objects.

Recent work has demonstrated that encoding the context

in 3D scene layouts using a set of pre-specified “scene tem-

plates” with restricted sets of present objects can lead to

improvements in 3D scene layout estimation and 3D object

detection [63]. However, manually specifying templates of

scene layouts to capture the diversity of real 3D environ-

ments is a challenging and expensive endeavor. Real envi-

ronments are hierarchical: buildings contain rooms such as

kitchens, rooms contain functional regions such as dining

table arrangements, and functional regions contain arrange-

ments of objects such as plates and cutlery. This implies

that explicit representation of the hierarchy structure of 3D

scenes can benefit 3D scene understanding tasks such as ob-

ject detection and 3D layout prediction.
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Given a scene represented as a point cloud, we first per-

form an over-segmentation. Our RvNN is trained to en-

code all segments in a bottom-up context aggregation of

per-segment information and inter-segment relations, form-

ing a segment hierarchy. The decoding phase performs a

top-down context propagation to regenerate subtrees of the

hierarchy and generate object proposals. This encoding-

decoding refinement process is iterated, interleaving con-

text aggregation and hierarchy refinement. By training our

denoising autoencoder in a generative fashion, this process

converges to a refined set of object proposals whose layout

lies in the manifold of valid scene layouts learned by the

generative model (Figure 1). In summary, our approach is

an iterative 3D object layout denoising autoencoder which

generates and refines object proposals by recursive context

aggregation and propagation within the inferred hierarchy

structure. We make the following contributions:

• We predict and refine a multi-object 3D scene layout

for an input point cloud, using hierarchical context ag-

gregation and propagation based on a denoising recur-

sive autoencoder (DRAE).

• We learn a variational DRAE (VDRAE) to model

the manifold of valid object layouts, thus facilitat-

ing layout optimization through an iterative infer-and-

generate process.

• We demonstrate that our approach improves 3D ob-

ject detection performance on large reconstructed 3D

indoor scene datasets.

2. Related work

Our goal is to improve 3D object detection by leveraging

contextual information with a hierarchical representation of

a 3D scene. Here we focus on reviewing the most relevant

work in object detection. We describe prior work that uses

context during object detection, work on object detection in

3D, and hierarchical context modeling.

Object detection in 2D. Object detection has long been

recognized as an important problem in computer vision

with much prior work in the 2D domain [11, 13, 14, 16,

25, 33, 41, 42]. Using contextual information to improve

object detection performance has also been studied exten-

sively [5, 6, 17, 38, 54]. Choi et al. [7] show that using

contextual information enables predictions in 3D from RGB

images. More recently, Zellers et al. [62] show improved

object detections by learning a global context using a scene

graph representation. These approaches operate in 2D and

are subject to the viewpoint dependency of single image in-

puts. The limited field of view and information loss during

projection can significantly limit the benefit of contextual

information.

Object detection with RGB-D. The availability of com-

modity RGB-D sensors led to significant advances in 3D

bounding box detection from RGB-D image inputs [9, 15,

51, 52]. However, at test time, these object detection al-

gorithms still only look at a localized region from a single

view input and do not consider relationships between ob-

jects (i.e. contextual information). There is another line

of work that performs contextual reasoning on single view

RGB-D image inputs [23, 29, 43, 45, 48, 56, 63] by lever-

aging patterns of multi-object primitives or point cloud seg-

ments to infer and classify small-scale 3D layouts. Zhang

et al. [63] model rooms using four predefined templates

(each defining a set of objects that may appear) to detect

objects in RGB-D image inputs. If the observed room con-

tains objects that are not in the initial template, they cannot

be detected. Another line of work on street and urban RGB-

D data uses bird’s eye view representation to capture context

for 3D object detection [2, 49, 59]. In contrast, we operate

with fused 3D point cloud data of entire rooms, and learn

a generative model of 3D scene layouts from a hierarchical

representation.

Object detection in 3D point clouds. Recently, the avail-

ability of large scale datasets [1, 3, 8] has fostered advances

in 3D scene understanding [58]. There has been an explo-

sion of methods that focus on the semantic segmentation

of point clouds [10, 18, 19, 24, 28, 30, 39, 53, 60]. How-

ever, there is far less work addressing instance segmenta-

tion or object detection in fused 3D point clouds, at room-

scale or larger. Both Qi et al. [39], Wang et al. [55] pro-

pose connected component-based heuristic approaches to

convert semantic segmentations to instances. Wang et al.

[55] is the state-of-the-art 3D point cloud instance seg-

mentation method. They use a learned point similarity

as a proxy for context. A related earlier line of work

segments a point cloud or 3D mesh input into individual

objects and then retrieves matching models from a CAD

database [4, 27, 36, 45] to create a synthetic 3D represen-

tation of the input scene. Our approach directly represents

object detections as a hierarchy of 3D bounding boxes and is

motivated by the observation that at the scale of 3D rooms,

modeling the hierarchical context of the 3D object layout

becomes important.

Hierarchical context in 3D. Hierarchical representations

have been used to learn grammars in natural language and

images [50], 2D scenes [46], 3D shapes [26, 61], and 3D

scenes [32]. A related line of work parses RGB or RGB-D

scenes hierarchically using And-Or graphs [20, 21, 34, 40,

65] for a variety of tasks. For full 3D scenes, there has been

very limited amount of available training data with ground

truth hierarchy annotations. Therefore, prior work in hier-

archical parsing of 3D scenes does not utilize high capacity

deep learning models. For example, Liu et al. [32] is lim-
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Figure 2: Our system involves two neural net components: a segment-segment affinity prediction network which we use to

construct hierarchical groupings of 3D objects, and a variational denoising recursive autoencoder (VDRAE) which refines

the 3D object hierarchies. At test time, the affinity prediction network is used to predict segment-segment affinities. We

construct a hierarchy from the segment affinity graph using normalized graph-cuts. The VDRAE then encodes this hierarchy

to aggregate contextual queues and decodes it to propagate information between nodes. These two stages are iterated to

produce a denoised set of 3D object detections and instance segmentations that better match the input scene.

ited to training and testing on a few dozens of manually

annotated scenes. Zhao and Zhu [64] evaluated on only 534

images. In this paper, we use a recursive autoencoder neural

network to learn a hierarchical representation for the entire

3D scene directly from large-scale scene datasets [1, 3].

3. Method

The input to our method is a 3D point cloud representing

an indoor scene. The output is a set B of objects represented

by oriented bounding boxes (OBBs), each with a category

label. We start from an initial over-segmentation S contain-

ing candidate object parts (Section 3.1). We then predict

segment pair affinities and use a normalized cuts [47] ap-

proach to construct an initial hierarchy h used for context

propagation (Section 3.2). Having built the hierarchy, we

iteratively refine the 3D object detections and the hierarchy

based on a recursive autoencoder network which adjusts the

structure of the hierarchy and its nodes to produce 3D object

detections at the leaf nodes (Section 3.3). We call the com-

bination of the object detections and the constructed hierar-

chy {B, h} the 3D scene layout. Our output set of labeled

bounding boxes B contains a category label for all object

detections, or a label indicating a particular box is not an

object. Figure 2 shows an overview of our method.

3.1. Initial Over-segmentation

Our input is a point cloud for which we create an initial

over-segmentation S as a starting point for our object detec-

tion. Distinct objects are represented by oriented bounding

boxes containing parts of the point cloud. We use features

of the object points as well as features of the spatial rela-

tions between objects to characterize the object layout and

to train our network such that it can detect objects.

There is much prior work that could be used to provide

an initial over-segmentation of the point cloud. We use

Segment graph construction

Segment pair

Affinity

MLP

…

Hierarchy construction
(a) (b)

Figure 3: We train an MLP to predict segment pair affinities

and create a segment affinity graph (a). We then construct

a hierarchy from the resulting segment affinity graph using

normalized cuts (b).

a representative unsupervised method based on a greedy

graph-based approach [11] that was extended for point

clouds by [22]. Our method follows [22] in using graph cuts

for an over-segmentation of the point cloud based on point

normal differences to create the initial set of segments.

Each segment is extracted from the point cloud as an

individual set of points, for which we compute oriented

bounding boxes and point features as described in the fol-

lowing sections.

3.2. Hierarchy Initialization

During hierarchy construction we address the follow-

ing problem. The input is the initial over-segmentation S
and the output is a binary tree h representing a hierarchi-

cal grouping of the objects. Each object is represented as

a 3D point cloud with an oriented bounding box (OBB),

and a category label. The 3D point cloud is a set of points

{pi} = {xi, yi, zi, ri, gi, bi} with their 3D (x, y, z) position

and color (r, g, b). The leaves of this initial hierarchy h are

the segments and the internal nodes represent groupings of

the segments into objects and groups of objects. The root of

the tree represents the entire room.

To construct the initial hierarchy from the input seg-

ments we first train a multi-layer perceptron (MLP) to pre-
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dict segment pair affinities which indicate whether the two

segments belong to the same object instance or not. The

input to the MLP is a set of features capturing segment-

segment geometric and color relationships, proposed by

prior work [57]. We also tried using learned features ob-

tained from a network trained on object-level label classi-

fication, but empirically found the features in [57] to work

better in our experiments. The MLP is trained to predict bi-

nary pair affinity from these features under a squared hinge

loss. Once we computed the segment pair affinities, the

segments are then grouped into a hierarchy by using nor-

malized cuts [47]. Starting from the root node, we split the

segments into two groups recursively. The splitting stops

when all groups have only one segment (leaf node). The cut

cost E(u, v) = ecea between two segments u and v in the

normalized cut is initially equal to the affinity ea between

the segments, but is then adjusted by the factor ec during

layout optimization (as described in the next section). Fig-

ure 3 shows the process of our hierarchy construction.

3.3. Object Detection and Layout Refinement

We describe our iterative optimization for predicting the

object layout {B, h}. We begin with the basic recursive au-

toencoder (RAE) for context aggregation and propagation.

We then discuss a denoising version of the RAE (DRAE)

designed for adjusting the object layout to better match a

observed layout in the training set. Based on that, we intro-

duce a Variational DRAE (VDRAE) which is a generative

model for object layout improvement. It maps a layout onto

a learned manifold of plausible layouts, and then generates

an improved layout to better explain the input point cloud.

Recursive autoencoder for context propagation. Given

the segments and the hierarchy, the recursive autoencoder

(RAE) performs a bottom-up RvNN encoding for context

aggregation, followed by a top-down RvNN decoding for

context propagation. The encoder network takes as input

the features (codes) of any two nodes to be merged (accord-

ing to the hierarchy) and outputs a merged code for their

parent node: xenc
p = fenc(x

enc
l , xenc

r ), where xenc
l , xenc

r and

xenc
p denote the codes of two sibling nodes and their parent

node, respectively. fenc is a MLP with two hidden layers for

node grouping. The decoder takes the code of an internal

node of the hierarchy as input and generates the codes of its

two child nodes: [xdec
l , xdec

r ] = fdec(x
dec
p , xenc

p ), where fdec

is a two-layer MLP decoder for node ungrouping (Figure 4).

An additional box encoder generates the initial codes

from the 3D point cloud within an OBB before the bottom-

up pass, and a box decoder generates the final adjusted

OBBs from the codes of the leaf nodes after the top-down

pass: xenc
n = fpnt(Pn), tn = fbox(x

dec
n ), where xenc

n and

xdec
n denote the code for an node n in encoding and decod-

ing. Pn is the set of 3D points of node n. tn is the parameter

type

type

type

type

Input segment layout Output object layout

RvNN decodingRvNN encoding

Jump connection

KL loss

Figure 4: Our denoising recursive autoencoder (RAE) takes

an input segment layout from an over-segmentation and

performs bottom-up encoding for context aggregation (left

side), followed by top-down decoding for context propaga-

tion (right side). The encoding-decoding process generates

a refined hierarchy with 3D object detections as leaf nodes.

vector of an output OBB, encoding the offsets of its po-

sition, dimension and orientation. fpnt is a PointCNN [28]

module for box encoding, and fbox a two-layer MLP for box

decoding. The PointCNN2 module is pretrained on a clas-

sification task for predicting object category labels from the

point clouds of objects in the training set.

Denoising RAE for object detection and layout refine-

ment. To endow the RAE with the ability to improve the

predicted layout with respect to a target layout (e.g. a ob-

served layout in the training set), a natural choice is to

train a denoising RAE. Given a noisy input segment lay-

out, we learn a Denoising RAE (DRAE) which generates

a denoised layout. By noise, we mean perturbations over

categorical labels, positions, dimensions and orientation of

the bounding boxes. In DRAE, denoising is accomplished

by the decoding phase which generates a new hierarchy

of OBBs that refines, adds or removes individual object

OBBs. The key for this generation lies in the node type

classifier trained at each node (Figure 4) which determines

whether a node is a leaf ‘object’ node at which decoding

terminates, or an internal node at which the decoding con-

tinues: on = f node
cls (xdec

n , xenc
n ), with on = 0 indicating

a leaf ‘object’ node and on = 1 an internal ‘non-object’

node For ’object’ nodes, another object classifier is applied

to determine the semantic categories: cn = f obj
cls (x

dec
n xenc

n ),
where cn is the categorical label for node n. For training,

we compute the IoU of all nodes in the encoding hierar-

chy against ground-truth object bounding boxes and mark

all nodes with IoU ≤ 0.5 as ‘object’.

2Alternative encoding modules such as PointNet++ can be used instead.
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Algorithm 1: VDRAE 3D Scene Layout Prediction.

Input : Point cloud of indoor scene: P ; Trained VDRAE.

Output: 3D object layout {B, h}.

1 S ← Over-segmentation(P);

2 h ← HierarchyConstruction(S, P);

3 repeat

4 B ← VDRAE(S, h, P);

5 h ← HierarchyConstruction(B, S, P);

6 until Termination condition met;

7 return {B, h};

Variational DRAE for generative layout optimization.

We train a Variational DRAE (VDRAE) to capture a man-

ifold of valid hierarchies of OBBs from our training data.

The training loss is:

L =

N
∑

n

(Lnode
cls (on, o

∗
n) + Lobj

cls (cn, c
∗
n) + Lobj

obb(tn, t
∗
n))+LKL

where N are all decoding nodes, Lnode
cls is a binary cross-

entropy loss over two categories (‘object’ vs ‘non-object’),

o∗n is the ground-truth label, Lobj
cls is a multi-class cross-

entropy loss over semantic categories, o∗n is the ground-truth

categorical label, Lobj
obb is an L1 regression loss on the OBB

parameters of the node, t∗n is the ground-truth OBB param-

eters and LKL is the KL divergence loss at root node. Note

that the Lobj
cls and Lobj

obb terms exist only for ‘object’ nodes.

The last term serves as a regularizer which measures the KL

divergence between the posterior and a normal distribution

p(z) at the root node. This enables our VDRAE learning to

map to the true posterior distribution of observed layouts.

Layout refinement using the VDRAE. Once trained, the

VDRAE can be used to improve an object layout. Due to the

coupling between object detection and hierarchy construc-

tion, we adopt an iterative optimization algorithm which al-

ternates between the two stages (see Algorithm 1). Given an

initial segment layout extracted from the input point cloud,

our method first performs a VDRAE inference step (test-

time step) to generate a hierarchy of object bounding boxes

explaining the input point cloud. It then uses the decoding

feature to infer a new hierarchy, which will be used for the

VDRAE test in the next iteration. In the next iteration, the

binary classification ‘object’ vs ‘non-object’ confidence is

used to scale the normalized cut affinity ea for two nodes u
and v using the following factor ec:

ec(u, v) =

{

−log(1− cs), u and v in same leaf node s
0.1, otherwise

where cs is the classification confidence of node s to be la-

beled as ‘object’. The scaled affinity E(u, v) = ecea is then

Figure 5: Example iterative refinement of initial object lay-

out (leftmost column) under successive refinement itera-

tions of our VDRAE network (columns to the right).

used to refine the hierarchy construction. This process re-

peats until the structure of the hierarchy between iterations

remains unchanged. Figure 5 shows an example of the iter-

ative refinement. The optimization converges with at most

5 iterations for all the scenes we have tested. This itera-

tive optimization gradually “pushes” the object layout into

the layout manifold learned by VDRAE. Please refer to the

supplemental material for a discussion of convergence.

4. Implementation Details

In this section, we describe the implementation details of

our network architectures, the relevant parameters, and the

training and testing procedures.

Initial over-segmentation and feature extraction. For

the initial over-segmentation we use threshold values k =
0.01 which we empirically found to perform well on train-

ing scenes (Section 3.1). For the PointCNN [28] features,

we train the PointCNN to predict object class labels using

the training set data. We train the network to minimize the

cross-entropy loss over 41 object classes taking 2048 points

per input and outputting to a 256-d vector for classification.

Note that PointCNN is a pre-trained feature extractor and

we didn’t fine-tune it during the training of VDRAE.

Hierarchy construction. The MLP for segment pair

affinity prediction consists of 4 FC layers (with sigmoid lay-

ers). The input is a 25-d feature, and the output is a single

affinity value. We use the detault parameter setting for the

solver used in normalized cuts. It takes about 0.1s to build

a hierarchy from a segment graph.

Variational denoising recursive autoencoder. fenc has

two 1000-d inputs and one 1000-d output. fdec has one

1000-d input and two 1000-d outputs. f node
cls takes a 1000-

d vector as input, and outputs a binary label. f obj
cls takes a

1000-d vector as input, and outputs a categorical label and

OBB parameter offsets. This is achieved by using a softmax

layer and a fully-connected layer. To deal with the large

imbalance between positive (‘object’) and negative (‘non-

object’) classes during training, we use a focal loss [31] with
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γ = 0 for positives and γ = 5 for negative. This makes

the training focus on all positive samples and hard negative

samples. All the items in L can be trained jointly. However,

to make the training easier, we first train by Lnode
cls and LKL to

make the network have the ability to distinguish whether a

node is a single object, and then fine-tune by Lobj
cls and Lobj

obb.

Training and testing details. We implement the segment

pair affinity network and the VDRAE using PyTorch [37].

For VDRAE, We use the Adam optimizer with a base learn-

ing rate of 0.001. We use the default hyper-parameters of

β1 = 0.9, β2 = 0.999 and no weight decay. The batch

size is 8. The VDRAE can be trained in 15 hours on a

Nvidia Tesla K40 GPU. At testing time, a forward pass of

the VDRAE takes about 1s. An Non-Maximum Suppres-

sion with IOU 0.5 is performed on the detected boxes after

the inference of VDRAE.

5. Results

We evaluate our proposed VDRAE on 3D object detec-

tions in 3D point cloud scenes (see supplemental for seman-

tic segmentation evaluation).

5.1. Experimental Datasets

We use two RGB-D datasets that provide 3D point

clouds of interior scenes: S3DIS [1] and Matterport3D [3].

S3DIS consists of six large-scale indoor areas reconstructed

with the Matterport Pro Camera from three different univer-

sity buildings. These areas were annotated into 270 disjoint

spaces (rooms or distinct regions). We use the k-fold cross

validation strategy in [1] for train and test. Matterport3D

consists of semantically annotated 3D reconstructions based

on RGB-D images captured from 90 properties with a Mat-

terport Pro Camera. The properties are divided into room-

like regions. We follow the train/test split established by

the original dataset, with 1, 561 rooms in the training set

and 408 rooms in the testing set.

5.2. Evaluation

Our main evaluation metric is the average precision of

the detected object bounding boxes against the ground truth

bounding boxes at a threshold IoU of 0.5 (i.e. any de-

tected bounding box that has more than 0.5 intersection-

over-union overlap with its ground truth bounding box is

considered a match). We compare our method against

baselines from prior work on object detection in 3D point

clouds. We then present ablated versions of our method

to demonstrate the impact of different components on de-

tection performance, as well as experiments to analyze the

impact of the over-segmentation coarseness and the impact

of successive refinement iterations.

Chair Table Sofa Board mAP

Seg-Cluster [55] 0.23 0.33 0.05 0.13 0.19

Sliding PointCNN [28] 0.36 0.39 0.23 0.07 0.26

PointNet [39] 0.34 0.47 0.05 0.12 0.25

SGPN [55] 0.41 0.50 0.07 0.13 0.28

Ours (flat context) 0.35 0.47 0.32 0.10 0.31

Ours 0.45 0.53 0.43 0.14 0.39

Table 1: Comparison of our approach against prior work

on object detection in 3D point cloud data. Values report

average precision at IOU of 0.5 on the S3DIS dataset. Our

hierarchy-refining VDRAE outperforms all prior methods.

Qualitative examples. Figure 6 shows detection results

on the Matterport3D test set (see supplement for more ex-

amples). Our VDRAE leverages hierarchical context to de-

tect and refine 3D bounding boxes for challenging cases

such as pillows on beds, and lamps on nightstand cabinets.

Comparison to baseline methods. We evaluate our ap-

proach against several baselines from prior work that pro-

duce object detections for indoor 3D scene point clouds:

• Seg-Cluster: Approach proposed by [55] applies se-

mantic segmentation (SegCloud [53]) followed by Eu-

clidean clustering [44].

• PointNet: Predicts the category of points [39] and

uses breadth-first search to group nearby points with

the same category, inducing object instances. We use

PointNet instead of other point-based neural networks

as PointNet proposed this object detection pipeline.

• Sliding PointCNN: A baseline using a 3D sliding win-

dow approach with PointCNN [28] features.

• SGPN: A state-of-the-art semantic instance segmenta-

tion approach for point clouds [55].

• Ours (flat context): A baseline using a flat con-

text representation instead of leveraging the hierarchy

structure, in which xdec
n is the concatenation of en-

coded features xenc
n and the average encoded features

of all nodes (
∑N

n xenc
n )/n.

Tables 1 and 2 report average precision on the S3DIS and

Matterport3D datasets, showing that our approach outper-

forms all baselines. The flat context baseline performs

worse than our hierarchy-aware VDRAE but better than the

baselines that do not explicitly represent context. Figure 7

qualitatively shows results from the Matterport3D test set,

comparing our approach with the highest performing prior

work baseline using SGPN.

Ablation of method components. We evaluate the im-

pact of each components using the following variants:

• No hierarchy: We use PointCNN [28] features for

each node to predict the object category and regress
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chair desk lamp cabinet TV bed cushion sofa bathtub toilet

Figure 6: 3D scene layout predictions using our VDRAE on the Matterport3D test set. The first column shows the input point

cloud. The second column is the over-segmentation from which we construct an initial segment hierarchy. The third column

shows the 3D object detections with colors by category. The final two columns show bounding boxes for the detections.

Our approach predicts hierarchically consistent 3D layouts where objects such as lamps, pillows and cabinets are detected in

plausible positions and orientations relative to other objects and the global structure of the scene.

Chair Table Cabinet Cushion Sofa Bed Sink Toilet TV Bathtub Lighting mAP

Sliding PointCNN [28] 0.22 0.21 0.03 0.19 0.20 0.36 0.07 0.16 0.05 0.15 0.10 0.16

PointNet [39] 0.28 0.32 0.06 0.21 0.28 0.25 0.17 0.08 0.10 0.11 0.06 0.18

SGPN [55] 0.29 0.24 0.07 0.18 0.30 0.33 0.15 0.17 0.09 0.16 0.11 0.19

Ours (flat context) 0.24 0.18 0.08 0.21 0.18 0.27 0.22 0.25 0.07 0.21 0.07 0.18

Ours 0.37 0.27 0.11 0.24 0.28 0.43 0.23 0.35 0.19 0.27 0.19 0.27

Table 2: Average precision of object detection at IoU 0.5 on the Matterport3D dataset. We compare our full method (‘ours’)

against several baselines. Refer to text for the details of the baselines.

an OBB without using a hierarchy. We add 4 FC lay-

ers after the PointCNN layers to increase the number

of network parameter and make the comparison fair.

• No OBB regression: We turn off the OBB regression

module for leaf nodes and train from scratch.

• No iteration (bvh): No iteration for testing. The hi-

erarchy is constructed through recursive binary splits

considering only geometric separation between seg-
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Figure 7: Qualitative 3D object detection results on Mat-

terport3D test set using our VDRAE (top row) and the best

performing baseline from prior work (SGPN[55], bottom

row). Our approach produces more accurate bounding box

detections and fewer category errors. For example, chairs

are correctly categorized and have tight bounding boxes at

the top left and top right.

Chair Table Sofa Board mAP

no hierarchy 0.34 0.41 0.35 0.08 0.30

no OBB regression 0.41 0.47 0.40 0.11 0.35

no iteration (bvh) 0.37 0.47 0.38 0.10 0.33

no iteration (our hier) 0.39 0.51 0.39 0.12 0.35

Ours 0.45 0.53 0.43 0.14 0.39

Table 3: Ablation of the components of our approach. Val-

ues report average precision at IoU of 0.5 on the S3DIS

dataset. Our full VDRAE outperforms all ablations.

ments, i.e. bounding volume hierarchy (bvh).

• No iteration (our hier): No iteration for testing. The

hierarchy is built by our hierarchy initialization ap-

proach.

Table 3 shows the results. The full method performs the

best. Not using a hierarchy degrades performance the most.

Removing OBB regression, and not performing iterative re-

finement are also detrimental but to a lesser extent.

Sensitivity to over-segmentation coarseness. We quan-

tify the impact of the over-segmentation coarseness thresh-

old parameter k of the method in [22] on S3DIS. We use five

threshold values k = 1.0, 0.1, 0.01, 0.001, 0.0001 to gener-

ate segments with different size and re-train the affinity net-

work and VDRAE respectively. Larger k produce bigger

segments. Figure 8 (a) shows that the best performance is

achieved when average segment size is 1.45m (k = 0.01).

Effect of iteration. We evaluate the effect of VDRAE re-

finement iteration by analyzing the hierarchy and 3D object

detections at each step. Figure 8 (b) shows recall against

ground-truth objects plotted against iteration number. Re-

call is computed by calculating the IoU of the OBB of each
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Figure 8: (a) mAP plotted against over-segmentation

coarseness (average segment size in meters). (b) recall

against VDRAE iteration count. (c) mAP against VDRAE

iteration count.

ground-truth object with all node OBBs in encoding hierar-

chy. If one of the IoU values is larger than 0.5, we consider

that a match against the ground-truth. Figure 8 (c) shows

the object detection mAP plotted against iteration number.

The benefit of iteration is apparent.

6. Conclusion

We presented an approach for predicting 3D scene layout

in fused point clouds by leveraging a hierarchical encoding

of the context. We train a network to predict segment-to-

segment affinities and use it to propose an initial segment

hierarchy. We then use a variational denoising recursive au-

toencoder to iteratively refine the hierarchy and produce 3D

object detections. We show significant improvements in 3D

object detection relative to baselines taken from prior work.

Limitations. Our current method has several limitations.

First, the hierarchy proposal and VDRAE are trained sepa-

rately. Incorporating these two stages will leverage the syn-

ergy between parsing hierarchies and refining the 3D scene

layouts. Second, the segment point features we use in our

VDRAE is trained independently on a classification task.

These features can also be learned end-to-end, resulting in

further task-specific improvements in performance.

Future work. We have only taken a small step towards

leveraging hierarchical representations of 3D scenes. There

are many avenues to pursue for future research. Reasoning

about the hierarchical composition of scenes into objects,

object groups, functional regions, rooms, and entire resi-

dences can benefit many tasks beyond 3D object detection.

We hope that our work will act as a catalyst in this promis-

ing research direction.
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