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Abstract

We propose FineGAN, a novel unsupervised GAN frame-

work, which disentangles the background, object shape,

and object appearance to hierarchically generate images

of fine-grained object categories. To disentangle the fac-

tors without supervision, our key idea is to use informa-

tion theory to associate each factor to a latent code, and

to condition the relationships between the codes in a spe-

cific way to induce the desired hierarchy. Through exten-

sive experiments, we show that FineGAN achieves the de-

sired disentanglement to generate realistic and diverse im-

ages belonging to fine-grained classes of birds, dogs, and

cars. Using FineGAN’s automatically learned features,

we also cluster real images as a first attempt at solving

the novel problem of unsupervised fine-grained object cat-

egory discovery. Our code/models/demo can be found at

https://github.com/kkanshul/finegan

1. Introduction

A DB C

Consider the figure above: if tasked to group any of the

images together, as humans we can easily tell that birds A

and B should not be grouped with C and D as they have

completely different backgrounds and shapes. But how

about C and D? They share the same background, shape,

and rough color. However, upon close inspection, we see

that even C and D should not be grouped together as C’s

beak is yellow and its tails have large white spots while D’s

beak is black and its tails have thin white strips.1 This ex-

ample demonstrates that clustering fine-grained object cate-

gories requires not only disentanglement of the background,

∗Equal contribution.
1The ground-truth fine-grained categories are A: Barrow’s Goldeneye,

B: California Gull, C: Yellow-billed Cuckoo, D: Black-billed Cuckoo.
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Figure 1. FineGAN disentangles the background, object shape

(parent), and object appearance (child) to hierarchically generate

fine-grained objects, without mask or fine-grained annotations.

shape, and appearance (color/texture), but that it is naturally

facilitated in a hierarchical fashion.

In this work, we aim to develop a model that can do

just that: model fine-grained object categories by hierar-

chically disentangling the background, object’s shape, and

its appearance, without any manual fine-grained annota-

tions. Specifically, we make the first attempt at solving the

novel problem of unsupervised fine-grained object cluster-

ing (or “discovery”). Although both unsupervised object

discovery and fine-grained recognition have a long history,

prior work on unsupervised object category discovery focus

only on clustering entry-level categories (e.g., birds vs. cars

vs. dogs) [17, 42, 31, 51, 47, 15], while existing work on

fine-grained recognition focus exclusively on the supervised

setting in which ground-truth fine-grained category annota-

tions are provided [35, 52, 34, 4, 13, 33, 12, 7, 46].

Why unsupervised discovery for such a difficult prob-

lem? We have two key motivations. First, fine-grained an-

notations require domain experts. As a result, the overall

annotation process is very expensive and standard crowd-

sourcing techniques cannot be used, which restrict the

amount of training data that can be collected. Second, un-

supervised learning enables the discovery of latent structure

in the data, which may not have been labeled by annotators.

For example, fine-grained image datasets often have an in-
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herent hierarchical organization in which the categories can

first be grouped based on one feature (e.g., shape) and then

differentiated based on another (e.g., appearance).

Main Idea. We hypothesize that a generative model with

the capability of hierarchically generating images with fine-

grained details can also be useful for fine-grained grouping

of real images. We therefore propose FineGAN, a novel

hierarchical unsupervised Generative Adversarial Networks

framework to generate images of fine-grained categories.

FineGAN generates a fine-grained image by hierarchi-

cally generating and stitching together a background image,

a parent image capturing one factor of variation of the ob-

ject, and a child image capturing another factor. To disen-

tangle the two factors of variation of the object without any

supervision, we use information theory, similar to InfoGAN

[9]. Specifically, we enforce high mutual information be-

tween (1) the parent latent code and the parent image, and

(2) the child latent code, conditioned on the parent code,

and the child image. By imposing constraints on the rela-

tionship between the parent and child latent codes (specifi-

cally, by grouping child codes such that each group has the

same parent code), we can induce the parent and child codes

to capture the object’s shape and color/texture details, re-

spectively; see Fig. 1. This is because in many fine-grained

datasets, objects often differ in appearance conditioned on

a shared shape (e.g., ‘Yellow-billed Cuckoo’ and ‘Black-

billed Cuckoo’, which share the same shape but differ in

their beak color and wing patterns).

Moreover, FineGAN automatically generates masks at

both the parent and child stages, which help condition the

latent codes to focus on the relevant object factors as well

as to stitch together the generated images across the stages.

Ultimately, the features learned through this unsupervised

hierarchical image generation process can be used to cluster

real images into their fine-grained classes.

Contributions. Our work has two main contributions:

(1) We introduce FineGAN, an unsupervised model that

learns to hierarchically generate the background, shape, and

appearance of fine-grained object categories. Through var-

ious qualitative evaluations, we demonstrate FineGAN’s

ability to accurately disentangle background, object shape,

and object appearance. Furthermore, quantitative evalua-

tions on three benchmark datasets (CUB [45], Stanford-

dogs [27], and Stanford-cars [29]) demonstrate FineGAN’s

strength in generating realistic and diverse images.

(2) We use FineGAN’s learned disentangled represen-

tation to cluster real images for unsupervised fine-grained

object category discovery. It produces fine-grained clusters

that are significantly more accurate than those of state-of-

the-art unsupervised clustering approaches (JULE [51] and

DEPICT [15]). To our knowledge, this is the first attempt to

cluster fine-grained categories in the unsupervised setting.

2. Related work

Fine-grained category recognition involves classifying

subordinate categories within entry-level categories (e.g.,

different species of birds), which requires annotations from

domain experts [35, 52, 34, 4, 13, 8, 33, 12, 28, 58, 46].

Some methods require additional part [56, 6, 53], at-

tribute [14], or text [37, 19] annotations. Our work makes

the first attempt to overcome the dependency on expert an-

notations by performing unsupervised fine-grained category

discovery without any class annotations.

Visual object discovery and clustering. Early work on

unsupervised object discovery [41, 17, 42, 31, 32, 39] use

handcrafted features to cluster object categories from un-

labeled images. Others explore the use of natural language

dialogue for object discovery [10, 59]. Recent unsupervised

deep clustering approaches [51, 47, 15] demonstrate state-

of-the-art results on datasets whose objects have large vari-

ations in high-level detail like shape and background. On

fine-grained category datasets, we show that FineGAN sig-

nificantly outperforms these methods as it is able to focus

on the fine-grained object details.

Disentangled representation learning has a vast litera-

ture (e.g., [3, 44, 22, 49, 9, 21, 11, 23]). The most re-

lated work in this space is InfoGAN [9], which learns dis-

entangled representations without any supervision by max-

imizing the mutual information between the latent codes

and generated data. Our work builds on the same prin-

ciples of information theory, but we extend it to learn a

hierarchical disentangled representation. Specifically, un-

like InfoGAN in which all details of an object are gener-

ated together, FineGAN provides explicit distentanglement

and control over the generation of background, shape, and

appearance, which we show is especially important when

modeling fine-grained categories.

GANs and Stagewise image generation. Unconditional

GANs [16, 36, 43, 57, 1, 18] can generate realistic images

without any supervision. However, unlike our approach,

these methods do not generate images hierarchically and

do not have explicit control over the background, object’s

shape, and object’s appearance. Some conditional super-

vised approaches [38, 54, 55, 5] learn to generate fine-

grained images with text descriptions. One such approach,

FusedGAN [5], generates fine-grained objects with specific

pose and shape but it cannot decouple them, and lacks ex-

plicit control over the background. In contrast, FineGAN

can generate fine-grained images without any text supervi-

sion and with full control over the background, pose, shape,

and appearance. Also related are stagewise image gener-

ators [24, 30, 50, 26]. In particular, LR-GAN [50] gener-

ates the background and foreground separately and stitches

them. However, both are controlled by a single random vec-
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tor, and it does not disentangle the object’s shape from ap-

pearance.

3. Approach

Let X = {x1, x2, . . . , xN} be a dataset containing unla-

beled images of fine-grained object categories. Our goal

is to learn an unsupervised generative model, FineGAN,

which produces high quality images matching the true data

distribution pdata(x), while also learning to disentangle the

relevant factors of variation associated with images in X .

We consider background, shape, appearance, and

pose/location of the object as the factors of variation in this

work. If FineGAN can successfully associate each latent

code to a particular fine-grained category aspect (e.g., like

a bird’s shape and wing color), then its learned features can

also be used to group the real images in X for unsupervised

find-grained object category discovery.

3.1. Hierarchical finegrained disentanglement

Fig. 2 shows our FineGAN architecture for modeling and

generating fine-grained object images. The overall process

has three interacting stages: background, parent, and child.

The background stage generates a realistic background im-

age B. The parent stage generates the outline (shape) of the

object and stitches it onto B to produce parent image P . The

child stage fills in the object’s outline with the appropriate

color and texture, to produce the final child image C. The

objective function of the complete process is:

L = λLb + βLp + γLc

where Lb, Lp and Lc denote the objectives for the back-

ground, parent, and child stage respectively, with λ, β and

γ denoting their weights. We train all stages end-to-end.

The different stages get conditioned with different latent

codes, as seen from Fig. 2. FineGAN takes as input: i)

a continuous noise vector z ∼ N (0, 1); ii) a categorical

background code b ∼ Cat(K = Nb, p = 1/Nb); iii) a cate-

gorical parent code p ∼ Cat(K = Np, p = 1/Np); and iv)

a categorical child code c ∼ Cat(K = Nc, p = 1/Nc).

Relationship between latent codes: (1) Parent code and

child code. We assume the presence of an implicit hierarchy

in X – as mentioned previously, fine-grained categories can

often be grouped first based on a common shape and then

differentiated based on appearance. To help discover this

hierarchy, we impose two constraints: (i) the number of cat-

egories of parent code is set to be less than that of child code

(Np < Nc), and (ii) for each parent code p, we tie a fixed

number of child codes c to it (multiple child codes share

the same parent code). We will show that these constraints

help push p to capture shape and c to capture appearance.

For example, if the shape identity captured by p is that of

a duck, then the list of c’s tied to this p would all share the

same duck shape, but vary in their color and texture.

(2) Background code and child code. There is usually

some correlation between an object and the background in

which it is found (e.g., ducks in water). Thus, to avoid con-

flicting object-background pairs (which a real/fake discrim-

inator could easily exploit to tell that an image is fake), we

set the background code to be the same as the child code

during training (b = c). However, we can easily relax this

constraint during testing (e.g., to generate a duck in a tree).

3.1.1 Background stage

The background stage synthesizes a background image B,

which acts as a canvas for the parent and child stages to

stitch different foreground aspects on top of B. Since we

aim to disentangle background as a separate factor of vari-

ation, B should not contain any foreground information.

We hence separate the background stage from the parent

and child stages, which share a common feature pipeline.

This stage consists of a generator Gb and a discriminator

pair, Db and Daux. Gb is conditioned on latent background

code b, which controls the different (unknown) background

classes (e.g., trees, water, sky), and on latent code z, which

controls intra-class background details (e.g., positioning of

leaves). To generate the background, we assume access to

an object bounding box detector that can detect instances

of the super-category (e.g., bird). We use the detector

to locate non-object background patches in each real im-

age xi. We then train Gb and Db using two objectives:

Lb = Lbg adv + Lbg aux, where Lbg adv is the adversarial

loss [16] and Lbg aux is the auxiliary background classifi-

cation loss.

For the adversarial loss Lbg adv , we employ the discrim-

inator Db on a patch level [25] (we assume background can

easily be modeled as texture) to predict an N ×N grid with

each member indicating the real/fake score for the corre-

sponding patch in the input image:

Lbg adv = min
Gb

max
Db

Ex[log(Db(x))] + Ez,b[log(1−Db(Gb(z, b)))]

The auxiliary classification loss Lbg aux makes the back-

ground generation task more explicit, and is also computed

on a patch level. Specifically, patches inside (ri) and outside

(ro) the detected object in real images constitute the training

set for foreground (1) and background (0) respectively, and

is used to train a binary classifier Daux with cross-entropy

loss. We then use Daux to train the generator Gb:

Lbg aux = min
Gb

Ez,b[log(1−Daux(Gb(z, b)))]

This loss updates Gb so that Daux assigns a high back-

ground probability to the generated background patches.
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Figure 2. FineGAN architecture for hierarchical fine-grained image generation. The background stage, conditioned on random vector z

and background code b, generates the background image B. The parent stage, conditioned on z and parent code p, uses B as a canvas to

generate parent image P , which captures the shape of the object. The child stage, conditioned on c, uses P as a canvas to generate the final

child image C with the object’s appearance details stitched into the shape outline.

3.1.2 Parent stage

As explained previously, we model the real data distribution

pdata(x) through a two-level foreground generation process

via the parent and child stages. The parent stage can be

viewed as modeling higher-level information about an ob-

ject like its shape, and the child stage, conditioned on the

parent stage, as modeling lower-level information like its

color/texture.

Capturing multi-level information in this way can have

potential advantages. First, it makes the overall image gen-

eration process more principled and easier to interpret; dif-

ferent sub-networks of the model can focus only on syn-

thesizing entities they are concerned with, in contrast to the

case where the entire network performs single-shot image

generation. Second, for fine-grained generation, it should

be easier for the model to generate appearance details condi-

tioned on the object’s shape, without having to worry about

the background and other variations. With the same reason-

ing, such hierarchical features—parent capturing shape and

child capturing appearance—should also be beneficial for

fine-grained categorization compared to a flat-level feature

representation.

We now discuss the working details of the parent stage.

As shown in Fig. 2, Gp, which consists of a series of convo-

lutional layers and residual blocks, maps z and p to feature

representation Fp. As discussed previously, the requirement

from this stage is only to generate a foreground entity, and

stitch it to the existing background B. Consequently, two

generators Gp,f and Gp,m transform Fp into parent fore-

ground (Pf ) and parent mask (Pm) respectively, so that Pm

can be used to stitch Pf on B, to obtain the parent image P:

P = Pf,m + Bm

where Pf,m = Pm ⊙ Pf and Bm = (1− Pm)⊙ B denote

masked foreground and inverse masked background image

respectively; see green arrows in Fig. 2. This idea of gen-

erating a mask and using it for stitching is inspired by LR-

GAN [50].

We again employ a discriminator at the parent stage, and

denote it as Dp. Its functioning however, differs from the

discriminators employed at the other stages. This is because

in contrast to the background and child stages where we

know the true distribution to be modeled, the true distribu-

tion for P or Pf,m is unknown (i.e., we have real patch sam-

ples of background and real image samples of the object,

but we do not have any real intermediate image samples in

which the object exhibits one factor like shape but lacks an-

other factor like appearance). Consequently, we cannot use

the standard GAN objective to train Dp.

Thus, we only use Dp to induce the parent code p to rep-

resent the hierarchical concept i.e., the object’s shape. With

no supervision from image labels, we exploit information

theory to discover this concept in a completely unsupervised

manner, similar to InfoGAN [9]. Specifically, we maximize

the mutual information I(p,Pf,m), with Dp approximating

the posterior P (p|Pf,m):

Lp = Lp info = max
Dp,Gp,f ,Gp,m

Ez,p[logDp(p|Pf,m)]

We use Pf,m instead of P so that Dp makes its decision

solely based on the foreground object (shape) and not get

influenced by the background. In simple words, Dp is asked

to reconstruct the latent hierarchical category information

(p) from Pf,m, which already has this information encoded

during its synthesis. Given our constraints from Sec. 3.1

that there are less parent categories than child ones (Np <
Nc) and multiple child codes share the same parent code,
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FineGAN tries encoding p into Pf,m as an attribute that: (i)

by itself cannot capture all fine-grained category details, and

(ii) is common to multiple fine-grained categories, which is

the essence of hierarchy.

3.1.3 Child stage

The result of the previous stages is an image that is a com-

position of the background and object’s outline. The task

that remains is filling in the outline with appropriate tex-

ture/color to generate the final fine-grained object image.

As shown in Fig. 2, we encode the color/texture infor-

mation about the object with child code c, which is itself

conditioned on parent code p. Concatenated with Fp, the re-

sulting feature chunk is fed into Gc, which again consists of

a series of convolutional and residual blocks. Analogous to

the parent stage, two generators Gc,f and Gc,m map the re-

sulting feature representation Fc into child foreground (Cf )

and child mask (Cm) respectively. The stitching process to

obtain the complete child image C is:

C = Cf,m + Pc,m

where Cf,m = Cm ⊙ Cf , and Pc,m = (1− Cm)⊙ P .

We now discuss the requirements for the child stage dis-

criminative networks, Dadv and Dc: (i) discriminate be-

tween real samples from X and fake samples from the gen-

erative distribution using Dadv; (ii) use Dc to approximate

the posterior P (c|Cf,m) to associate the latent code c to a

fine-grained object detail like color and texture. The loss

function can hence be broken down into two components

Lc = Lc adv + Lc info, where:

Lc adv = min
Gc

max
Dadv

Ex[log(Dadv(x))] + Ez,b,p,c[log(1−Dadv(C))],

Lc info = max
Dc,Gc,f ,Gc,m

Ez,p,c[logDc(c|Cf,m)].

Again, we use Cf,m instead of C so that Dc makes its de-

cision solely based on the object (color/texture and shape)

and not get influenced by the background. With shape al-

ready captured though the parent code p, the child code c
can now solely focus to correspond to the texture/color in-

side the shape.

3.2. Finegrained object category discovery

Given our trained FineGAN model, we can now use it

to compute features for the real images xi ∈ X to cluster

them into fine-grained object categories. In particular, we

can make use of the final synthetic images {Cj} and their

associated parent and child codes to learn a mapping from

images to codes. Note that we cannot directly use the par-

ent and child discriminators Dp and Dc—which each cate-

gorize {Pf,m} and {Cf,m} into one of the parent and child

codes respectively—-on the real images due to the unavail-

ability of real foreground masks. Instead, we train a pair

of convolutional networks (φp and φc) to predict the parent

and child codes of the final set of synthetic images {Cj}:

1. Randomly sample a batch of codes: z ∼ N (0, 1), p ∼
pp, c ∼ pc, b ∼ pb to generate child images {Cj}.

2. Feed forward this batch through φp and φc. Compute

cross-entropy loss CE(p, φp(Cj)) and CE(c, φc(Cj)).
3. Update φp and φc. Repeat till convergence.

To accurately predict parent code p from Cj , φp has to

solely focus on the object’s shape as no sensible supervision

can come from the randomly chosen background and child

codes. With similar reasoning, φc has to solely focus on the

object’s appearance to accurately predict child code c. Once

φp and φc are trained, we use them to extract features for

each real image xi ∈ X . Finally, we use their concatenated

features to group the images with k-means clustering.

4. Experiments

We first evaluate FineGAN’s ability to disentangle and

generate images of fine-grained object categories. We then

evaluate FineGAN’s learned features for fine-grained object

clustering with real images.

Datasets and implementation details. We evaluate on

three fine-grained datasets: (1) CUB [45]: 200 bird classes.

We use the entire dataset (11,788 images); (2) Stanford

Dogs [27]: 120 dog classes. We use its train data (12,000

images); (3) Stanford Cars [29]: 196 car classes. We use

its train data (8,144 images). We do not use any of the pro-

vided labels for training. The labels are only used for eval-

uation. Number of parents and children are set as: (1) CUB:

Np = 20, Nc = 200; (2) Stanford dogs: Np = 12, Nc = 120;

and (3) Cars: Np = 20, Nc = 196. Nc matches the ground-

truth number of fine-grained classes per dataset. We set λ =

10, β = 1 and γ = 1 for all datasets.

4.1. Finegrained image generation

We first analyze FineGAN’s image generation in terms

of realism and diversity. We compare to:

• Simple-GAN: Generates a final image (C) in one shot

without the parent and background stages. Only has

Lc adv loss at the child stage. This baseline helps gauge

the importance of disentanglement learned by Lc info.

For fair comparison, we use FineGAN’s backbone archi-

tecture.

• InfoGAN [9]: Same as Simple-GAN but with addi-

tional Lc info. This baseline helps analyze the im-

portance of hierarchical disentanglement between back-

ground, shape, and appearance during image generation,

which is lacking in InfoGAN. Nc is set to be the same

as FineGAN for each dataset. We again use FineGAN’s

backbone architecture.

• LR-GAN [50]: It also generates an image stagewise,

which is similar to our approach. But its stages only

consist of foreground and background, and that too con-

trolled by single random vector z.
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Figure 3. FineGAN’s stagewise image generation. Background stage generates a background which is retained over the child and parent

stages. Parent stage generates a hollow image with only the object’s shape, and child stage fills in the appearance to complete the image.

• StackGAN-v2 [55]: Its unconditional version generates

images at multiple scales with Lc adv at each scale. This

helps gauge how FineGAN fares against a state-of-the-art

unconditional image generation approach.

For LR-GAN and StackGAN-v2, we use the authors’

publicly-available code. We evaluate image generation us-

ing Inception Score (IS) [40] and Frechet Inception Dis-

tance (FID) [20], which are computed on 30K randomly

generated images (equal number of images for each child

code c), using an Inception Network fine-tuned on the re-

spective datasets [2]. We evaluate on 128 x 128 generated

images for all methods except LR-GAN, for which 64 x 64
generated images give better performance.

4.1.1 Quantitative evaluation of image generation

FineGAN obtains Inception Scores and FIDs that are favor-

able when compared to the baselines (see Table 1), which

shows it can generate images that closely match the real data

distribution.

In particular, the lower scores by Simple-GAN, LR-

GAN, and StackGAN-v2 show that relying on a single ad-

versarial loss can be insufficient to model fine-grained de-

tails. Both FineGAN and InfoGAN learn to associate a c
code to a variation factor (Lc info) to generate more de-

tailed images. But by further disentangling the background

and object shape (parent), FineGAN learns to generate more

diverse images. LR-GAN also generates an image stage-

wise but we believe it has lower performance as it only sep-

arates foreground and background, which appears to be in-

sufficient for capturing fine-grained details. These results

strongly suggest that FineGAN’s hierarchical disentangle-

ment is important for better fine-grained image generation.

How sensitive is FineGAN to the number of parents?

Table 2 shows the Inception Score (IS) on CUB of Fine-

GAN trained with varying number of parents while keeping

IS FID

Birds Dogs Cars Birds Dogs Cars

Simple-GAN 31.85 ± 0.17 6.75 ± 0.07 20.92 ± 0.14 16.69 261.85 33.35

InfoGAN [9] 47.32 ± 0.77 43.16 ± 0.42 28.62 ± 0.44 13.20 29.34 17.63

LR-GAN [50] 13.50 ± 0.20 10.22 ± 0.21 5.25 ± 0.05 34.91 54.91 88.80

StackGANv2 [55] 43.47 ± 0.74 37.29 ± 0.56 33.69 ± 0.44 13.60 31.39 16.28

FineGAN (ours) 52.53 ± 0.45 46.92 ± 0.61 32.62 ± 0.37 11.25 25.66 16.03

Table 1. Inception Score (higher is better) and FID (lower is bet-

ter). FineGAN consistently generates diverse and real images that

compare favorably to those of state-of-the-art baselines.

Np=20 Np=10 Np=40 Np=5 Np=mixed

Inception Score (CUB) 52.53 52.11 49.62 46.68 51.83

Table 2. Varying number of parent codes Np, with number of chil-

dren Nc fixed to 200. FineGAN is robust to a wide range of Np.

the number of children fixed (200). IS remains consistently

high unless we have very small (Np=5) or large (Np=40)

number of parents. With very small Np, we limit diversity

in the number of object shapes, and with very high Np, the

model has less opportunity to take advantage of the implicit

hierarchy in the data. With variable number of children

per parent (Np=mixed: 6 parents with 5 children, 3 parents

with 20 children, and 11 parents with 10 children), IS re-

mains high, which shows there is no need to have the same

number of children for each parent. These results show that

FineGAN is robust to a wide range of parent choices.

4.1.2 Qualitative evaluation of image generation

We next qualitatively analyze FineGAN’s (i) image genera-

tion process; (ii) disentanglement of the factors of variation;

and provide (iii) in-depth comparison to InfoGAN.

Image generation process. Fig. 3 shows the intermedi-

ate images generated for CUB, Stanford Cars, and Stanford

Dogs. The background images (1st row) capture the context

of each dataset well; e.g., they contain roads for cars, gar-

dens or indoor scene for dogs, leafy backgrounds for birds.

The parent stage produces parent masks that capture each

object’s shape (2nd row), and a textureless, hollow entity as
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Figure 4. Varying p vs. c vs. z. Every three rows correspond to the same parent code p and each row has a different child code c. For

the same parent, the object’s shape remains consistent while the appearance changes with different child codes. For the same child, the

appearance remains consistent. Each column has the same random vector z – we see that it controls the object’s pose and position.

the parent image (3rd row) together with the background.

The final child stage produces a more detailed mask (4th

row) and the final composed image (last row), which has

the same foreground shape as that of the parent image with

added texture/color details. Note that the generation of ac-

curate masks at each stage is important for the final com-

posed image to retain the background, and is obtained with-

out any mask supervision during training. We present ad-

ditional quantitative analyses on the quality of the masks in

the supplementary material.

Disentanglement of factors of variation. Fig. 4 shows

the discovered grouping of parent and child codes by Fine-

GAN. Each row corresponds to different instances with the

same child code. Two observations can be made as we move

left to right: (i) there is a consistency in the appearance and

shape of the foreground objects; (ii) background changes

slightly, giving an impression that the background across a

row belongs to the same class, but with slight modifications.

For each dataset, each set of three rows corresponds to three

distinct children of the same parent, which is evident from

their common shape. Notice that different child codes for

the same parent can capture fine-grained differences in the

appearance of the foreground object (e.g., dogs in the third

row differ from those in first only because of small brown

patches; similarly, birds in the 7th and last rows differ only

in their wing color). Finally, the consistency in object view-

point and pose along each column shows that FineGAN has

learned to associate z with these factors.

Disentanglement of parent vs. child. Fig. 5 further ana-

lyzes the disentanglement of parent (shape) and child code

(appearance). Across the rows, we vary parent code p while

keeping child code c constant, which changes the bird’s

shape but keeps the texture/color the same. Across the

columns, we vary child code c while keeping parent code

p constant, which changes the bird’s color/texture but keeps

the shape the same. This result illustrates the control that

FineGAN has learned without any corresponding supervi-

sion over the shape and appearance of a bird. Note that we

keep background code b to be same across each column.

Disentanglement of background vs. foreground. The

figure below shows disentanglement of background from

object. In (a), we keep background code b constant and vary

the parent and child code, which generates different birds
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Figure 5. Disentanglement of parent vs. child codes. Shape is

retained over the column, appearance is retained over the row.

over the same background. In (b), we keep the parent and

child codes constant and vary the background code, which

generates an identical bird with different backgrounds.

(a) Fixed b, varying p and c (b) Fixed p and c, varying b

Comparison with InfoGAN. In InfoGAN [9], the latent

code prediction is based on the complete image, in contrast

to FineGAN which uses the masked foreground. Due to

this, InfoGAN’s child code prediction can be biased by the

background (see Fig. 6). Furthermore, InfoGAN [9] does

not hierarchically disentangle the latent factors. To enable

InfoGAN to model the hierarchy in the data, we tried condi-

tioning its generator on both the parent and child codes, and

ask the discriminator to predict both. This improves perfor-

mance slightly (IS: 48.06, FID: 12.84 for birds), but is still

worse than FineGAN. This shows that simply adding a par-

ent code constraint to InfoGAN does not lead it to produce

the hierarchical disentanglement that FineGAN achieves.

4.2. Finegrained object category discovery

We next evaluate FineGAN’s learned features for clus-

tering real images into fine-grained object categories. We

compare against the state-of-the-art deep clustering ap-

proaches JULE [51] and DEPICT [15]. To make them

even more competitive, we also create a JULE variant

with ResNet-50 backbone (JULE-ResNet-50) and DE-

PICT with double the number of filters in each conv layer

(DEPICT-Large). We use code provided by the authors.

All methods cluster the same image regions.

For evaluation we use Normalized Mutual Information

(NMI) [48] and Accuracy (of best mapping between clus-

Figure 6. InfoGAN results. Images in each group have same child

code. The birds are the same, but so are their backgrounds. This

strongly suggests InfoGAN takes background into consideration

when categorizing the images. In contrast, FineGAN’s generated

images (Fig. 4) for same c show reasonable variety in background.

NMI Accuracy

Birds Dogs Cars Birds Dogs Cars

JULE [51] 0.204 0.142 0.232 0.045 0.043 0.046

JULE-ResNet-50 [51] 0.203 0.148 0.237 0.044 0.044 0.050

DEPICT [15] 0.290 0.182 0.329 0.061 0.052 0.063

DEPICT-Large [15] 0.297 0.183 0.330 0.061 0.054 0.062

Ours 0.403 0.233 0.354 0.126 0.079 0.078

Table 3. Our approach outperforms existing clustering methods.

ter assignments and true labels) following [15]. Our ap-

proach outperforms the baselines on all three datasets (see

Table 3). This indicates that FineGAN’s features learned for

hierarchical image generation are better able to capture the

fine-grained object details necessary for fine-grained object

clustering. JULE and DEPICT are unable to capture those

details to the same extent; instead, they focus more on high-

level details like background and rough shape (see supp.

for examples). Increasing their capacity (JULE-RESNET-

50 and DEPICT-Large) gives little improvement. Finally,

if we only use our child code features, then performance

drops (0.017 in Accuracy on birds). This shows that the

parent code and child code features are complementary and

capture different aspects (shape vs. appearance).

5. Discussion and limitations

There are some limitations of FineGAN worth dis-

cussing. First, although we have shown that our model

is robust to a wide range of number of parents (Table 2),

it along with the number of children are hyperparameters

that a user must set, which can be difficult when the true

number of categories is unknown (a problem common to

most unsupervised grouping methods). Second, the latent

modes of variation that FineGAN discovers may not nec-

essarily correspond to those defined/annotated by a human.

For example, our results in Fig. 4 for cars show that the

children are grouped based on color rather than car model

type. This highlights the importance of a good evaluation

metric for unsupervised methods. Finally, while we signifi-

cantly outperform unsupervised clustering methods, we are

far behind fully-supervised fine-grained recognition meth-

ods. Nonetheless, we feel that this paper has taken impor-

tant initial steps in tackling the challenging problem of un-

supervised fine-grained object modeling.
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