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Abstract

Autonomous driving has attracted remarkable attention

from both industry and academia. An important task is to

estimate 3D properties (e.g. translation, rotation and shape)

of a moving or parked vehicle on the road. This task, while

critical, is still under-researched in the computer vision

community – partially owing to the lack of large scale and

fully-annotated 3D car database suitable for autonomous

driving research. In this paper, we contribute the first large-

scale database suitable for 3D car instance understanding

– ApolloCar3D. The dataset contains 5,277 driving im-

ages and over 60K car instances, where each car is fitted

with an industry-grade 3D CAD model with absolute model

size and semantically labelled keypoints. This dataset is

above 20× larger than PASCAL3D+ [65] and KITTI [21],

the current state-of-the-art. To enable efficient labelling

in 3D, we build a pipeline by considering 2D-3D keypoint

correspondences for a single instance and 3D relationship

among multiple instances. Equipped with such dataset, we

build various baseline algorithms with the state-of-the-art

deep convolutional neural networks. Specifically, we first

segment each car with a pre-trained Mask R-CNN [22],

and then regress towards its 3D pose and shape based on

a deformable 3D car model with or without using semantic

keypoints. We show that using keypoints significantly im-

proves fitting performance. Finally, we develop a new 3D

metric jointly considering 3D pose and 3D shape, allowing

for comprehensive evaluation and ablation study.

1. Introduction

Understanding 3D properties of objects from an image,

i.e. to recover objects’ 3D pose and shape, is an important

task of computer vision, as illustrated in Fig. 1. This task

(a)

(b)

(c)

Figure 1: An example of our dataset, where (a) is the input color

image, (b) illustrates the labeled 2D keypoints, (c) shows the 3D

model fitting results with labeled 2D keypoints.

is also called “inverse-graphics” [27], solving which would

enable a wide range of applications in vision and robotics,

such as robot navigation [30], visual recognition [15], and

human-robot interaction [2]. Among them, autonomous

driving (AD) is a prominent topic which holds great poten-

tial in practical applications. Yet, in the context of AD the

current leading technologies for 3D object understanding

mostly rely on high-resolution LiDAR sensor [34], rather

than regular camera or image sensors.

However, we argue that there are multitude drawbacks

in using LiDAR, hindering its further up-taking. The most
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Dataset Image source 3D property Car keypoints (#) Image (#) Average cars/image Maximum cars/image Car models # Stereo

3DObject [52] Control complete 3D No 350 1 1 10 No

EPFL Car [47] Control complete 3D No 2000 1 1 20 No

PASCAL3D+ [65] Natural complete 3D No 6704 1.19 14 10 No

ObjectNet3D [64] Natural complete 3D Yes (14) 7345 1.75 2 10 No

KITTI [21] Self-driving 3D bbox & ori. No 7481 4.8 14 16 Yes

ApolloCar3D Self-driving industrial 3D Yes (66) 5277 11.7 37 79 Yes

Table 1: Comparison between our dataset and existing datasets with 3D car labels. “complete 3D” means fitting with 3D car model.

severe one is that the recorded 3D LiDAR points are at best

a sparse coverage of the scene from front view [21], espe-

cially for distant and absorbing regions. Since it is crucial

for a self-driving car to maintain a safe breaking distance,

3D understanding from a regular camera remains a promis-

ing and viable approach attracting significant amount of re-

search from the vision community [6, 56].

The recent tremendous success of deep convolutional

network [22] in solving various computer vision tasks

is built upon the availability of massive carefully an-

notated training datasets, such as ImageNet [11] and

MSCOCO [36]. However, acquiring large-scale training

datasets is an extremely laborious and expensive endeav-

our, and the community is especially lacking of fully an-

notated datasets of 3D nature. For example, for the task

of 3D car understanding for autonomous driving, the avail-

ability of datasets is severely limited. Take KITTI [21] for

instance. Despite being the most popular dataset for self-

driving, it has only about 200 labelled 3D cars yet in the

form of bounding box only, without detailed 3D shape in-

formation flow [41]. Deep learning methods are generally

hungry for massive labelled training data, yet the sizes of

currently available 3D car datasets are far from adequate

to capture various appearance variations, e.g. occlusion,

truncation, and lighting. For other datasets such as PAS-

CAL3D+ [65] and ObjectNet3D [64], while they contain

more images, the car instances therein are mostly isolated,

imaged in a controlled lab setting, thus are unsuitable for

autonomous driving.

To rectify this situation, we propose a large-scale 3D in-

stance car dataset built from real images and videos cap-

tured in complex real-world driving scenes in multiple

cities. Our new dataset, called ApolloCar3D, is built

upon the publicly available ApolloScape dataset [23] and

targets at 3D car understanding research in self-driving sce-

narios. Specifically, we select 5, 277 images from around

200K released images in the semantic segmentation task of

ApolloScape, following several principles such as (1) con-

taining sufficient amount of cars driving on the street, (2)

exhibiting large appearance variations, (3) covering multi-

ple driving cases at highway, local, and intersections. In

addition, for each image, we provide a stereo pair for ob-

taining stereo disparity; and for each car, we provide 3D

keypoints such as corner of doors and headlights, as well as

realistic 3D CAD models with an absolute scale. An exam-

ple is shown in Fig. 1(b). We will provide details about how

we define those keypoints and label the dataset in Sec. 2.

Equipped with ApolloCar3D, we are able to di-

rectly apply supervised learning to train a 3D car under-

standing system from images, instead of making unnec-

essary compromises falling back to weak-supervision or

semi-supervision like most previous works do, e.g. 3D-

RCNN [28] or single object 3D recovery [60].

To facilitate future research based on our

ApolloCar3D dataset, we also develop two 3D car

understanding algorithms, to be used as new baselines in

order to benchmark future contributed algorithms. Details

of our baseline algorithms will be described in following

sections.

Another important contribution of this paper is that we

propose a new evaluation metric for this task, in order to to

jointly measure the quality of both 3D pose estimation and

shape recovery. We referred to our new metric as “Average

3D precision (A3DP)”, as it is inspired by the AVP metric

(average viewpoint precision) for PASCAL3D+ [65] which

however only considers 3D pose. In addition, we supply

multiple true positive thresholds similar to MS COCO [36].

The contributions of this paper are summarized as:

• A large-scale and growing 3D car understanding

dataset for autonomous driving, i.e. ApolloCar3D,

which complements existing public 3D object datasets.

• A novel evaluation metric, i.e. A3DP, which jointly

considers both 3D shape and 3D pose thus is more ap-

propriate for the task of 3D instance understanding.

• Two baseline algorithms for 3D car understanding,

which outperform several state-of-the-art 3D object re-

covery methods.

• Human performance study, which points out promis-

ing future research directions.

2. ApolloCar3D Dataset

Existing datasets with 3D object instances. Previous

datasets for 3D object understanding are often very limited

in scale, or with partial 3D properties only, or contain few

objects per image [29, 55, 52, 44, 47, 37]. For instance,
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(a) Location (b) Orientation

(c) Models

(d) Occlusion

(e) Objects

Figure 2: Car occurrence and object geometry statistics in ApolloCar3D. (a) and (b) illustrate the translation and orientation distribution

of all the vehicles. (c) - (e) describe the distribution of vehicle type, occlusion ratio, and number of vehicles per image. Specifically, the

Y-axis in all the figures represents the occurrences of vehicles.

3DObject [52] has only 10 instances of cars. The EPFL

Car [47] has 20 cars under different viewpoints but was cap-

tured in a controlled turntable rather than in real scenes.

To handle more realistic cases from non-controlled

scenes, datasets [35] with natural images collected from

Flickr [40] or indoor scenes [10] with Kinect are extended

to 3D objects [51]. The IKEA dataset [35] labelled a few

hundreds indoor images with 3D furniture models. PAS-

CAL3D+ [65] labelled the 12 rigid categories in PAS-

CAL VOC 2012 [16] images with CAD models. Object-

Net3D [64] proposed a much larger 3D object dataset with

images from ImageNet [11] with 100 categories. These

datasets, while useful, are not designed for autonomous

driving scenarios. To the best of our knowledge, the only

real-world dataset that partially meets our requirement is the

KITTI dataset [21]. Nonetheless, KITTI only labels each

car by a rectangular bounding box, and lacks fine-grained

semantic keypoint labels (e.g. window, headlight). One ex-

ception is the work of [42], yet it falls short in the num-

ber of 200 labelled images, and their car parameters are not

publicly available.

In this paper, as illustrated in Fig. 1, we offer to the

community the first large-scale and fully 3D shape labelled

dataset with 60K+ car instances, from 5,277 real-world

images, based on 34 industry-grade 3D CAD car models.

Moreover, we also provide the corresponding stereo images

and accurate 2D keypoint annotations. Tab. 1 gives a com-

parison of key properties of our dataset versus existing ones

for 3D object instance understanding.

2.1. Data Acquisition

We acquire images from the ApolloScape dataset [23]

due to its high resolution (3384 × 2710), large scale

(≥140K semantically labelled images), and complex driv-

ing conditions. From the dataset, we carefully select images

satisfying our requirements as stated in Sec. 1. Specifically,

we select images from their labelled videos of 4 different

cites satisfying (1) relatively complex environment, (2) in-

terval between selected images ≥ 10 frames. After picking

images from the whole dataset using their semantic labels,

in order to have more diversity, we prune all images man-

ually, and further select ones which contain better variation

of car scales, shapes, orientations, and mutual occlusion be-

tween instances, yielding 5,277 images for us to label.

For 3D car models, we look for highly accurate shape

models, i.e. the offset between the boundary of re-projected

model and manually labelled mask is less than 3px on av-

erage. However, 3D car meshes in ShapeNet [4] are still

not accurate enough for us, and it is too costly to fit each

3D model in the presence of heavy occlusion, as shown

in Fig. 1. Therefore, to ensure the quality (accuracy) of

3D models, we hired online model makers to manually

build corresponding 3D models given parameters of abso-

lute shape and scale of certain car type. Overall, we build

34 real models including sedan, coupe, minivan, SUV, and

MPV, which has covered the majority of car models and

types in the market.

2.2. Data Statistics

In Fig. 2, we provide statistics for the labelled cars w.r.t.

translation, orientation, occlusion, and model shape. Com-

pared with KITTI [21], ApolloCar3D contains signifi-

cantly larger amount of cars that are at long distance, under

heavy occlusions, and these cars are distributed diversely

in space. From Fig. 2(b), the orientation follows a similar

distribution, where the majority of cars on road are driving

towards or backwards the data acquisition car. In Fig. 2(c),

we show distribution w.r.t. car types, where sedans have the

most frequent occurrences. The object distribution per im-

age in Fig. 2(e) shows that most of the images contain more

than 10 labeled objects.
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Figure 3: 3D keypoints definition for car models. 66 keypoints are

defined for each model.

3. Context-aware 3D Keypoint Annotation

Thanks to the high quality 3D models that we created,

we develop an efficient machine-aided semi-automatic key-

point annotation process. Specifically, we only ask hu-

man annotators to click on a set of pre-defined keypoints

on the object of interest in each image. Afterwards, the

EPnP algorithm [31] is employed to automatically recover

the pose and model of the 3D car instance by minimizing

re-projection error. RANSAC [19] is used handle outliers

or wrong annotations. While only a handful of keypoints

can be sufficient solve the EPnP problem, we define 66 se-

mantic keypoints in our dataset, as shown in Fig. 3, which

has much higher density than most previous car datasets

[57, 43]. The redundancy enables more accurate and robust

shape-and-pose registration.

Context-aware annotation. In the presence of severe

occlusions, for which RANSAC also fails, we develop a

context-aware annotation process by enforcing co-planar

constraints between one car and its neighboring cars. By

doing this, we are able to propagate information among

neighboring cars, so that we jointly solve for their poses

with context-aware constraints.

Formally, the objective for a single car pose estimation

is

EPnP (p,S) =
∑

[x3

k
,k]∈S

vk‖π(K,p,x3
k)− xk‖2, (1)

where p = [α, β, γ, x, y, z] ∈ SE(3),S ∈
{S1, · · · , Sm} indicate the pose and shape of a car instance

respectively. v is a vector indicating whether the kth key-

point of the car has been labelled or not. xk is the labelled

2D keypoint coordinate on the image. π(p,x3
k) is a per-

spective projection function projecting the correspondent

3D keypoint x3
k on the car model given p and camera in-

trinsic K.

Our context-aware co-planarity constraint is formulated

as:

EN (p,S,pn,Sn) = [(αp − αpn
)2 + (βp − βpn

)2

+ ((yp − hS)− (ypn
− hSn

))2], (2)

where n is a spatial neighbor car, αp and βp are roll and

pitch component of p, and hS is the height of the car given

its shape S .

The total energy to be minimized for finding car pose and

shape in image I is defined as:

EI =
C∑

c=1

{EPnP (pc,Sc)+

B(Kc)
∑

n∈Nc

EN (pc,Sc,pn,Sn)}, (3)

where c is the index of cars in the image, B(Kc) is a binary

function indicating whether car c needs to borrow pose in-

formation from neighbor cars, and K = {x2
k} is the set of

labelled 2D keypoints of the car. Nc = N(c,M, κ) is the

set of rich annotated neighboring cars of c using instance

mask M, and κ is the maximum number of neighbors we

use. We list the definition details of function B(Kc) and

N(c,M, κ) in Supplementary Materials due to space limit.

As illustrated in Fig. 4, to minimize Eq. (3), we first solve

for those cars with dense keypoint annotations, by exhaust-

ing all car types. To guarantee the precision, we labeled

the ground points of each car and use the corresponding

depth map in ApolloScape dataset to get the accurate dis-

tance of each car. We require that the average re-projection

error must be below 5 pixels and the obtained pose is with

the minimum distance errors with the corresponding ground

points. We then solve for the cars with fewer keypoint an-

notations, by using its context information provided by its

neighboring cars, and the precision setting is the same with

those cars with dense keypoint annotations. After most cars

are aligned, we ask human annotators to visually verify and

adjust the result before committing to the database.

4. Two Baseline Algorithms

Based on ApolloCar3D, we aim to develop strong base-

line algorithms to facilitate benchmarking and future re-

search. We first review the most recent literature and then

implement two possibly strongest baseline algorithms.

Existing work on 3D instance recovery from images.

3D objects are usually recovered from multiple frames, 3D

range sensors [26], or learning-based methods [67, 13].

Nevertheless, addressing 3D instance understanding from

a single image in an uncontrolled environment is ill-posed

and challenging, thus attracting growing attention. With the

development of deep CNNs, researchers are able to achieve
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Figure 4: The pipeline for ground truth pose label generation based on annotated 2D and 3D keypoints.

impressive results with supervised [18, 69, 43, 46, 57, 54,

63, 70, 6, 32, 49, 38, 3, 66] or weakly supervised strate-

gies [28, 48, 24]. Existing works consider to represent an

object as a parameterized 3D bounding box [18, 54, 57, 49],

coarse wire-frame skeletons [14, 32, 62, 69, 68], vox-

els [9], one-hot selection from a small set of exemplar mod-

els [3, 45, 1], and point clouds [17]. Category-specific de-

formable model has also been used for shapes of simple ge-

ometry [25, 24].

For handling cases of multiple instance, 3D-RCNN [28]

and DeepMANTA [3] are possibly the state-of-the-art tech-

niques by combining 3D shape model with Faster R-

CNN [50] detection. However, due to the lack of high qual-

ity dataset, these methods have to rely on 2D masks or wire-

frames that are coarse information for supervision. Back

on ApolloCar3D, in this paper, we adapt their algorithms

and conduct supervised training to obtain strong results for

benchmarks. Specifically, 3D-RCNN does not consider the

car keypoints, which we referred to as direct approach,

while DeepMANTA considers keypoints for training and

inference, which we call keypoint-based approach. Nev-

ertheless, both algorithms are not open-sourced yet. There-

fore, we have to develop our in-house implementation of

their methods, serving as baselines in this paper. In addi-

tion, we also propose new ideas to improve the baselines, as

illustrated in Fig. 5, which we will elaborate later.

Specifically, similar to 3D-RCNN [28], we assume pre-

dicted 2D car masks are given, e.g. learned through Mask-

RCNN [22], and we primarily focus on 3D shape and pose

recovery.

4.1. A Direct Approach

When only car pose and shape are provided, following

direct supervision strategy as mentioned in 3D-RCNN [28],

we crop out corresponding features for every car instance

from a fully convolutional feature extractor with RoI pool-

ing, and build independent fully connected layers to regress

towards its 2D amodal center, allocentric rotation, and

PCA-based shape parameters. Following the same strat-

egy, the regression output spaces of rotation and shape are

discretized. Nevertheless, for estimating depth, instead of

using amodal box and enumerating depth such that the pro-

jected mask best fits the box as mentioned in [28], we use

ground truth depths as supervision. Therefore, for our im-

plementation, we replace amodal box regression to depth

regression using similar depth discretizing policy as pro-

posed in [20], which provides state-of-the-art depth estima-

tion from a single image.

Targeting at detailed shape understanding, we further

make two improvements over the original pipeline, as

shown in Fig. 5(a). First, as mentioned in [28], estimat-

ing object 3D shape and pose are distortion-sensitive, and

RoI pooling is equivalent to making perspective distortion

of an instance in the image, which negatively impact the es-

timation. 3D-RCNN [28] induces infinity homography to

handle the problem. In our case, we replace RoI pooling

to a fully convolutional architecture, and perform per-pixel

regression towards our pose and shape targets, which is sim-

pler yet more effective. Then we aggregate all the predic-

tions inside the given instance mask with a “self-attention”

policy as commonly used for feature selection [59]. For-

mally, let X ∈ R
h×w×c be the feature map, and the output

for car instance i is computed as,

oi =
∑

x

Mi
x
(κo ∗X+ bo)xAx (4)

where oi is the logits of discretized 3D representation, x

is a pixel in the image, Mi is a binary mask of object i,
κo ∈ R

kl×k×c×b is the kernels used for predicting outputs,

and A ∈ R
h×w×1 is the attention map. b is the number of

bins for discretization following [28]. We call feature aggre-

gation as mask pooling since it selects the most important

information within each object mask.

Secondly, as shown in our pipeline, for estimating car

translation, i.e. its amodal center ca = [cx, cy] and depth

dc, instead of using the same target for every pixel in a car

mask, we propose to output a 3D offset at each pixel w.r.t.

the 3D car center, which provides stronger supervision and

helps learn more robust networks. Previously, inducing rel-

ative position of object instances has also been shown to be

effective in instance segmentation [58, 33]. Formally, let

c = [dc(cx − ux)/fx, dc(cy − uy)/fy, dc] be the 3D car

center, and our 3D offset for a pixel x = [x, y] is defined as

f3 = x3 − c, where x3 = [d(x−ux)/fx, d(y−uy)/fy, d],
and d is the estimated depth at x. In principle, 3D offset

estimation is equivalent to jointly computing per-pixel 2D

offset respect to the amodal center, i.e. x − ca = [u, v]T

and a relative depth to the center depth, i.e. d − dc. We
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Figure 5: Training pipeline for 3D car understanding. Upper (a): direct approach. Bottom (b): key point based approach.

adopt such a factorized representation for model center es-

timation, and the 3D model center can then be recovered

by

ca =
∑

x

Ax(x+ f3x,y), dc =
∑

x

Ax(dx + f3d ) (5)

where veAx is the attention at x, which is used for output

aggregation in Eq. (4). In our experiments in Sec. 5, we

show that the two strategies provide improvements over the

original baseline results.

4.2. A Keypoint-based Approach

When sufficient 2D keypoints from each car are avail-

able (e.g.as in Fig. 5(b)), we develop a simple baseline al-

gorithm, inspired by DeepMANTA [3], to align 3D car pose

via 2D-3D matching.

Different from [3], our 3D car models have much more

geometric details and come with the absolute scale, and

our 2d keypoints have more precise annotations. Here, we

adopt the CPM [61] – a state-of-the-art 2d keypoint detector

despite the algorithm was originally developed for human

pose estimation. We extend it to 2d car keypoint detection

and find it works well.

One advantage of using 2d keypoint prediction over our

baseline-1 i.e.the “direct approach” in Sec. 4.1, is that, we

do not have to regress the global depth or scale – the esti-

mation of which by networks is in general not very reliable.

Instead of feeding the full image into the network, we crop

out each car region in the image for 2d keypoint detection.

This is especially useful for images in ApolloScape [23],

which have a large number of cars of small size.

Borrowing the context-aware constraints from our anno-

tation process, once we have enough detected keypoints, we

first solve the easy cases where a car is less occluded using

EPnP[31], then we propagate the information to neighbor-

ing cars until all car pose and shapes are found to be con-

sistent with each other w.r.t. the co-planar constraints via

optimizing Eq. (3). We referred our car pose solver with

co-planar constraints as context-aware solver.

5. Experiments

This section provides implementation details, our newly

proposed evaluation metric, and experiment results. In total,

we have experimented on 5,277 images, split to 4,036 for

training, 200 for validation, and 1,041 for testing.

Implementation details. Due to the lacking of publicly

available source codes, we re-implemented 3D-RCNN [28]

for 3D car understanding without using keypoints, and

DeepMANTA [3] which requires key points annotation.

For training Mask-RCNN, we downloaded the code from

GitHub implemented by an autonomous driving com-

pany 1. We adopted the fully convolutional features from

DeepLabv3 [5] with Xception65 [8] network and follow the

same training policy. For DeepMANTA, we used the key

point prediction methods from CPM [7]. With 4,036 train-

ing images, we obtained about 40,000 labeled vehicles with

2D keypoints, used to train a CPM [7] (with 5 stages of

CPM, and VGG-16 initialization).

Evaluation metrics. The average precision (AP) [16] is

usually used for evaluating 3D object understanding. And,

the similarity is measured using 3D bounding box IoU [21]

with orientation (average orientation similarity (AOS) [21])

or 2D bounding box with viewpoint (average viewpoint pre-

cision (AVP) [65]). Those metrics only measure coarse

3D properties, without considering the influence of object

shape.

Mesh distance [53] and voxel IoU [12] are usually used

to evaluate 3D shape reconstruction. In our case, a car

model is mostly compact, thus we consider comparing pro-

jection masks of two models following the idea of visual

hull representation [39]. Specifically, we sample 100 orien-

tations at yaw angular direction and project each view of the

model to an image with a resolution of 1280×1280. We use

the mean IoU over all views as the car shape similarity met-

ric. For evaluating rotation and translation, we follow the

metrics commonly used for camera pose estimation [21]. In

1https://github.com/TuSimple/mx-maskrcnn
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Methods Mask wKP
A3DP-Abs A3DP-Rel

Time(s)
mean c-l c-s mean c-l c-s

3D-RCNN∗ [28] gt - 16.44 29.70 19.80 10.79 17.82 11.88 0.29s
+ MP gt - 16.73 29.70 18.81 10.10 18.81 11.88 0.32s
+ MP + OF gt - 17.52 30.69 20.79 13.66 19.80 13.86 0.34s
+ MP + OF pred. - 15.15 28.71 17.82 11.49 17.82 11.88 0.34s
DeepMANTA∗ [3] gt � 20.10 30.69 23.76 16.04 23.76 19.80 3.38s
+ CA-solver gt � 21.57 32.62 26.73 17.52 26.73 20.79 7.41s
+ CA-solver pred. � 20.40 31.68 24.75 16.53 24.75 19.80 8.5s
Human gt � 38.22 56.44 49.50 33.27 51.49 41.58 607.41s

Table 2: Comparison among baseline algorithms. ∗ means in-house implementation. “Mask” means the provided mask for 3D under-

standing (“gt” means ground truth mask and “pred.” means Mask-RCNN mask). “wKP” means using keypoint predictions. “c-l” indicates

results from loose criterion, and “c-s” indicates results from strict criterion. “MP” stands for mask pooling and “OF” stands for offset flow.

“CA-solver” stands for context-aware 3D pose solver. “Times(s)” indicates the average inference times cost for processing each image.

summary, the criteria for judging a true positive given a set

of thresholds is defined as

cshape =
1

|V |

∑
v∈V

IoU(P(si),P(s∗i ))v ≥ δs,

ctrans = |ti − t∗i |2 ≤ δt,

crot = arccos(|q(ri) · q(r
∗
i )|) ≤ δr, (6)

where s, t, r are the shape ID, translation, and rotation

of a predicted 3D car instance.

In addition, a single set of true positive thresholds used

by AOS or AVP, e.g. IoU ≥ 0.5, and rotation ≤ π/6, is not

sufficient to evaluate detected results thoroughly [21]. Here,

following the metric of MS COCO [36], we propose to use

multiple sets of thresholds from loose to strict for evalua-

tion. Specifically, the thresholds used in our results for all

levels of difficulty are {δs} = [0.5 : 0.05 : 0.95], {δt} =
[2.8 : 0.3 : 0.1], {δr} = [π/6 : π/60 : π/60], where [a :
i : b] indicates a set of discrete thresholds sampled in a line

space from a to b with an interval of i. Similar to MSCOCO,

we select one loose criterion c− l = [0.5, 2.8, π/6] and one

strict criterion c− l = [0.75, 1.4, π/12] to diagnose the per-

formance of different algorithms. Note that in our metrics,

we only evaluate instances with depth less than 100m as

we would like to focus on cars that are more immediately

relevant to our autonomous driving task.

Finally, in self-driving scenarios that are safety critical,

we commonly care nearby cars rather than those far away.

Therefore, we further propose to use a relative error met-

ric for evaluating translation following the “AbsRel” com-

monly used in depth evaluation [21]. Formally, we change

the criteria of ctrans to |ti−t∗i |/t
∗
i ≤ δ∗t , and set the thresh-

olds to {δ∗t } = [0.10 : 0.01 : 0.01]. We call our evaluation

metric with absolute translation thresholds as “A3DP-Abs”,

and the one with relative translation thresholds as “A3DP-

Rel”.

5.1. Quantitative Results

In this section, we compare against our baseline algo-

rithms with the method presented in Sec. 4 by progres-

sively adding our proposed components and losses. Tab. 2

shows the comparison results. For direct regression ap-

proach, our baseline algorithm “3D-RCNN” provides re-

gression towards translation, allocentric rotation, and car

shape parameters. We further extend the baseline method

by adding mask pooling (MP) and offset flow (OF). We ob-

serve from the table that, swapping RoI pooling for mask

pooling moderately improves the results while offset flow

brings significant boost. They together help avoiding geo-

metric distortions from regular RoI pooling and bring atten-

tion mechanism to focus on relevant regions.

For the keypoint-based method, “DeepMANTA” shows

the results by using our detected key points and solving with

PnP for each car individually, yielding reasonable perfor-

mance. “+CA-solver” means for cars without sufficient de-

tected key points, we employ our context-aware solver for

inference, which provides around 1.5% improvement. For

both methods, switching ground truth mask to segmenta-

tion from Mask R-CNN gives little drop of the performance,

demonstrating the high quality of Mask R-CNN results.

Finally, we train a new group of labellers, and ask them

to re-label the keypoints on our validation set, which are

passed through our context-aware 3D solver. We denote

these results as “human” performance. We can see there is a

clear gap (∼ 10%) between algorithms with human. How-

ever, even the accuracy for humans is still not satisfying.

After checking the results, we found that this is primarily

because humans cannot accurately memorize the semantic

meaning of all the 66 keypoints, yielding wrongly solved

poses. We conjecture this could be fixed by rechecking and

refinement, possibly leading to improved performance.

5.2. Qualitative Results

Some qualitative results are visualized in Fig. 7. From

the two examples, we can find that the additional key point

predictions provide more accurate 3D estimation than di-

rect method due to the use of geometric constraints and

inter-car relationship constraints. In particular, for the di-

rect method, most errors occur in depth prediction. It can be

explained by the nature of the method that the method pre-

dicts the global 3D property of depth purely based on object
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Figure 6: 3D understanding results of various algorithms w.r.t. different factors causing false estimation. (a) A3DP-Abs v.s distance, (b)

A3DP-Rel v.s distance, (c) A3DP-Abs v.s occlusion, (d) A3DP-Abs v.s occlusion.

(a) (c) (d)(b)(a)

Figure 7: Visualization results of different approaches, in which (a) the input image, (b) and (c) are the results with direct regression method

and key points-based method with context constraint. (d) gives the ground truth results.

appearance in 2D, which is ill-posed and error-prone. How-

ever, thanks to the use of reliable masks, the method discov-

ers more cars than the keypoint-based counterpart. For the

keypoint-based approach, we are able to show that correctly

detected keypoints are extremely successful at constraining

car poses, while failed or missing keypoint estimation, es-

pecially for cars of unusual appearance, will lead to missing

detection of cars or wrong solution for poses.

5.3. Result Analysis

To analyze the performance of different approaches, we

evaluate them separately on various distances and occlu-

sion ratios. Detailed results are shown in Fig. 6. Check-

ing Fig. 6(a, b), as expected, we can find that the estimation

accuracy decreases with farther distances, and the gap be-

tween human and algorithm narrows in the distance. In ad-

dition, after checking Fig. 6(c, d) for occlusion, we discover

that the performance also drops with increasing the occlu-

sion ratio. However, we observe that the performance on

non-occluded cars is the worst on average among all occlu-

sion patterns. This is because most cars which experience

little occlusion are from large distance and of small scale,

while cars close-by are more often occluded.

6. Conclusion

This paper presents by far the largest and growing dataset

(namely ApolloCar3D) for instance-level 3D car under-

standing in the context of autonomous driving. It is built

upon industrial-grade high-precision 3D car models fitted

to car instances captured in real world scenarios. Comple-

menting existing related datasets e.g. [21], we hope this

new dataset could serve as a long-standing benchmark fa-

cilitating future research on 3D pose and shape recovery.

In order to efficiently annotate complete 3D object prop-

erties, we have developed a context-aware 3D annotation

pipeline, as well as two baseline algorithms for evaluation.

We have also conducted carefully designed human perfor-

mance study, which reveals that there is still a visible gap

between machine performance and that of human’s, moti-

vating and suggesting promising future directions. More

importantly, built upon the publicly available ApolloScape

dataset [23], our ApolloCar3D dataset contains multi-

tude of data sources including stereo, camera pose, seman-

tic instance label, per-pixel depth ground truth, and moving

videos. Working with our data enables training and evalua-

tion of a wide range of other vision tasks, e.g. stereo vision,

model-free depth estimation, and optical flow etc., under

real scenes.
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