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Abstract

Visual Question Answering (VQA) research is split into

two camps: the first focuses on VQA datasets that require

natural image understanding and the second focuses on

synthetic datasets that test reasoning. A good VQA algo-

rithm should be capable of both, but only a few VQA algo-

rithms are tested in this manner. We compare five state-of-

the-art VQA algorithms across eight VQA datasets covering

both domains. To make the comparison fair, all of the mod-

els are standardized as much as possible, e.g., they use the

same visual features, answer vocabularies, etc. We find that

methods do not generalize across the two domains. To ad-

dress this problem, we propose a new VQA algorithm that

rivals or exceeds the state-of-the-art for both domains.

1. Introduction

Visual Question Answering (VQA) requires a model to

understand and reason about visuo-linguistic concepts to

answer open-ended questions about images. Correctly an-

swering these questions demands numerous capabilities, in-

cluding object localization, attribute detection, activity clas-

sification, scene understanding, reasoning, counting, and

more. The first VQA datasets contained real-world images

with crowdsourced questions and answers [36, 9]. It was

assumed that this would be an extremely difficult problem

and was proposed as a form of Visual Turing Test to bench-

mark performance in computer vision. However, it became

clear that many high performing algorithms were simply ex-

ploiting biases and superficial correlations, without really

understanding the visual content [24, 3]. For example, an-

swering ‘yes’ to all yes/no questions in VQAv1 [9] results

in an accuracy of 71% on these questions [25]. Later natural

image VQA datasets endeavored to address this issue. By

associating each question with complementary images and

different answers, VQAv2 [16] reduces some forms of lan-

guage bias. TDIUC [24] analyzes generalization to multiple

kinds of questions and rarer answers. CVQA [5] tests con-

cept compositionality and VQACPv2 [4] tests performance

when train and test distributions differ.

[ VQA- CP]  What  col or  ar e her  shoes?

 [ CLEVR]  What  shape i s t he smal l  r ubber  obj ect  t hat  i s 
t he same col or  as t he l ar ge r ubber  cube? 

UpDn: whi t e  

MAC: bl ue  RN: bl ue  RAMEN( OURS) : whi t e  

QCG: bl ue BAN: bl ue  

UpDn: spher e  

RN: spher e  MAC: cube  RAMEN( OURS) : cube  

QCG: spher e BAN: spher e  

Figure 1: Many VQA algorithms do not transfer well across

natural and synthetic datasets. We argue it is necessary to do

well on both domains and present an algorithm that achieves

this goal.

While later natural image datasets have reduced bias, the

vast majority of questions in these datasets do not rigorously

test reasoning skills. Several synthetic datasets [20, 7] were

created as a remedy. They contain simple visual scenes with
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Table 1: Comparison of datasets used in this paper.

Dataset
Num. of

Images

Num. of

QA Pairs

Question

Source

Image

Source

VQAv1 204K 614K Human Natural

VQAv2 204K 1.1M Human Natural

TDIUC 167K 1,6M Both Natural

C-VQA 123K 369K Human Natural

VQACPv2 219K 603K Human Natural

CLEVR 100K 999K Synthetic Synthetic

CLEVR-H 32K 32K Human Synthetic

CoGenT-A 100K 999K Synthetic Synthetic

CoGenT-B 30K 299K Synthetic Synthetic

challenging questions that test multi-step reasoning, count-

ing, and logical inference. To properly evaluate an algo-

rithm’s robustness, the creators of these datasets have ar-

gued algorithms should be tested on both domains [20, 7].

However, almost all recent papers report their perfor-

mance on only one of these two domains. The best algo-

rithms for CLEVR are not tested on natural image VQA

datasets [19, 21, 37, 44, 53], and vice versa [10, 6, 28, 39,

13]. Here, we test five state-of-the-art VQA systems across

eight datasets. We found that most methods do not perform

well on both domains (Fig. 1), with some suffering drastic

losses in performance. We propose a new model that rivals

state-of-the-art methods on all of the evaluated datasets.

Our major contributions are:

1. We perform a rigorous comparison of five state-of-the-

art algorithms across eight VQA datasets, and we find

that many do not generalize across domains.

2. Often VQA algorithms use different visual features

and answer vocabularies, making it difficult to assess

performance gains. We endeavor to standardize the

components used across models, e.g., all of the algo-

rithms we compare use identical visual features, which

required elevating the methods for synthetic scenes to

use region proposals.

3. We find that most VQA algorithms are not capable of

understanding real-word images and performing com-

positional reasoning. All of them fare poorly on gen-

eralization tests, indicating that these methods are still

exploiting dataset biases.

4. We describe a new VQA algorithm that rivals state-

of-the-art methods on all datasets and performs best

overall.

2. Related Work

2.1. VQA Datasets

Many VQA datasets have been proposed over the past

four years. Here, we briefly review the datasets used in our

experiments. Statistics for these datasets are given in Ta-

ble 1. See [25] and [51] for reviews.

VQAv1/VQAv2. VQAv1 [9] is one of the earliest,

open-ended VQA datasets collected from human annota-

tors. VQAv1 has multiple kinds of language bias, including

some questions being heavily correlated with specific an-

swers. VQAv2 [16] endeavors to mitigate this kind of lan-

guage bias by collecting complementary images per ques-

tion that result in different answers, but other kinds of lan-

guage bias are still present, e.g., reasoning questions are rare

compared to detection questions. Both datasets have been

widely used and VQAv2 is the de facto benchmark for nat-

ural image VQA.

TDIUC [24] attempts to address the bias in the kinds

of questions posed by annotators by categorizing questions

into 12 distinct types, enabling nuanced task-driven evalua-

tion. It has metrics to evaluate generalization across ques-

tion types.

CVQA [5] is a re-split of VQAv1 to test generalization

to concept compositions not seen during training, e.g., if the

train set asks about ‘green plate’ and ‘red light,’ the test set

will ask about ‘red plate’ and ‘green light.’ CVQA tests the

ability to combine previously seen concepts in unseen ways.

VQACPv2 [4] re-organizes VQAv2 such that answers

for each question type are distributed differently in the train

and test sets, e.g., ‘blue’ and ‘white’ might be the most fre-

quent answers to ‘What color...’ questions in the train set,

but these answers will rarely occur in the test set. Since

it has different biases in the train and test sets, doing well

on VQACPv2 suggests that the system is generalizing by

overcoming the biases in the training set.

CLEVR [20] is a synthetically generated dataset, con-

sisting of visual scenes with simple geometric shapes, de-

signed to test ‘compositional language and elementary vi-

sual reasoning.’ CLEVR’s questions often require long

chains of complex reasoning. To enable fine-grained eval-

uation of reasoning abilities, CLEVR’s questions are cate-

gorized into five tasks: ‘querying attribute,’ ‘comparing at-

tributes,’ ‘existence,’ ‘counting,’ and ‘integer comparison.’

Because all of the questions are programmatically gener-

ated, the CLEVR-Humans [21] dataset was created to pro-

vide human-generated questions for CLEVR scenes to test

generalization to free-form questions.

CLEVR-CoGenT tests the ability to handle unseen con-

cept composition and remember old concept combinations.

It has two splits: CoGenT-A and CoGenT-B, with mutually

exclusive shape+color combinations. If models trained on

CoGenT-A perform well on CoGenT-B without fine-tuning,

10473



it indicates generalization to novel compositions. If models

fine-tuned on CoGenT-B still perform well on CoGenT-A, it

indicates the ability to remember old concept combinations.

The questions in these datasets are more complex than most

in CVQA.

Using VQAv1 and VQAv2 alone makes it difficult to

gauge whether an algorithm is capable of performing ro-

bust compositional reasoning or whether it is using super-

ficial correlations to predict an answer. In part, this is due

to the limitations of seeking crowdsourced questions and

answers, with humans biased towards asking certain kinds

of questions more often for certain images, e.g., counting

questions are most often asked if there are two things of the

same type in a scene and almost never have an answer of

zero. While CVQA and VQACPv2 try to overcome these

issues, synthetic datasets [20, 7, 22] minimize such biases

to a greater extent, and serve as an important litmus-test to

measure specific reasoning skills, but the synthetic visual

scenes lack complexity and variation.

Natural and synthetic datasets serve complementary pur-

poses, and the creators of synthetic datasets have argued

that both should be used, e.g., the creators of SHAPES, an

early VQA dataset similar to CLEVR, wrote ‘While suc-

cess on this dataset is by no means a sufficient condition

for robust visual QA, we believe it is a necessary one’ [7].

While this advice has largely been ignored by the commu-

nity, we strongly believe it is necessary to show that VQA

algorithms are capable of tackling VQA in both natural and

synthetic domains with little modification. Otherwise, an

algorithm’s ability to generalize will not be fully assessed.

2.2. VQA Algorithms

Many algorithms for natural image VQA have been pro-

posed, including Bayesian approaches [23, 36], methods

using spatial attention [52, 33, 40, 6], compositional ap-

proaches [7, 8, 18], bilinear pooling schemes [29, 14], and

others [50, 41, 26]. Spatial attention mechanisms [6, 33, 38,

14, 10] are one of the most widely used methods for natural

language VQA. Attention computes relevance scores over

visual and textual features allowing models to process only

relevant information. Among these, we evaluate UpDn [6],

QCG [41], and BAN [28]. We describe these algorithms in

more detail in Sec. 4.

Similarly, many methods have been created for synthetic

VQA datasets. Often, these algorithms place a much greater

emphasis on learning compositionality, relational reason-

ing, and interpretability compared to algorithms for nat-

ural images. Common approaches include modular net-

works, with some using ground-truth programs [21, 37],

and others learning compositional rules implicitly [18, 19].

Other approaches have included using relational networks

(RNs) [48], early fusion [34], and conditional feature trans-

formations [44]. In our experiments, we evaluate RN [48]

and MAC [19], which are explained in more detail in Sec. 4.

Although rare exceptions exist [18], most of these al-

gorithms are evaluated only on natural or synthetic VQA

datasets and not both. Furthermore, several algorithms that

claim specific abilities are not tested on datasets designed

to test these abilities, e.g., QCG [41] claims better composi-

tional performance, but it is not evaluated on CVQA [5].

Here, we evaluate multiple state-of-the-art algorithms on

both natural and synthetic VQA datasets, and we propose

a new algorithm that works well for both.

3. The RAMEN VQA Model

We propose the Recurrent Aggregation of Multimodal

Embeddings Network (RAMEN) model for VQA. It is de-

signed as a conceptually simple architecture that can adapt

to the complexity of natural scenes, while also being ca-

pable of answering questions requiring complex chains of

compositional reasoning, which occur in synthetic datasets

like CLEVR. As illustrated in Fig. 2, RAMEN processes

visual and question features in three phases:

1. Early fusion of vision and language features. Early

fusion between visual and language features and/or

early modulation of visual features using language

has been shown to help with compositional reason-

ing [34, 44, 12]. Inspired by these approaches, we

propose early fusion through concatenation of spatially

localized visual features with question features.

2. Learning bimodal embeddings via shared projec-

tions. The concatenated visual+question features are

passed through a shared network, producing spatially

localized bimodal embeddings. This phase helps the

network learn the inter-relationships between the vi-

sual and textual features.

3. Recurrent aggregation of the learned bimodal em-

beddings. We aggregate the bimodal embeddings

across the scene using a bi-directional gated recurrent

unit (bi-GRU) to capture interactions among the bi-

modal embeddings. The final forward and backward

states essentially need to retain all of the information

required to answer the question.

While most recent state-of-the-art VQA models for nat-

ural images use attention [6] or bilinear pooling mecha-

nisms [28], RAMEN is able to perform comparably without

these mechanisms. Likewise, in contrast to the state-of-the-

art models for CLEVR, RAMEN does not use pre-defined

modules [37] or reasoning cells [19], yet our experiments

demonstrate it is capable of compositional reasoning.

3.1. Formal Model Definition

The input to RAMEN is a question embedding q ∈ R
d

and a set of N region proposals ri ∈ R
m, where each ri has
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Figure 2: Our recurrent aggregation of multimodal embed-

dings network (RAMEN).

both visual appearance features and a spatial position. RA-

MEN first concatenates each proposal with question vector,

which is followed by batch normalization, i.e.,

ci = BatchNorm (ri ⊕ q) , (1)

where ⊕ represents concatenation.

All N of the ci vectors are then passed through a func-

tion F (ci), which mixes the features to produce a bimodal

embedding bi = F (ci), where F (ci) was modeled using a

multi-layer perceptron (MLP) with residual connections.

Next, we perform late-fusion by concatenating each bi-

modal embedding with the original question embedding and

aggregate the collection using

a = A (b1 ⊕ q, b2 ⊕ q, . . . , bN ⊕ q) , (2)

where the function A is modeled using a bi-GRU, with

the output of A consisting of the concatenation of the final

states of both the forward and backward GRUs. We refer to

a as the RAMEN embedding, which is then sent to a clas-

sification layer that predicts the answer. While RAMEN is

simpler than most recent VQA models, we show it is com-

petitive across datasets, unlike more complex models.

3.2. Implementation Details

Input Representation. We represent question words as

300 dimensional embeddings initialized with pre-trained

GloVe vectors [43], and process them with a GRU to obtain

a 1024 dimensional question embedding, i.e., q ∈ R
1024.

Each region proposal ri ∈ R
2560 is made of visual fea-

tures concatenated with spatial information. The visual fea-

tures are 2048 dimensional CNN features produced by the

bottom-up architecture [6] based on Faster R-CNN [47].

Spatial information is encoded by dividing each proposal

into a 16× 16 grid of (x, y)-coordinates, which is then flat-

tened to form a 512-dimensional vector.

Model Configuration. The projector F is modeled as a

4-layer MLP with 1024 units with swish non-linear activa-

tion functions [45]. It has residual connections in layers 2,

3 and 4. The aggregator A is a single-layer bi-GRU that has

a 1024 dimensional hidden state, so the concatenation of

forward and backward states produces a 2048 dimensional

embedding. This embedding is projected through a 2048 di-

mensional fully connected swish layer, followed by an out-

put classification layer that has one unit per possible answer

in the dataset.

Training Details. RAMEN is trained with Adamax [30].

Following [28], we use a gradual learning rate warm up

(2.5 ∗ epoch ∗ 10−4 ) for the first 4 epochs, 5 ∗ 10−4 for

epochs 5 to 10, and then decay it at the rate of 0.25 for ev-

ery 2 epochs, with early stopping used. The mini-batch size

is 64.

4. VQA Models Evaluated

In this section, we will briefly describe the models eval-

uated in our experiments.

Bottom-Up-Attention and Top-Down (UpDn) [6]

combines bottom-up and top-down attention mechanisms

to perform VQA, with the bottom-up mechanism generat-

ing object proposals from Faster R-CNN [47], and the top-

down mechanism predicting an attention distribution over

those proposals. The top-down attention is task-driven,

using questions to predict attention weights over the im-

age regions. This model obtained first place in the 2017

VQA Workshop Challenge. For fair comparison, we use its

bottom-up region features for all other VQA models.

Question-Conditioned Graph (QCG) [41] represents

images as graphs where object-level features from bottom-

up region proposals [6] act as graph nodes and edges that

encode interactions between regions that are conditioned on

the question. For each node, QC-Graph chooses a neighbor-

hood of nodes with the strongest edge connections, result-

ing in a question specific graph structure. This structure is

processed by a patch operator to perform spatial graph con-

volution [31]. The main motivation behind choosing this

model was to examine the efficacy of the proposed graph

representations and operations for compositional reasoning.

Bilinear Attention Network (BAN) [28] fuses visual

and textual modalities by considering interactions between

all region proposals (visual channels) with all question

words (textual channels). Unlike dual-attention mecha-

nisms [38], BAN handles interactions between all chan-

nels. It can be considered a generalization of low-rank bi-
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[ VQA 2. 0]  How many women ar e t her e?
 [ CLEVR]  The mat t e obj ect  t hat  i s t he same 

shape as t he t i ny pur pl e met al  t hi ng i s 
what  col or ? 

UpDn: t wo  

RN: t wo  MAC: t wo  

RAMEN( OURS) : one  

QCG: t wo       BAN: one  UpDn: or ange  

RN: r ed  MAC: br own  

RAMEN( OURS) : br own  

QCG: smal l BAN: or ange  

[ VQA- CP]  What  col or  ar e t he gr apes?

UpDn: or ange  

RN: or ange  MAC: or ange  

RAMEN( OURS) : gr een  

QCG: or ange BAN: gr een  

Figure 3: Some example predictions from our model RAMEN compared to other existing methods.

linear pooling methods that jointly represent each channel

pair [33, 29]. BAN supports multiple glimpses of attention

via connected residual connections. It achieves 70.35% on

the test-std split of VQAv2, which is one of the best pub-

lished results.

Relation Network (RN) [48] takes in every pair of re-

gion proposals, embeds them, and sums up all N2 pair em-

beddings to produce a vector that encodes relationships be-

tween objects. This pairwise feature aggregation mecha-

nism enables compositional reasoning, as demonstrated by

its performance on CLEVR dataset. However, RN’s com-

putational complexity increases quadratically with the num-

ber of objects, making it expensive to run when the number

of objects is large. There have been recent attempts at re-

ducing the number of pairwise comparisons by reducing the

number of input objects fed to RN [35, 2].

The Memory, Attention and Composition (MAC) net-

work [19] uses computational cells that automatically learn

to perform attention-based reasoning. Unlike, modular net-

works [7, 18, 8] that require pre-defined modules to per-

form pre-specified reasoning functions, MAC learns rea-

soning mechanisms directly from the data. Each MAC cell

maintains a control state representing the reasoning oper-

ation and a memory state that is the result of the reason-

ing operation. It has a computer-like architecture with read,

write and control units. MAC was evaluated on the CLEVR

datasets and reports significant improvements on the chal-

lenging counting and numerical comparison tasks.

4.1. Standardizing Models

Often VQA models achieve state-of-the-art performance

using visual features that differ from past models, mak-

ing it difficult to tell if good performance came from

model improvements or improvements to the visual fea-

ture representation. To make the comparison across mod-

els more meaningful, we use the same visual features for

all algorithms across all datasets. Specifically, we use the

2048-dimensional ‘bottom-up’ CNN features produced by

the region proposal generator of a trained Faster R-CNN

model [15] with a ResNet-101 backend. Following [49], we

keep the number of proposals fixed at 36 for natural images,

although performance can increase when additional propos-

als are used, e.g., others have reported that using 100 pro-

posals with BAN can slightly increase its performance [28].

This Faster R-CNN model is trained for object localization,

attribute recognition, and bounding box regression on Vi-

sual Genome [32]. While CNN feature maps have been

common for CLEVR, state-of-the-art methods for CLEVR

have also been shifting toward region proposals [53]. For

datasets that use CLEVR’s images, we train a separate

Faster R-CNN for multi-class classification and bounding

box regression, because the Faster R-CNN trained on Visual

Genome did not transfer well to CLEVR. To do this, we es-

timate the bounding boxes using 3D coordinates/rotations

specified in the scene annotations. We keep the number of

CLEVR regions fixed at 15. We also augment these features

with a 512 dimensional vector representing positional infor-

mation about the boxes as described in Sec. 3.2 for TDIUC,

CLEVR, CLEVR-Humans and CLEVR-CoGenT. Follow-

ing [6], we limit the set of candidate answers to those oc-

curring at least 9 times in the training+validation set, result-

ing in vocabularies of 2185 answers for VQAv1 and 3129

answers for VQAv2. Following [4, 5], we limit the answer

vocabulary to the 1000 most frequent training set answers

for CVQA and VQACPv2. For VQAv2, we train the models

on training and validation splits and report results on test-

dev split. For the remaining datasets, we train the models

on their training splits and report performance on validation

splits.

Maintaining Compatibility. UpDn, QCG and BAN are

all designed to operate on region proposals. For both MAC

and RN, we needed to modify the input layers to accept

10476



Table 2: Overall results from six VQA models evaluated using same visual features across all datasets. We highlight the top-3

models for each dataset, using darker colors for better performers. To study the generalization gap, we present the results

before fine-tuning for CLEVR-CoGenT and CLEVR-Humans. For VQAv2, we train models on the train and validation splits

and report results on test-dev questions. For CLEVR-CoGenT-B, we report results on a sub-split of validation split. For the

other datasets, we train models on the train split and report results on validation splits.

Dataset/Algorithm UpDn QCG BAN MAC RN Ours

VQAv1 60.62 59.90 62.98 54.08 51.84 61.98

VQAv2 64.55 57.08 67.39 54.35 60.96 65.96

TDIUC 68.82 65.57 71.10 66.43 65.06 72.52

CVQA 57.01 56.45 57.36 50.99 48.11 58.92

VQACPv2 38.01 38.32 39.31 31.96 26.70 39.21

CLEVR 80.04 46.73 90.79 98.00 95.97 96.92

CLEVR-Humans 54.51 28.12 60.23 50.20 57.65 57.87

CLEVR-CoGenT-A 82.47 59.63 92.50 98.04 96.45 96.74

CLEVR-CoGenT-B 72.22 53.45 79.48 90.41 84.68 89.07

Mean 64.18 51.69 69.00 66.05 65.26 71.02

bottom-up features, instead of convolutional feature maps.

This was done so that the same features could be used across

all datasets and also to upgrade RN and MAC so that they

would be competitive on natural image datasets where these

features are typically used [6]. For MAC, we replace the ini-

tial 2D convolution operation with a linear projection of the

bottom-up features. These are fed through MAC’s read unit,

which is left unmodified. For RN, we remove the initial

convolutional network and directly concatenate bottom-up

features with question embeddings as the input. The perfor-

mance of both models after these changes are comparable

to the versions using learned convolutional feature maps as

input, with MAC achieving 98% and RN achieving 95.97%

on the CLEVR validation set.

5. Experiments and Results

5.1. Main Results

In this section, we demonstrate the inability of current

VQA algorithms to generalize across natural and synthetic

datasets, and show that RAMEN rivals the best performing

models on all datasets. We also present a comparative anal-

ysis of bias-resistance, compositionality, and generalization

abilities for all six algorithms. Table 2 provides our main re-

sults for all six algorithms on all eight datasets. We use the

standard metrics for all datasets, i.e., we use simple accu-

racy for the CLEVR family of datasets, mean-per-type for

TDIUC, and ‘10-choose-3’ for VQAv1, VQAv2, CVQA,

and VQACPv2. Some example outputs for RAMEN com-

pared to other models are given in Fig. 3.

Generalization Across VQA Datasets. RAMEN

achieves the highest results on TDIUC and CVQA and is

the second best model for VQAv1, VQAv2, VQACPv2 and

all of the CLEVR datasets. On average, it has the highest

score across datasets, showcasing that it can generalize

across natural datasets and synthetic datasets that test

reasoning. BAN achieves the next highest mean score.

BAN works well for natural image datasets, outperforming

other models on VQAv1, VQAv2 and VQACPv2. How-

ever, BAN shows limited compositional reasoning ability.

Despite being conceptually much simpler than BAN,

RAMEN outperforms BAN by 6% (absolute) on CLEVR

and 10% on CLEVR-CoGenT-B. RAMEN is within 1.4%

of MAC on all compositional reasoning tests. UpDn and

QCG perform poorly on CLEVR, with QCG obtaining a

score below 50%.

Generalization Across Question Types. We use TDIUC

to study generalization across question types. TDIUC has

multiple accuracy metrics, with mean-per-type (MPT) and

normalized mean-per-type (N-MPT) compensating for bi-

ases. As shown in Table 3, all methods achieve simple

accuracy scores of over 82%; however, both MPT and N-

MPT scores are 13-20% lower. Lower MPT scores indicate

that all algorithms are struggling to generalize to multiple

tasks. RAMEN obtains the highest MPT score of 72.52%

followed by BAN at 71.10%. For all algorithms, ‘object

presence,’ ‘object recognition,’ and ‘scene recognition’ are

among the easiest tasks, with all of the methods achieving

over 84% accuracy on them; however, these tasks all have

relatively large amounts of training data (60K - 657K QA

pairs each). All of the methods performed well on ‘sports

recognition’ (31K QA pairs), achieving over 93%, but all

performed poorly on a conceptually similar task of ‘activity

recognition’ (8.5K QA pairs), achieving under 62% accu-

racy. This showcases the inability to generalize to question

types with fewer examples. To emphasize this, TDIUC pro-
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Table 3: Performance comparison on TDIUC using three different metrics. MPT measures task generalization and N-MPT

measures generalization to rare answers. We highlight the top-3 models, emboldening the winner.

Metric / Algorithm UpDn QCG BAN MAC RN Ours

MPT 68.82 65.67 71.10 66.43 65.06 72.52

N-MPT 38.93 37.43 40.65 39.02 35.75 46.52

Simple Accuracy 82.91 82.05 84.81 82.53 84.61 86.86

Table 4: Performance on CLEVR’s query types.

Exist
Query

Attribute

Compare

Attribute

Equal

Integer

Greater

Than

Less

Than
Count

UpDn 83.07 90.08 79.87 65.65 80.43 85.76 64.03

QCG 66.11 31.11 51.47 59.76 69.35 70.57 44.19

BAN 94.72 90.56 98.44 72.35 81.35 86.39 86.47

MAC 99.18 99.59 99.33 85.44 96.82 97.55 95.46

RN 98.40 98.19 97.81 77.30 93.40 84.27 90.90

RAMEN 98.90 98.93 99.30 79.40 93.41 88.53 94.10

vides the Normalized MPT (N-MPT) metric that measures

generalization to rare answers by taking answer frequency

into account. The differences between normalized and un-

normalized scores are large for all models. RAMEN has the

smallest gap, indicating a better resistance to answer distri-

bution biases, while BAN has the largest gap.

Generalization to Novel Concept Compositions. We

evaluate concept compositionality using CVQA and

CLEVR-CoGenT-B. As shown in Table 2, scores on CVQA

are lower than VQAv1, suggesting all of the algorithms

struggle when combining concepts in new ways. MAC has

the largest performance drop, which suggests its reasoning

cells were not able to compose real-world visuo-linguistic

concepts effectively.

To evaluate the ability to generalize to new concept com-

positions on the synthetic datasets, we train the models on

CLEVR-CoGenT-A’s train split and evaluate on the valida-

tion set without fine-tuning. Following [44], we obtain a test

split from the validation set of ‘B,’ and report performance

without fine-tuning on ‘B.’ All algorithms show a large drop

in performance. Unlike the CVQA results, MAC’s drop in

performance is smaller. Again, RAMEN has a compara-

tively small decrease in performance.

Performance on VQACPv2’s Changing Priors. All al-

gorithms have a large drop in performance under changing

priors. This suggests there is significantly more work to

be done to make VQA algorithms overcome linguistic and

visual priors so that they can more effectively learn to use

generalizable concepts.

Counting and Numerical Comparisons. For CLEVR,

counting and number comparison (‘equal integer,’ ‘greater

than,’ and ‘less than’) are the most challenging tasks across

algorithms as shown in Table 4. MAC performs best on

these tasks, followed by RAMEN. Algorithms apart from

MAC and QCG demonstrate a large (> 4.8%) discrepancy

between ‘less than’ and ‘greater than’ question types, which

require similar kinds of reasoning. This discrepancy is most

pronounced for RN (9.13%), indicating a difficulty in lin-

guistic understanding. BAN uses a counting module [54];

however, its performance on CLEVR’s counting task is still

9% below MAC. All of the algorithms struggle with count-

ing in natural images too. Despite TDIUC having over

164K counting questions, all methods achieve a score of

under 62% on these questions.

Other CLEVR Tasks. As shown in Table 4, RAMEN is

within 0.03-1.5% of MAC’s performance on all tasks ex-

cept number comparison. UpDn and QCG are the worst

performing models on all query types. Except for QCG, all

of the models find it easy to answer queries about object at-

tributes and existence. Models apart from UpDn and QCG

perform well on attribute comparison questions that require

comparing these properties. Surprisingly, BAN finds at-

tribute comparison, which requires more reasoning, easier

than the simpler attribute query task. We present results

on CLEVR-Humans without fine-tuning to examine how

well algorithms handle free-form language if they were only

trained on CLEVR’s vocabulary. BAN shows the best gen-

eralization, followed by RAMEN and RN.
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Table 5: Ablation studies comparing early versus late fu-

sion between visual and question features, and comparing

alternate aggregation strategies.

VQAv2 CLEVR

Without Early Fusion 61.81 77.48

Without Late Fusion 65.64 96.63

Aggregation via Mean Pooling 63.01 92.45

Without Ablation 65.96 96.92

5.2. Ablation Studies

Results from several ablation studies to test the contri-

butions of RAMEN’s components are given in Table 5. We

found that early fusion is critical to RAMEN’s performance,

and removing it causes an almost 20% absolute drop in ac-

curacy for CLEVR and a 4% drop for VQAv2. Removing

late fusion has little impact on CLEVR and VQAv2.

We also explored the utility of using a bi-GRU for aggre-

gation compared to using mean pooling, and found that this

caused a drop in performance for both datasets. We believe

that the recurrent aggregation aids in capturing interactions

between the bimodal embeddings, which is critical for rea-

soning tasks, and that it also helps remove duplicate propos-

als by performing a form of non-maximal suppression.

5.3. Newer Models

Additional VQA algorithms have been released since we

began this project, and some have achieved higher scores

than the models we evaluated on some datasets. The Trans-

parency By Design (TBD) network [37] obtains 99.10% ac-

curacy on CLEVR by using ground truth functional pro-

grams to train the network, which are not available for nat-

ural VQA datasets. Neural-Symbolic VQA (NS-VQA) [53]

reports a score of 99.80% on CLEVR, but uses a question

parser to allocate functional modules along with highly spe-

cialized segmentation-based CNN features. They did not

perform ablation studies to determine the impact of using

these visual features. None of the models we compare have

access to these additional resources.

Results on VQAv2 can be significantly improved by us-

ing additional data from other VQA datasets and ensem-

bling, e.g., the winner of the 2018 challenge used dialogues

from Visual Dialog [11] as additional question answer pairs

and an ensemble of 30 models. These augmentations could

be applied to any of the models we evaluated to improve

performance. VQACPv2 results can also be improved us-

ing specialized architectures, e.g. GVQA [4] and UpDn

with adversarial regularization [46]. However, their perfor-

mance on VQACPv2 is still poor, with UpDn with adversar-

ial regularization obtaining 42.04% accuracy, showing only

2.98% improvement over the non-regularized model.

6. Discussion: One Model to Rule them All?

We conducted the first systematic study to examine if the

VQA systems that work on synthetic datasets generalized

to real-world datasets, and vice versa. This was the original

scope of our project, but we were alarmed when we dis-

covered none of the methods worked well across datasets.

This motivated us to create a new algorithm. Despite being

simpler than many algorithms, RAMEN rivals or even sur-

passes other methods. We believe some state-of-the-art ar-

chitectures are likely over-engineered to exploit the biases

in the domain they were initially tested on, resulting in a

deterioration of performance when tested on other datasets.

This leads us to question whether the use of highly special-

ized mechanisms that achieve state-of-the-art results on one

specific dataset will lead to significant advances in the field,

since our conceptually simpler algorithm performs compet-

itively across both natural and synthetic datasets without

such mechanisms.

We advocate for the development of a single VQA model

that does well across a wide range of challenges. Training

this model in a continual learning paradigm would assess

forward and backward transfer [17, 27, 42]. Another in-

teresting avenue is to combine VQA with related tasks like

visual query detection [1]. Regardless, existing algorithms,

including ours, still have a long way to go toward show-

casing both visuo-linguistic concept understanding and rea-

soning. As evidenced by the large performance drops on

CVQA and VQACPv2, current algorithms perform poorly

at learning compositional concepts and are affected by bi-

ases in these datasets, suggesting reliance on superficial cor-

relations. We observed that methods developed solely for

synthetic closed-world scenes are often unable to cope with

unconstrained natural images and questions. Although per-

formance on VQAv2 and CLEVR are approaching human

levels on these benchmarks, our results show VQA is far

from solved. We argue that future work should focus on cre-

ating one model that works well across domains. It would

be interesting to train a dataset on a universal training set

and then evaluate it on multiple test sets, with each test set

demanding a different skill set. Doing so would help in

seeking one VQA model that can rule them all.

7. Conclusion

Our work endeavors to set a new standard for what

should be expected from a VQA algorithm: good perfor-

mance across both natural scenes and challenging synthetic

benchmarks. We hope that our work will lead to future ad-

vancements in VQA.
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