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Figure 1: Example photos and caricatures of two subjects in our dataset. Column (a) shows each identity’s real face photo, while two

generated caricatures of the same subjects by WarpGAN are shown in column (b) and (c). Caricatures drawn by artists are shown in the

column (d) and (e).

Abstract

We propose, WarpGAN, a fully automatic network that

can generate caricatures given an input face photo. Be-

sides transferring rich texture styles, WarpGAN learns to

automatically predict a set of control points that can warp

the photo into a caricature, while preserving identity. We

introduce an identity-preserving adversarial loss that aids

the discriminator to distinguish between different subjects.

Moreover, WarpGAN allows customization of the gener-

ated caricatures by controlling the exaggeration extent and

the visual styles. Experimental results on a public domain

dataset, WebCaricature, show that WarpGAN is capable of

generating caricatures that not only preserve the identities

but also outputs a diverse set of caricatures for each in-

put photo. Five caricature experts suggest that caricatures

generated by WarpGAN are visually similar to hand-drawn

ones and only prominent facial features are exaggerated.

1. Introduction

A caricature is defined as “a picture, description, or im-

itation of a person or a thing in which certain striking char-

acteristics are exaggerated in order to create a comic or

grotesque effect” [1]. Paradoxically, caricatures are images

with facial features that represent the face more than the

face itself. Compared to cartoons, which are 2D visual art

that try to re-render an object or even a scene in a usually

simplified artistic style, caricatures are portraits that have

exaggerated features of a certain persons or things. Some

example caricatures of two individuals are shown in Fig-

ure 1. The fascinating quality of caricatures is that even

with large amounts of distortion, the identity of person in

the caricature can still be easily recognized by humans. In

fact, studies have found that we can recognize caricatures

even more accurately than the original face images [2].

Caricature artists capture the most important facial fea-

tures, including the face and eye shapes, hair styles, etc.

Once an artist sketches a rough draft of the face, they will

start to exaggerate person-specific facial features towards a

larger deviation from an average face. Nowadays, artists

can create realistic caricatures through computer softwares

through: (1) warping the face photo to exaggerate the shape

∗ indicates equal contribution
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and (2) re-rendering the texture style [3]. By mimicking

this process, researchers have been working on automatic

caricature generation [4, 5]. A majority of the studies fo-

cus on designing a good structural representation to warp

the image and change the face shape. However, neither

the identity information nor the texture differences between

a caricature and a face photo are taken into consideration.

In contrast, numerous works have made progress with deep

neural networks to transfer image styles [6, 7]. Still these

approaches merely focus on translating the texture style for-

going any changes in the facial features.

In this work, we aim to build a completely automated

system that can create new caricatures from photos by uti-

lizing Convolutional Neural Networks (CNNs) and Gener-

ative Adversarial Networks (GANs). Different from previ-

ous works on caricature generation and style transfer, we

emphasize the following challenges in our paper:

• The caricature generation involves both texture

changes and shape deformation.

• The faces need to be exaggerated in a manner such that

they can still be recognized.

• Caricature samples exist in various visual and artistic

styles (see Figure 1).

In order to tackle these challenges, we propose a new

type of style transfer network, named WarpGAN, which de-

couples the shape deformation and texture rendering into

two tasks. Akin to a human operating an image processing

software, the generator in our system automatically predicts

a set of control points that warp the input face photo into

the closest resemblance to a caricature and also transfers

the texture style through non-linear filtering. The discrim-

inator is trained via an identity-preserving adversarial loss

to distinguish between different identities and styles, and

encourages the generator to synthesize diverse caricatures

while automatically exaggerating facial features specific to

the identity. Experimental results show that compared to

state-of-the-art generation methods, WarpGAN allows for

texture update along with face deformation in the image

space, while preserving the identity. Compared to other

style transfer GANs [13, 7], our method not only permits a

transfer in texture style, but also deformation in shape. The

contributions of the paper can be summarized as follows:

• A domain transfer network that decouples the texture

style and geometric shape by automatically estimating

a set of sparse control points to warp the images.

• A joint learning of texture style transfer and image

warping for domain transfer with adversarial loss.

• A quantitative evaluation through face recognition per-

formance shows that the proposed method retains iden-

tity information after transferring texture style and

(a) Global Parameters [14] [15] [16] (b) Dense Deformation Field [17]

(c) Landmark-based [18] (d) Control Points Estimating

Figure 2: Inputs and outputs of different types of warping modules

in neural networks. Given an image, WarpGAN can automatically

predict both control points and their displacements based on local

features.

warping. In addition, we conducted two percep-

tual studies where five caricature experts suggest that

WarpGAN generates caricatures that are (1) visually

appealing, (2) realistic; where only the appropriate fa-

cial features are exaggerated, and (3) our method out-

performs the state-of-the-art.

• An open-source1 automatic caricature generator where

users can customize both the texture style and exagger-

ation degree.

2. Related Work

2.1. Automatic Image Warping

Many works have been proposed to enhance the spa-

tial variability of neural networks via automatic warping.

Most of them warp images by predicting a set of global

transformation parameters [14, 16] or a dense deforma-

tion field [17]. Parametric methods estimate a small num-

ber of global transformation parameters and therefore can-

not handle fine-grained local warping while dense deforma-

tion needs to predict all the vertices in a deformation grid,

most of which are useless and hard to estimate. Cole et

al. [18] first proposed to use spline interpolation in neu-

ral networks to allow control point-based warping, but their

method requires pre-detected landmarks as input. Several

recent works have attempted to combine image warping

with GANs to improve the spatial variability of the genera-

tor, however these methods either train the warping mod-

ule separately [15, 12], or need paired data as supervi-

sion [15, 19]. In comparison, our warping module can be

inserted as an enhancement of a normal generator and can

be trained as part of an end-to-end system without further

1https://github.com/seasonSH/WarpGAN
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Approach Methodology Examples

Study Exaggeration Space Warping

Shape Deformation

[8] [4] [9]

Brennan et al. [8] Drawing Line User-interactive

Liang et al. [4] 2D Landmarks User-interactive

CaricatureShop [9] 3D Mesh Automatic

Texture Transfer

[10] [11]

Zheng et al. [10] Image to Image None

CariGAN [11] Image + Landmark Mask None

Texture + Shape

[12] Ours

CariGANs [12] PCA Landmarks Automatic

WarpGAN Image to Image Automatic

Table 1: Comparison of various studies on caricature generation. Majority of the published studies focus on either deforming the faces or

transferring caricature styles, unlike the proposed WarpGAN which focuses on both. On the other hand, WarpGAN deforms the face in

the image space thereby, truly capturing the transformations from a real face photo to a caricature. Moreover, WarpGAN does not require

facial landmarks for generating caricatures.

modification. To the best of our knowledge, this study is the

first work on automatic image warping with self-predicted

control points using deep neural networks. An overview of

different warping methods are shown in Figure 2.

2.2. Style Transfer Networks

Stylizing images by transferring art characteristics has

been extensively studied in literature. Given the effec-

tive ability of CNNs to extract semantic features [20, 21,

22, 23], powerful style transfer networks have been devel-

oped. Gatys et al. [24] first proposed a neural style trans-

fer method that uses a CNN to transfer the style content

from the style image to the content image. A limitation

of this method is that both the style and content images

are required to be similar in nature which is not the case

for caricatures. Using Generative Adversarial Networks

(GANs) [25, 26] for image synthesis has been a promis-

ing field of study, where state-of-the-art results have been

demonstrated in applications ranging from text to image

translation [27], image inpainting [28], to image super-

resolution [23]. Domain Transfer Network [29], Cycle-

GAN [13], StarGAN [30], UNIT [6], and MUNIT [7] at-

tempt image translation with unpaired image sets. All of

these methods only use a de-convolutional network to con-

struct images from the latent space and perform poorly

on caricature generation due to the large spatial varia-

tion [11, 12].

2.3. Caricature Generation

Studies on caricature generation can be mainly classified

into three categories: deformation-based, texture-based and

methods with both. Traditional works mainly focused on

exaggerating face shapes by enlarging the deviation of the

given shape representation from average, such as 2D land-

marks or 3D meshes [8, 4, 5, 9], whose deformation capa-

bility is usually limited as shape modeling can only happen

in the representation space. Recently, with the success of

GANs, a few works have attempted to apply style transfer

networks to image-to-image caricature generation [10, 11].

However, their results suffer from poor visual quality be-

cause these networks are not suitable for problems with

large spatial variation. Cao et al. [12] recently proposed to

decouple texture rendering and geometric deformation with

two CycleGANs trained on image and landmark space, re-

spectively. But with their face shape modeled in the PCA

subspace of landmarks, they suffer from the same prob-

lem of the traditional deformation-based methods. In this

work, we propose an end-to-end system with a joint learn-

ing of texture rendering and geometric warping. Compared

with previous works, WarpGAN can model both shapes and

textures in the image space with flexible spatial variability,

leading to better visual quality and more artistic shape ex-

aggeration. The differences between caricature generation

methods are summarized in Table 1.

3. Methodology

Let xp ∈ Xp be images from the domain of face photos,

xc ∈ Xc be images from the caricature domain and s ∈ S
be the latent codes of texture styles. We aim to build a net-

work that transforms a photo image into a caricature by both

transferring its texture style and exaggerating its geometric

shape. Our system includes one deformable generator (see
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Figure 3: The generator module of WarpGAN. Given a face image, the generator outputs an image with a different texture style and a set of

control points along with their displacements. A differentiable module takes the control points and warps the transferred image to generate

a caricature.

Name Meaning Name Meaning

xp real photo image yp label of photo image

xc real caricature image yc label of caricature image

Ec content encoder R decoder

Es style encoder D discriminator

p estimated control points ∆p displacements of p

M number of identities k number of control points

Table 2: Important notations used in this paper.

Figure 3) G, one style encoder Es and one discriminator D

(see Figure 4). The important notations used in this paper

are summarized in Table 2.

3.1. Generator

The proposed deformable generator in WarpGAN is

composed of three sub-networks: a content encoder Ec,

a decoder R and a warp controller. Given any image

x ∈ R
H×W×C , the encoder outputs a feature map Ec(x).

Here H , W and C are height, width and number of chan-

nels respectively. The content decoder takes Ec(x) and a

random latent style code s ∼ N (0, I) to render the given

image into an image R(Ec(x), s) of a certain style. The

warp controller estimates the control points and their dis-

placements to warp the rendered images. An overview of

the deformable generator is shown in Figure 3.

Texture Style Transfer Since there is a large variation

in the texture styles of caricatures images (See Figure 1),

we adopt an unsupervised method [7] to disentangle the

style representation from the feature map Ec(x) so that

we can transfer the input photo into different texture styles

present in the caricature domain. During the training, the

latent style code s ∼ N (0, I) is sampled randomly from

a normal distribution and passed as an input into the de-

coder R. A multi-layer perceptron in R decodes s to gener-

ate the parameters of the Adaptive Instance Normalization

(AdaIN) layers in R, which have been shown to be effec-

tive in controlling visual styles [31]. The generated images

R(Ec(x), s) with random styles are then warped and passed

to the discriminator. Various styles obtained from Warp-

GAN can be seen in Figure 5.

To prevent Ec and R from losing semantic information

during texture rendering, we combine the identity mapping

loss [29] and reconstruction loss [7] to regularize Ec and

R. In particular, a style encoder Es is used to learn the

mapping from the image space to the style space S. Given

its own style code, both photos and caricatures should be

reconstructed from the latent feature map:

Lp
idt = Exp∈Xp

[‖R(Ec(xp), Es(xp))− xp‖1] (1)

Lc
idt = Exc∈Xc

[‖R(Ec(xc), Es(xc))− xc‖1] (2)

Automatic Image Warping The warp controller is a sub-

network of two fully connected layers. With latent fea-

ture map Ec(x) as input, the controller learns to estimate

k control points p = {p1,p2, ....,pk} and their displace-

ment vectors ∆p = {∆p1,∆p2, ...∆pk}, where each pi

and ∆pi is a 2D vector in the u-v space. The points are

then fed into a differentiable warping module [18]. Let

p′ = {p′
1
,p′

2
, ...,p′

k} be the destination points, where

p′
i = pi +∆pi. A grid sampler of size H ×W can then be

computed via thin-plate spline interpolation:

f(q) =

k
∑

i=1

wiφ(||q− p′
i||) + vTq+ b (3)
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𝐺𝐸𝑠
Identity Loss

𝐺 PhotoCaricature Reconstructed𝐷 Adversarial

Losses𝐬~𝒩(𝟎, 𝐈)
Figure 4: Overview of the proposed WarpGAN.

where the vector q denotes the u-v location of a pixel in

the target image, and f(q) gives the inverse mapping of the

pixel q in the original image, and φ(r) = r2log(r) is the

kernel function. The parameters w,v,b are fitted to mini-

mize
∑k

j

∥

∥f(p′
j)− pj

∥

∥

2

and a curvature constraint, which

can be solved in closed form [32]. With the grid sampler

constructed via inverse mapping function f(q), the warped

image

G(x, s) = Warp (R(Ec(x), s), p,∆p) (4)

can then be generated through bi-linear sampling [14]. The

entire warping module is differentiable and can be trained

as part of an end-to-end system.

3.2. Discriminator

Patch Adversarial Loss We first used a fully convolu-

tional network as a patch discriminator [7, 13]. The patch

discriminator is trained as a 3-class classifier to enlarge the

difference between the styles of generated images and real

photos [29]. Let D1, D2 and D3 denote the logits for the

three classes of caricatures, photos and generated images,

respectively. The patch adversarial loss is as follows:

LG
p =− Exp∈Xp,s∈S [logD1(G(xp, s))] (5)

LD
p =− Exc∈Xc

[logD1(xc)]− Exp∈Xp
[logD2(xp)]

− Exp∈Xp,s∈S [logD3(G(xp, s))]
(6)

Identity-Preservation Adversarial Loss Although patch

discriminator is suitable for learning visual style transfer, it

fails to capture the distinguishing features of different iden-

tities. The exaggeration styles for different people could

actually be different based on their facial features (See Sec-

tion 4.3). To combine the identity-preservation and identity-

specific style learning, we propose to train the discriminator

as a 3M -class classifier, where M is the number of identi-

ties. The first, second, and third M classes correspond to

different identities of real photos, real caricatures and fake

caricatures, respectively. Let yp, yc ∈ {1, 2, 3, ...M} be the

identity labels of the photos and caricatures, respectively.

The identity-preservation adversarial losses for G and D are

as follows:

LG
g =− Exp∈Xp,s∈S [logD(yp;G(xp, s))] (7)

LD
g =− Exc∈Xc

[logD(yc;xc)]

− Exp∈Xp
[logD(yp +M ;xp)]

− Exp∈Xp,s∈S [logD(yp + 2M ;G(xp, s))]

(8)

Here, D(y;x) denotes the logits of class y given an im-

age x. The discriminator is trained to tell the differences be-

tween real photos, real caricatures, generated caricatures as

well as the identities in the image. The generator is trained

to fool the discriminator in recognizing the generated image

as a real caricature of the corresponding identity. Finally,

the system is optimized in an end-to-end way with the fol-

lowing objective functions:

min
G

LG = λpL
G
p + λgL

G
g + λidt(L

c
idt + Lp

idt) (9)

min
D

LD = λpL
D
p + λgL

D
g (10)

4. Experiments

Dataset We use the images from a public domain dataset,

WebCaricature [33]2, to conduct the experiments. The

dataset consists of 6, 042 caricatures and 5, 974 photos from

252 identities. We align all the images with five landmarks.

Then, the images are aligned through similarity transforma-

tion using the five landmarks and are resized to 256× 256.

We randomly split the dataset into a training set of 126 iden-

tities (3, 016 photos and 3, 112 caricatures) and a testing set

of 126 identities (2, 958 photos and 2, 930 caricatures). All

the testing images in this paper are from identities in the

testing set.

Training Details We use ADAM optimizers in Tensor-

flow with β1 = 0.5 and β2 = 0.9 for the whole network.

Each mini-batch consists of a random pair of photo and car-

icature. We train the network for 100, 000 steps. The learn-

ing rate starts with 0.0001 and is decreased linearly to 0
after 50, 000 steps. We empirically set λg = 1.0, λp = 2.0,

λidt = 10.0 and number of control points k = 16. We con-

duct all experiments using Tensorflow r1.9 and one Geforce

GTX 1080 Ti GPU. The average speed for generating one

caricature image on this GPU is 0.082s. The details of the

architecture are provided in the supplementary material.

4.1. Comparison to StateoftheArt

We qualitatively compare our caricature generation

method with CycleGAN [13], StarGAN [30], Un-

supervised Image-to-Image Translation (UNIT) [6],

2https://cs.nju.edu.cn/rl/WebCaricature.htm
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StarGAN [30] UNIT [6] MUNIT [7]CycleGAN [13]Input WarpGAN-3WarpGAN-1 WarpGAN-2

Figure 5: Comparison of 3 different caricature styles from WarpGAN and four other state-of-the-art style transfer networks. WarpGAN is

able to deform the faces unlike the baselines.

Input w/o Lg w/o Lp w/o Lidt with all

Figure 6: Different variants of the WarpGAN without certain loss

functions.

and Multimodal UNsupervised Image-to-image Translation

(MUNIT) [7] for style transfer approaches3. We find that

among all the three baseline style transfer networks, Cycle-

GAN and MUNIT demonstrate the most visually appealing

texture styles (see Figure 5). StarGAN and UNIT produce

very photo-like images with minimal or erroneous changes

in texture. Since all these networks focus only on transfer-

ring the texture styles, they fail to deform the faces into car-

icatures, unlike WarpGAN. The other issue with the base-

lines methods is that they do not have a module for warping

the images and therefore, they try to compensate for defor-

mations in the face using only texture. Due to the com-

3We train the baselines using their official implementations.

plexity of this task, it becomes increasingly difficult to train

them and they usually result in generating collapsed images.

4.2. Ablation Study

To analyze the function of different modules in our sys-

tem, we train three variants of WarpGAN for comparison

by removing Lg , Lp and Lidt, respectively. Figure 6 shows

a comparison of WarpGAN variants that include all the loss

functions. Without the proposed identity-preservation ad-

versarial loss, the discriminator only focuses on local tex-

ture styles and therefore the geometric warping fails to cap-

ture personal features and is close to randomness. Without

the patch adversarial loss, the discriminator mainly focuses

on facial shape and the model fails to learn diverse texture

styles. The model without identity mapping loss still per-

forms well in terms of texture rendering and shape exag-

geration. We keep the identity loss to improve the visual

quality of the generated images.

4.3. Shape Exaggeration Styles

Caricaturists usually define a set of prototypes of face

parts and have certain modes on how to exaggerate

them [34]. In WarpGAN we do not adopt any method to

exaggerate the facial regions explicitly, but instead we in-

troduce the identity preservation constraint as part of the

adversarial loss. This forces the network to exaggerate the

faces to be more distinctive from other identities and implic-

itly encourages the network to learn different exaggeration

styles for people with different salient features. Some ex-

ample exaggeration styles learned by the network are shown

in Figure 7.
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Bigger Eyes Smaller Eyes Longer Face Shorter Face Bigger Mouth Bigger Chin Bigger Forehead

Hand-drawn

WarpGAN Input

WarpGAN Output

Figure 7: A few typical exaggeration styles learned by WarpGAN. First row shows hand-drawn caricatures that have certain exaggeration

styles. The second and third row show the input images and the generated images of WarpGAN with the corresponding exaggeration styles.

All the identities are from the testing set.

Input α = 0.5 α = 1.0 α = 1.5 α = 2.0

Figure 8: The result of changing the amount of exaggeration by

scaling the ∆p with an input parameter α.

4.4. Customizing the exaggeration

Although the WarpGAN is trained as a deterministic

model, we introduce a parameter α during deployment to al-

low customization of the exaggeration extent. Before warp-

ing, the displacement of control points ∆p will be scaled by

α to control how much the face shape will be exaggerated.

The results are shown in Figure 8. When α = 0.0, only the

texture is changed and α = 1.0 leads to the original output

of the WarpGAN. Even when changing α to 2.0, the result-

ing images appear as caricatures, but only the distinguishing

facial features are exaggerated. Since the texture styles are

learned in a disentangled way, WarpGAN can generate var-

ious texture styles. Figure 5 shows results from WarpGAN

with three randomly sampled styles.

Method COTS SphereFace [35]

Photo-to-Photo 94.81 ± 1.22% 90.78 ± 0.64%

Hand-drawn-to-Photo 41.26 ± 1.16% 45.80 ± 1.56%

WarpGAN-to-Photo 79.00 ± 1.46% 72.65 ± 0.84%

Table 3: Rank-1 identification accuracy for three different match-

ing protocols using two state-of-the-art face matchers, COTS and

SphereFace [35].

4.5. Quantitative Analysis

Face Recognition In order to quantify identity preser-

vation accuracy for caricatures generated by WarpGAN,

we evaluate automatic face recognition performance us-

ing two state-of-the-art face matchers: (1) a Commercial-

Off-The-Shelf (COTS) matcher4 and (2) an open source

SphereFace [35] matcher.

An identification experiment is conducted where one

photo of the identity is kept in the gallery while all remain-

ing photos, or all hand-drawn caricatures, or all synthesized

caricatures for the same identity are used as probes. We

evaluate the Rank-1 identification accuracy using 10-fold

cross validation and report the mean and standard devia-

tion across the folds in Table 3. We find that the gener-

ated caricatures can be matched to real face images with a

higher accuracy than hand-drawn caricatures. We also ob-

serve the same trend for both the matchers, which suggests

that recognition on synthesized caricatures is consistent and

matcher-independent.

4Uses a convolutional neural network for face recognition.
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Method Visual Quality Exaggeration

Hand-Drawn 7.70 7.16

CycleGAN [13] 2.43 2.27

MUNIT [7] 1.82 1.83

WarpGAN 5.61 4.87

Table 4: Average perceptual scores from 5 caricature experts for

visual quality and exaggeration extent. Scores range from 1 to 10.

Input Warping Only Texture Only Both

Figure 9: Example result images generated by the WarpGAN

trained without texture/warping and with both.

Perceptual Study We conducted two perceptual studies

by recruiting 5 caricature artists who are experts in their

field to compare hand-drawn caricatures with images syn-

thesized by our baselines along with our WarpGAN. A car-

icature is generated from a random image for each 126 sub-

jects in the WebCaricature testing set. The first perceptual

study uses 30 of them and 96 are used for the second. Ex-

perts do not have any knowledge of the source of the cari-

catures and they rely solely on their perceptual judgment.

The first study assesses the overall similarity of the gen-

erated caricatures to the hand-drawn ones. Each carica-

ture expert was shown a face photograph of a subject along

with three corresponding caricatures generated by Cycle-

GAN, MUNIT, and WarpGAN, respectively. The experts

then rank each of the three generated caricatures from “most

visually closer to a hand-drawn caricature” to “least similar

to a hand-drawn caricature”. We find that caricatures gen-

erated by WarpGAN is ranked as the most similar to a real

caricature 99% of the time, compared to 0.5% and 0.5% for

CycleGAN and MUNIT, respectively.

In the second study, experts scored the generated cari-

catures according to two criteria: (i) visual quality, and (ii)

whether the caricatures are exaggerated in proper manner

where only prominent facial features are deformed. Experts

are shown three photographs of a subject along with a car-

icature image that can either be (i) a real hand-drawn car-

icature, or (ii) generated using one of the three automatic

style transfer methods. From Table 4 we find that Warp-

GAN receives the best perceptual scores out of the three

methods. Even though hand-drawn caricatures rate higher,

our approach, WarpGAN, has made a tremendous leap in

automatically generating caricatures, especially when com-

pared to state-of-the-art.

5. Discussion

Joint Rendering and Warping Learning Unlike other

visual style transfer tasks [29, 13, 7], transforming photos

into caricatures involves both texture difference and geo-

metric transition. Texture is import in exaggerating local

fine-grained features such as depth of the wrinkles while

geometric deformation allows exaggeration of global fea-

tures such as face shape. Conventional style transfer net-

works [29, 13, 7] aims to reconstruct an image from feature

space using a decoder network. Because the decoder is a

stack of nonlinear local filters, they are intrinsically inflex-

ible in terms of spatial variation and the decoded images

usually suffer from poor quality and severe information loss

when there is a large geometric discrepancy between the in-

put and output domain. On the other hand, warping-based

methods are limited by nature to not being able to change

the content and fine-grained details. Therefore, both style

transfer and warping module are necessary parts for our ad-

versarial learning framework. As shown in Figure 6, with-

out either module, the generator will not be able to close the

gap between photos and caricatures and the balance of com-

petition between generator and discriminator will be bro-

ken, leading to collapsed results.

Identity-preservation Adversarial Loss The discrimi-

nator in conventional GANs are usually trained as a bi-

nary [13] or ternary classifiers [29], with each class rep-

resenting a visual style. However, we found that because of

the large variation of shape exaggeration in the caricatures,

treating all the caricatures as one class in the discrimina-

tor would lead to the confusion of the generator, as shown

in Figure 6. However, we observe that caricaturists tend to

give similar exaggeration styles to the same person. There-

fore, we treat each identity-domain pair as a separate class

to reduce the difficulty of learning and also encourage the

identity-preservation after the shape exaggeration.

6. Conclusion

In this paper, we proposed a new method of caricature

generation, namely WarpGAN, that addresses both style

transfer and face deformation in a joint learning frame-

work. Without explicitly requiring any facial landmarks,

the identity-preserving adversarial loss introduced in this

work appropriately learns to capture caricature artists’ style

while preserving the identity in the generated caricatures.

We evaluated the generated caricatures by matching syn-

thesized caricatures to real photos and observed that the

recognition accuracy is higher than caricatures drawn by

artists. Moreover, five caricature experts suggest that car-

icatures synthesized by WarpGAN are not only pleasing to

the eye, but are also realistic where only the appropriate fa-

cial features are exaggerated and that our WarpGAN indeed

outperforms the state-of-the-art networks.
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