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Abstract

Visual-semantic embedding aims to find a shared latent
space where related visual and textual instances are close
to each other. Most current methods learn injective embed-
ding functions that map an instance to a single point in the
shared space. Unfortunately, injective embedding cannot
effectively handle polysemous instances with multiple pos-
sible meanings, at best, it would find an average representa-
tion of different meanings. This hinders its use in real-world
scenarios where individual instances and their cross-modal
associations are often ambiguous. In this work, we intro-
duce Polysemous Instance Embedding Networks (PIE-Nets)
that compute multiple and diverse representations of an in-
stance by combining global context with locally-guided fea-
tures via multi-head self-attention and residual learning. To
learn visual-semantic embedding, we tie-up two PIE-Nets
and optimize them jointly in the multiple instance learning
framework. Most existing work on cross-modal retrieval fo-
cus on image-text pairs of data. Here, we also tackle a more
challenging case of video-text retrieval. To facilitate further
research in video-text retrieval, we release a new dataset
of 50K video-sentence pairs collected from social media,
dubbed MRW (my reaction when). We demonstrate our ap-
proach on both image-text and video-text retrieval scenarios
using MS-COCO, TGIFE, and our new MRW dataset.

1. Introduction

Visual-semantic embedding [9, 20] aims to find a joint
mapping of instances from visual and textual domains to
a shared embedding space so that related instances from
source domains are mapped to nearby places in the target
space. This has a variety of downstream applications in
computer vision including tagging [9], retrieval [11], cap-
tioning [20], visual question answering [19].

Formally, the goal of visual-semantic embedding is to
learn two mapping functions f : X — Zandg: )Y — Z
jointly, where X and ) are visual and textual domains, re-
spectively, and Z is a shared embedding space. The func-
tions are often designed to be injective so that there is a one-
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Figure 1. Cross-modal retrieval in the real-world could be chal-
lenging with ambiguous instances (each instance can have multi-
ple meanings/concepts) and their partial associations (not all in-
dividual meanings/concepts may match). Addressing these two
challenges is the focus of this work.

to-one mapping from an instance = (or y) to a single point
z € R% in the embedding space. They are often optimized
to satisfy the following constraint:

where d(-,-) is a certain distance measure, such as Eu-
clidean and cosine distance. This simple and intuitive setup,
which we refer to as injective instance embedding, is cur-
rently the most popular approach in the literature [44].

Unfortunately, injective embedding can suffer when
there is ambiguity in individual instances. Consider an am-
biguous instance with multiple meanings/senses, e.g., poly-
semy words and images containing multiple objects. Even
though each of the meanings/senses can map to different
points in the embedding space, injective embedding is al-
ways forced to find a single point, which could be an (inac-
curate) weighted geometric mean of all the desirable points.
The issue gets intensified for videos and sentences because
the ambiguity in individual images and words can aggregate
and get compounded, severely limiting its use in real-world
applications such as text-to-video retrieval.

Another case where injective embedding could be prob-
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lematic is partial cross-domain association, a characteris-
tic commonly observed in the real-world datasets. For in-
stance, a text sentence may describe only certain regions
of an image while ignoring other parts [47], and a video
may contain extra frames not described by its associated
sentence [24]. These associations are implicit/hidden, mak-
ing it unclear which part(s) of the image/video the text de-
scription refers to. This is especially problematic for in-
jective embedding because information about any ignored
parts will be lost in the mapped point and, once mapped,
there is no way to recover from the information loss.

In this work, we address the above issues by (1) formu-
lating instance embedding as a one-to-many mapping task
and (2) optimizing the mapping functions to be robust to
ambiguous instances and partial cross-modal associations.

To address the issues with ambiguous instances, we
propose a novel one-to-many instance embedding model,
Polysemous Instance Embedding Network (PIE-Net),
which extracts K embeddings of each instance by combin-
ing global and local information of its input. Specifically,
we obtain K locally-guided representations by attending to
different parts of an input instance (e.g., regions, frames,
words) using a multi-head self-attention module [27, 41].
We then combine each of such local representation with
global representation via residual learning [15] to avoid
learning redundant information. Furthermore, to prevent
the K embeddings from collapsing into the mode (or the
mean) of all the desirable embeddings, we regularize the K
locally-guided representations to be diverse. To our knowl-
edge, we are the first to apply multi-head self-attention with
residual learning for the application of instance embedding.

To address the partial association issue, we tie-up two
PIE-Nets and train our model in the multiple-instance
learning (MIL) framework [5]. We call this approach
Polysemous Visual-Semantic Embedding (PVSE). Our in-
tuition is: when two instances are only partially associated,
the learning constraint of Equation 1 will unnecessarily pe-
nalize embedding mismatches because it expects two in-
stances to be perfectly associated. Capitalizing on our one-
to-many instance embedding, our MIL objective relaxes the
constraint of Equation 1 so that only one of K X K embed-
ding pairs is well-aligned, making our model more robust
to partial cross-domain association. We illustrate this intu-
ition in Figure 2. This relaxation, however, could cause a
discrepancy between two embedding distributions because
(K x K — 1) embedding pairs are left unconstrained. We
thus regularize the learned embedding space by minimiz-
ing the discrepancy using the Maximum Mean Discrepancy
(MMD) [13], a popular technique for determining whether
two sets of data are from the same probability distribution.

We demonstrate our approach on two cross-modal re-
trieval scenarios: image-text and video-text. For image-text
retrieval, we evaluate on the MS-COCO dataset [25]; for
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Figure 2. We represent each instance with & embeddings, each
representing different parts of the instance, e.g., regions of an im-
age, frames of a video, or words of a sentence. Conventional ap-
proaches measure the visual-semantic distance by considering all
k embeddings, and thus would suffer when not all concepts are re-
lated. We instead assume there is a partial match and measure the
distance between only the most related combination (squares).

d=(m,m)

video-text retrieval, we evaluate on the TGIF dataset [24] as
well as our new MRW (my reaction when) dataset, which
we collected to promote further research in cross-modal
video-text retrieval under ambiguity and partial association.
The dataset contains 50K video-sentence pairs collected
from social media, where the videos depict physical or emo-
tional reactions to certain situations described in text. We
compare our method with well-established baselines and
carefully conduct an ablation study to justify various design
choices. We report strong performance on all three datasets,
and achieve the state-of-the-art result on image-to-text re-
trieval task on the MS-COCO dataset.

2. Related Work

Here we briefly review some of the most relevant work
on instance embedding for cross-modal retrieval.

Correlation maximization: Most existing methods are
based on one-to-one mapping of instances into a shared em-
bedding space. One popular approach is maximizing cor-
relation between related instances in the embedding space.
Rasiwasia et al. [33] use canonical correlation analysis
(CCA) to maximize correlation between images and text,
while Gong er al. [11] extend CCA to a triplet scenario,
e.g., images, tags, and their semantic concepts. Most recent
methods incorporate deep neural networks to learn their em-
bedding models in an end-to-end fashion. Andrew et al. [2]
propose deep CCA (DCCA), and Yan et al. [48] apply it to
image-to-sentence and sentence-to-image retrieval.

Triplet ranking: Another popular approach is based on
triplet ranking [9, 21, 45, 49], which encourages the dis-
tance between positive pairs (e.g., ground-truth pairs) to be
closer than negative pairs (e.g., randomly selected pairs).
Frome et al. [9] propose a deep visual-semantic embedding
(DeViSE) model, using a hinge loss to implement triplet
ranking. Faghri et al. [7] extend this with the idea of hard
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negative mining, which focuses on maximum violating neg-
ative pairs, and report improved convergence rates.

Learning with auxiliary tasks: Several methods learn
the embeddings in conjunction by solving auxiliary tasks,
e.g., signal reconstruction [8, 6, 40], semantic concept cat-
egorization [33, 18], and minimizing the divergence be-
tween embedding distributions induced by different modali-
ties [40, 50]. Adversarial training [ 2] is also used by many:
Wang et al. [43] encourage the embeddings from different
modalities to be indistinguishable using a domain discrimi-
nator, while Gu et al. [ 14] learn the embeddings with image-
to-text and text-to-image synthesis tasks in the adversarial
learning framework.

Attention-based embedding: All the above approaches
are based on one-to-one mapping and thus could suffer from
polysemous instances. To alleviate this, recent methods in-
corporate cross-attention mechanisms to selectively attend
to local parts of an instance given the context of a condi-
tioning instance from another modality [17, 23], e.g., attend
to different image regions given different text queries. Intu-
itively, this can resolve the issues with ambiguous instances
and their partial associations because the same instance can
be mapped to different points depending on the presence of
the conditioning instance. However, such approach comes
with computational overhead at inference time because each
query instance needs to be encoded as many times as the
number of references instances in the database; this severely
limits its use in real-world applications. Different from pre-
vious approaches, our method is based on multi-head self-
attention [27, 41] which does not require a conditioning in-
stance when encoding, and therefore each instance is en-
coded only once, significantly reducing computational over-
head at inference time.

Beyond injective embedding: Similar to our motiva-
tion, some attempts have been made to go beyond the in-
jective mapping. One approach is to design the embedding
function to be stochastic and map an instance to a certain
probability distribution (e.g., Gaussian) instead of a single
point [35, 30, 31]. However, learning distributions is typi-
cally difficult/expensive and often lead to approximate so-
lutions such as Monte Carlo sampling.

The work most similar to ours is by Ren et al. [36],
where they compute multiple representations of an im-
age by extracting local features using the region proposal
method [10]; text instances are still represented by a single
embedding vector. Different from theirs, our method com-
putes multiple and diverse representations from both modal-
ities, where each representation is a combination of global
context and locally-guided features, instead of just a local
feature. Song et al. [39], a prequel to this work, also com-
pute multiple representations of each instance using multi-
head self-attention. We extend their approach by combin-
ing global and locally-guided features via residual learning.

We also extend the preliminary version of the MRW dataset
with an increased number of sample pairs. Lastly, we report
more comprehensive experimental results, adding results on
the MS-COCO [25] dataset for image-text cross-retrieval.

3. Approach

Our Polysemous Visual-Semantic Embedding (PVSE)
model, shown in Figure 3, is composed of modality-specific
feature extractors followed by two sub-networks with an
identical architecture; we call the sub-network Polysemous
Instance Embedding Network (PIE-Net). The two PIE-Nets
are independent of each other and do not share the weights.

The PIE-Net takes as input a global context vector
and multiple local feature vectors (Section 3.1), computes
locally-guided features using the local feature transformer
(Section 3.2), and outputs K embeddings by combining
the global context vector with locally-guided features (Sec-
tion 3.3). We train the PVSE model in the Multiple Instance
Learning (MIL) [5] framework. We explain how we make
our model robust to ambiguous instances and partial cross-
modal associations via our loss functions (Section 3.4) and
finish with implementation details (Section 3.5).

3.1. Modality-Specific Feature Encoder

Image encoder: We use the ResNet-152 [15] pretrained
on ImageNet [38] to encode an image x. We take the fea-
ture map before the final average pooling layer as local fea-
tures W(x) € R7X7x2048 We then apply average pooling
to U(z) and feed the output to one fully-connected layer to
obtain global features ¢(z) € R.

Video encoder: We use the ResNet-152 to encode each
of T frames from a video x, taking the 2048-dim output
from the final average pooling layer, and use them as local
features W(z) € RT*2048, We then feed ¥(z) into a bidi-
rectional GRU (bi-GRU) [4] with H hidden units, and take
the final hidden states as global features ¢(z) € RH.

Sentence encoder: We encode each of L words from a
sentence z using the GloVe [32] pretrained on the Common-
Crawl dataset, producing L 300-dim vectors, and use them
as local features ¥(z) € RL*3%0, We then feed them into
a bi-GRU with H hidden units, and take the final hidden
states as global features ¢(z) € R,

3.2. Local Feature Transformer

The local feature transformer takes local features ¥(z)
and transforms them into K locally-guided representations
Y (z). Our intuition is that different combinations of local
information could yield diverse and refined representations
of an instance. We implement this intuition by employ-
ing a multi-head self-attention module to obtain K attention
maps, prepare K combinations of local features by attend-
ing to different parts of an instance, and apply non-linear
transformations to obtain K locally-guided representations.
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Polysemous Instance Embedding Networks (PIE-Net)
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Figure 3. The architecture of Polysemous Visual-Semantic Embedding (PVSE) for video-sentence data.
We use a two-layer perceptron to implement the multi- We compute K embedding vectors z € REXH as:
head self-attention module.! Given local features ¥ (z) €
RE*P2 it computes K attention maps o € RE*5: z = LayerNorm (®(z) + T()) “)

a = softmax (ws tanh (w; ¥ (z)T)) 2)
where wy € REXA w; € RA*P; we set A = D/2 per
empirical evidence. The softmax is applied row-wise so that
each of the K attention coefficients sum up to one.

Finally, we multiply the attention map with local features
and further apply a non-linear transformation to obtain K
locally-guided representations Y(z) € RE>H:

o ((a¥(z))ws + b3) 3)

where w3 € RP*H and b; € R¥. We use the sigmoid as
our activation function o (-).

T(z) =

3.3. Feature Fusion With Residual Learning

The fusion block combines global features ¢(x) and
locally-guided features Y'(x) to obtain the final K embed-
ding output. We note that there is an inherent information
overlap between the two features (both are derived from the
same instance). To prevent Y () from becoming redundant
with ¢(z) and encourage it to learn only locally-specific in-
formation, we cast the feature fusion as a residual learning
task. Specifically, we consider ¢(z) as input to the residual
block and Y (z) as residuals with its own parameters to opti-
mize (w1, ws, w3, bs). As shown in [15], this residual map-
ping makes it easier to optimize the parameters associated
with T'(z), helping us find meaningful locally-specific in-
formation; in the extreme case, if global features ¢(x) were
the optimal, the residuals will be pushed to zero and the ap-
proach will fall back to the standard injective embedding.

'We have experimented with a more sophisticated version of the multi-
head self-attention [4 1], but it did not improve performance further.

2B is 49 (= 7 x 7) for images, T for videos, and L for sentences; D
is 2048 for images and videos, and 300 for sentences

where ®(x) € RE*H is K repetitions of ¢(x). Following

[41], we apply the layer normalization [3] to the output.

3.4. Optimization and Inference

Given a dataset D = {(=;, y;)} Y, with N instance pairs
(x are either images or videos, y are sentences), we optimize
our PVSE model to minimize a learning objective:

L= »Cmil + Alﬁdiv + )\ZL:mmd (5)

where A1 and Ao are scalar weights that balance the influ-
ence of the loss terms. We describe each loss term below.

MIL Loss: We train our model in the Multiple Instance
Learning (MIL) framework [5], designing a learning con-
straint for the cross-modal retrieval scenario:

Vi # j, Vp,q

min d(zf

it < d(zp 77 ,4)s

7417’ Jq

Zipr %) (6)
where z” and z¥ are the PIE-Net embeddings of x and y, re-
spectively, and p,q = 1, --- , K. We use the cosine distance
as our distance metric, d(a,b) = (a - b)/(||a|[||b]])-

Making an analogy to the MIL for binary classifica-
tion [1], the left side of the constraint is the “positive” bag
where at least one of K x K embedding pairs is assumed
to be positive (match), while the right side is the “negative”
bag containing only negative (mismatch) pairs. Optimizing
under this constraint allows our model to be robust to partial
cross-modal association because it can ignore mismatching
embedding pairs of partially associated instances.

We implement the above constraint by designing our
MIL loss function £,,,;; to be:

N

1

mZmax <O p— mlnd( 2§ b Jq)—i-mlnd( ¢ o Z’q))
i.j
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where p is a margin parameter. Notice that we have the min
operator for d(zgfp, z]y q), similar to [36]; this can be seen
as a form of hard negative mining, which we found to be
effective and accelerate the convergence.

Diversity Loss: To ensure that our PIE-Net produces di-
verse representations of an instance, we design a diversity
loss L4;, that penalizes the redundancy among K locally-
guided features. To measure the redundancy, we compute a
Gram matrix of Y'(x) (and of Y (y)) that encodes the corre-
lations between all combinations of locally-guided features,
ie,Gij = >, Y(x)inY(x);n We normalize each Y (z);
prior to the computation so that they are on an [, ball.

The diagonal entries in G are always one (they are on a
unit ball); the off-diagonals are zero iff two locally-guided
features are orthogonal to each other. Therefore, the sum of
off-diagonal entries in G indicates the redundancy among
K locally-guided features. Based on this, we define our
diversity loss as:

1 x
Laiv = 2 (1G* = Il|2 + |GY = I||2) @)

where G” and GV are the gram matrices of Y (x) and Y (y),
respectively, and I € R¥>*K is an identity matrix.

Note that we do not compute the diversity loss on the
final embedding representations z* and z¥ because they al-
ready have global information baked in, making the orthog-
onality constraint invalid. This also ensures that the loss
gets back-propagated through appropriate parts in the com-
putational graph, and does not affect the global feature en-
coders, i.e., the FC layer for the image encoder, and the
bi-GRUs for the video and sentence encoders.

Domain Discrepancy Loss: Optimizing our model un-
der the MIL loss has one drawback: two distributions in-
duced by z* and z¥, which we denote by Z* and ZY, re-
spectively, may diverge quickly because we only consider
the minimum distance pair, min,, , d(z;, z¥), in loss com-
putation and let the other (K x K — 1) pairs left to be un-
constrained. It is therefore necessary to regularize the dis-
crepancy between the two distributions.

One popular way to measure the discrepancy between
two probability distributions is the Maximum Mean Dis-
crepancy (MMD) [13]. The MMD between two distribu-
tions P and ) over a function space F is

MMD(P, Q) = sup (Ex~p [f(X)] =By~ [f(Y)]) (8)

When F is a reproducing kernel Hilbert space (RKHS) with
a kernel kK : & x X — R that measures the similar-
ity between two samples, Gretton et al. [13] showed that
the supremum is achieved at f(z) = Ex/p[r(z, X)) —
Ex/wglr(xz,X’)]. Substituting this to Equation 8 and
squaring the result, and approximating the expectation over
our empirical distributions Z* and Z¥, we have our domain

discrepancy loss L., ¢ defined as

> ’i(zf,p’ ijq) -2 ’i(zf,p’ ij,q) +2 n(zﬁp, Z;{q)
K2N?

where the summation in each term is taken over all pairs of
embeddings (i, j,p,q) € [1,---, K2N?]. We use a radial
basis function (RBF) kernel as our kernel function.

Inference: At test time, we assume a database of M
instances (e.g., videos) and their K M embedding vectors.
Given a query instance (e.g., a sentence), we compute K
embedding vectors and find the best matching instance in
the database by comparing the cosine distances between all
K?2M combinations of embeddings.

3.5. Implementation Details

We subsample frames at 8 FPS and store them in a bi-
nary storage format.> We set the maximum length of video
to be 8 frames; for videos longer than 8 frames we select
random subsequences during training, while during infer-
ence we sample 8 frames evenly spread across each video.
We do not limit the sentence length as it has a minimal
effect on the GPU memory footprint. We cross-validate
the optimal hyper-parameter settings, varying K € [1 :
8, H € [512,1024,2048],p € [0.1 : 1.0],A\1,A2 €
[0.1,0.01,0.001]. We use the AMSGRAD optimizer [34]
with an initial learning rate of 2e-4 and reduce it by half
when the loss stagnates. We train our model end-to-end,
except for the pretrained CNN weights, for 50 epochs with
a batch of 128 samples. We then finetune the whole model
(including the CNN weights) for another 50 epochs.

4. MRW Dataset

To promote future research in video-text cross-modal re-
trieval, especially with ambiguous instances and their par-
tial cross-domain association, we release a new dataset of
50K video-sentence pairs collected from social media; we
call our dataset MRW (my reaction when).

Table 1 provides descriptive statistics of several video-
sentence datasets. Most existing datasets are designed for
video captioning [37, 46, 24], with sentences providing tex-
tual descriptions of visual content in videos (video — text
relationship). Our dataset is unique in that it provides videos
that display physical or emotional reactions to the given
sentences (text — video relationship); these are called reac-
tion GIFs. According to a subreddit r/react iongif*:

A reaction GIF is a physical or emotional response that
is captured in an animated GIF which you can link in
response to someone or something on the Internet. The
reaction must not be in response to something that hap-
pens within the GIF, or it is considered a “scene”.

3https://github.com/TwentyBN/GulpIO
4https://www.reddit.com/r/reactiongifs
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MRW a witty comment I wanted
to make was already said

MEFW I see a cute girl on Facebook
change her status to single

(a) Physical Reaction (b) Emotional Reaction

MFW I can’t remember if
I’ve locked my front door

MRW a family member asks me
why his computer isn’t working

V

Because it hates you

(c) Animal Reaction (d) Lexical Reaction (Caption)

Figure 4. Our dataset contains videos depicting reactions to the situations described in the corresponding sentences. Here we show the four
most common reaction types: (a) physical, (b) emotional, (c) animal, (d) lexical.

#clips  #sentences vocab  text source
LSMDCI16 [37] | 128,085 128,085 22,898 DVS
MSR-VTT [46] 10,000 200,000 29,316 AMT
TGIF [24] 100,000 125,781 11,806 AMT
DiDeMo [16] 26,982 40,543 7,785 AMT
MRW 50,107 50,107 34,835  In-the-wild

Table 1. Descriptive statistics of our dataset compared to existing
video-sentence datasets.

This definition clearly differentiates ours from existing
datasets: There is an inherently weaker association of con-
cepts between video and text; see Figure 4. This introduces
several additional challenges to cross-modal retrieval, part
of which are the focus of this work, i.e., dealing with am-
biguous instances and partial cross-domain association. We
provide detailed data analyses and compare it with existing
video captioning datasets in the supplementary material.

5. Experiments

We evaluate our approach on image-text and video-
text cross-modal retrieval scenarios. For image-text cross-
retrieval, we evaluate on the MS-COCO dataset [25]; for
video-text we use the TGIF [24] and our MRW datasets.

For MS-COCO we use the data split of [21], which pro-
vides 113,287 training, SK validation and 5K test samples;
each image comes with 5 captions. We report results on
both 1K unique test images (averaged over 5 folds) and
the full 5K test images. For TGIF we use the original data
split [24] with 80K training, 10,708 validation and 34,101
test samples; since most test videos come with 3 captions,
we report results on 11,360 unique test videos. For MRW,
we use a data split of 44,107 training, 1K validation and 5K
test samples; all the videos come with one caption.

Following the convention in cross-modal retrieval, we re-
port results using Recall@k (R@k) at k = 1,5, 10, which
measures the the fraction of queries for which the correct
item is retrieved among the top & results. We also report the
median rank (Med R) of the closest ground truth result in
the list, as well as the normalized median rank (nMR) that
divides the median rank by the number of total items. For
cross-validation, we select the best model that achieves the

highest rsum = RQ1 + RQ5 + RQ10 in both directions
(visual-to-text and text-to-visual) on a validation set.
While we report quantitative results in the main paper,
our supplementary material contains qualitative results with
visualizations of multi-head self-attention maps.

5.1. Image-Text Retrieval Results

Table 2 shows the results on MS-COCO. To facili-
tate comprehensive comparisons, we provide previously re-
ported results on this dataset.” Our approach outperforms
most of the baselines, and achieves the new state-of-the-art
on the image-to-text task on the 5K test set. We note that
both GXN [14] and SCO [18] are trained with multiple ob-
jectives; in addition to solving the ranking task, GXN per-
forms image-text cross-modal synthesis as part of training,
while SCO performs classification of semantic concepts and
their orders as part of training. Compared to the two meth-
ods, our model is trained with a single objective (ranking)
and thus could be considered as a simpler model.

The most direct comparison to ours would be with
VSE++ [7]. Both our model and VSE++ share the same
image and sentence encoders. When we let our PIE-Net
to produce single embeddings for input instances (K=1),
the only difference becomes that VSE++ directly uses our
global features as their embedding representations, while
we use the output from our PIE-Nets. The performance gap
between ours (K=1) and VSE++ shows the effectiveness of
our PIE-Net, which combines global context with locally-
guided features produced by our local feature transformer.

5.2. Video-Text Retrieval Results

Table 3 and Table 4 show the results on TGIF and MRW
datasets. Because there is no previously reported results
on these datasets for the cross-model retrieval scenario, we
run the baseline models and report their results. We can
see that our method show strong performance compared to
all the baselines. We provide implementation details of the
baseline models in the supplementary material.

5We omit results from cross-attention models [17, 23] that require a
pair of instances (e.g., image and text) when encoding each instance.
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1K Test Images 5K Test Images
Method Image-to-Text Text-to-Image Image-to-Text Text-to-Image
R@l R@5 R@10 | R@l R@5 R@l0| R@l R@5 R@I0 | R@l R@5 R@I0
DVSA [20] 384 699 80.5 274 602 74.8 16,5 392 52.0 10.7  29.6 422
GMM-FV [22] | 394 679 80.9 25.1 59.8 76.6 173 39.0 50.2 10.8 283 40.1
m-CNN [29] 428 73.1 84.1 32.6 68.6 82.8 - - - - - -
Order [42] 46.7 - 88.9 37.9 - 85.9 233 - 65.0 18.0 - 57.6
DSPE [45] 50.1  79.7 89.2 39.6 752 86.9 - - - - - -
VQA-A [26] 50.5 80.1 89.7 37.0 709 82.9 235 507 63.6 16.7 405 53.8
2WayNet [6] 55.8 752 - 39.7 633 - - - - - - -
RRF-Net [28] 564 853 91.5 439 78.1 88.6 - - - - - -
CMPM [50] 56.1 86.3 92.9 446 78.8 89.0 31.1  60.7 73.9 229 502 63.8
VSE++ [7] 64.6  90.0 95.7 520 843 92.0 | 413 711 81.2 303 594 72.4
GXN [14] 68.5 - 979 | 56.6 - 94.5 - - - - - -
SCO [18] 699 929 975 | 56.7 875 948 | 428 723 83.0 331 629 755
PVSE (K=1) 66.7 910 96.2 535 85.1 92.7 417 73.0 83.0 30.6 614 73.6
PVSE 692 916 96.6 552 86.5 937 452 743 845 | 324 63.0 750

Table 2. MS-COCO results. Besides our results, we also provide previously reported results to facilitate comprehensive comparisons.
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Figure 5. Performance (rsum) with different numbers of embed-
dings, K = [0 : 8]. The results at K’ = 0 is when we take out the
PIE-Net and use the global feature as the embedding output.

We notice is that the overall performance is much lower
than the results from MS-COCO. This shows how chal-
lenging video-text retrieval is (and video understanding in
a broader context), and calls for further research in this
task. We can also see that there is a large performance gap
between the two datasets. This suggests the two datasets
have significantly different characteristics: the TGIF con-
tains sentences describing visual content in videos, while
our MRW dataset contains videos showing one of possible
reactions to certain situations described in sentences. This
makes the association between video and text modalities
much weaker for the MRW than for the TGIF.

5.3. Ablation Results

The number of embeddings K: Tables 2, 3, 4 show
that computing multiple embeddings per instance improves
performance compared to just a single embedding (see the
last two rows in each table). To better understand the ef-
fect of K, we vary it from 1 to 8, and also compare with
K = 0, a baseline where we bypass our Local Feature
Transformer and simply use the global feature as the fi-
nal embedding representation. Figure 5 shows the perfor-
mance on all three datasets based on the rsum metric (R@1

300

£ 200
=]
2

100

.

No Global No Residual

No MIL Qurs

Figure 6. Performance (rsum) on MS-COCO and MRW with dif-
ferent ablative settings. The error bars are obtained from multiple
runs over K = [1: 8].
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Figure 7. Performance (rsum) on MS-COCO with different loss
weights for L4i, and Lmd. The error bars are obtained from
multiple runs of K = [2 : 4] and () = [0.0,0.01,0.1, 1.0].

+ R@5 + R@10 for image/video-to-text and back). The re-
sults are from the models before fine-tuning the ResNet-152
weights. We can see that there is a significant improvement
from K = 0 to K = 1; this shows the effectiveness of
our Local Feature Transformer. We can make an interest-
ing observation by comparing the optimal K settings across
different datasets: K = 3 for COCO and TGIF, and K = 5
for MRW. While this cannot be used as strong evidence, we
believe this shows the level of ambiguity is higher on MRW
than the other two datasets.
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Method Video-to-Text Text-to-Video
R@l1 R@5 R@10 MedR (nMR) | R@l R@5 R@I10 MedR (nMR)
DeViSE [9] 0.84 3.53 6.02 379 (0.03) 0.83  3.38 5.99 378 (1.03)
VSE++ [7] 0.42 1.63 3.60 692 (0.09) 0.55 1.89 3.77 620 (0.09)
Order [42] 0.51 2.09 3.80 500 (0.04) 048 2.13 3.86 478 (0.04)
Corr-AE [8] 0.89 341 5.61 365 (0.03) 0.90 348 5.97 352 (0.03)
PVSE (K=1) | 1.51 5.67 8.75 292 (0.03) 1.61 5.23 8.51 284 (0.03)
PVSE 232 749 1194 162 (0.01) 217 7.76 12.25 155 (0.01)
Table 3. Experimental results on the TGIF dataset.
Method Video-to-Text Text-to-Video
R@l1 R@5 R@10 MedR (nMR) | R@l R@5 R@I10 MedR (nMR)
DeViSE [9] 0.02 0.18 0.56 1917 (0.38) 0.10 0.38 0.54 1917 (0.38)
VSE++ [7] 0.12 0.38 0.82 1781 (0.36) 0.14 044 0.88 1767 (0.35)
Order [42] 0.04 0.14 0.40 1771 (0.35) 0.02 0.14 0.32 1780 (0.36)
Corr-AE [8] 0.14 054 1.06 1605 (0.32) 0.04 0.26 0.60 1614 (0.37)
PVSE (K=1) | 0.10 0.40 0.76 1595 (0.32) 0.10  0.38 0.66 1619 (0.32)
PVSE 0.16 0.68 1.80 1586 (0.32) 0.16 0.60 1.83 1573 (0.37)

Table 4. Experimental results on the MRW dataset.

Global vs. locally-guided features: We analyze the im-
portance of global and locally-guided features, as well as
different strategies to combine them. Figure 6 shows re-
sults on several ablative settings: No Global is when we
use locally-guided features alone (discard global features);
No Residual is when we simply concatenate global
and locally-guided features, instead of combining them via
residual learning. We report results on both MS-COCO and
MRW because the two datasets exhibit the biggest differ-
ence in the level of ambiguity.

We notice that the performance drops significantly on
both datasets when we discard global features. Together
with K' = 0 results in Figure 5 (discard locally-guided fea-
tures), this shows the importance of balancing global and
local information in the final embedding. We also see that
simply concatenating the two features (no residual learning)
hurts the performance, and the drop is more significant on
the MRW dataset. This suggests our residual learning setup
is especially crucial for highly ambiguous data.

MIL objective: Figure 6 also shows the result of No
MIL, which is when we concatenate the K embeddings and
optimize the standard triplet ranking objective [9, 21, 7],
i.e., the “Conventional” setup in Figure 2. While the differ-
ences are relatively smaller than with the other ablative set-
tings, there are statistically significant differences between
the two results on both datasets (p = 0.046 on MS-COCO
and p = 0.015 on MRW). We also see that the difference
between No MIL and Ours on MRW is more pronounced
than on MS-COCO. This suggests thed MIL objective is es-
pecially effective for highly ambiguous data.

Sensitivity analysis on different loss weights: Figure 7
shows the sensitivity of our approach when we vary the rel-
ative loss weights, i.e., A\; and A, in Equation 5. Note that

the weights are relative, not absolute, e.g., instead of di-
rectly multiplying A; = 1.0 to Ly;,, we first scale it to
A1 X (Lyir/Laiv) and then multiply it to Lg;,. The re-
sults show that both loss terms are important in our model.
We can see, in particular, that £,,,q plays an important
role in our model. Without it, the two embedding spaces
induced by different modalities may diverge quickly due
to the MIL objective, which may result in a poor conver-
gence rate. Overall, our results suggests that the model is
not much sensitive to the two relative weight terms.

6. Conclusion

Ambiguous instances and their partial associations pose
significant challenges to cross-modal retrieval. Unlike the
traditional approaches that use injective embedding to com-
pute a single representation per instance, we propose a Pol-
ysemous Instance Embedding Network (PIE-Net) that com-
putes multiple and diverse representations per instance. To
obtain visual-semantic embedding that is robust to partial
cross-modal association, we tie-up two PIE-Nets, one per
modality, and jointly train them using the Multiple Instance
Learning objective. We demonstrate our approach on the
image-text and video-text cross-modal retrieval scenarios
and report strong results compared to several baselines.

Part of our contribution is also in the newly collected
MRW dataset. Unlike existing video-sentence datasets that
contain sentences describing visual content in videos, ours
contain videos illustrating one of possible reactions to cer-
tain situations described in sentences, which makes video-
sentence association somewhat ambiguous. This poses new
challenges to cross-modal retrieval; we hope there will be
further progress on this challenging new dataset.
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