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Abstract

Visual-semantic embedding aims to find a shared latent

space where related visual and textual instances are close

to each other. Most current methods learn injective embed-

ding functions that map an instance to a single point in the

shared space. Unfortunately, injective embedding cannot

effectively handle polysemous instances with multiple pos-

sible meanings; at best, it would find an average representa-

tion of different meanings. This hinders its use in real-world

scenarios where individual instances and their cross-modal

associations are often ambiguous. In this work, we intro-

duce Polysemous Instance Embedding Networks (PIE-Nets)

that compute multiple and diverse representations of an in-

stance by combining global context with locally-guided fea-

tures via multi-head self-attention and residual learning. To

learn visual-semantic embedding, we tie-up two PIE-Nets

and optimize them jointly in the multiple instance learning

framework. Most existing work on cross-modal retrieval fo-

cus on image-text pairs of data. Here, we also tackle a more

challenging case of video-text retrieval. To facilitate further

research in video-text retrieval, we release a new dataset

of 50K video-sentence pairs collected from social media,

dubbed MRW (my reaction when). We demonstrate our ap-

proach on both image-text and video-text retrieval scenarios

using MS-COCO, TGIF, and our new MRW dataset.

1. Introduction

Visual-semantic embedding [9, 20] aims to find a joint

mapping of instances from visual and textual domains to

a shared embedding space so that related instances from

source domains are mapped to nearby places in the target

space. This has a variety of downstream applications in

computer vision including tagging [9], retrieval [11], cap-

tioning [20], visual question answering [19].

Formally, the goal of visual-semantic embedding is to

learn two mapping functions f : X → Z and g : Y → Z
jointly, where X and Y are visual and textual domains, re-

spectively, and Z is a shared embedding space. The func-

tions are often designed to be injective so that there is a one-
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Figure 1. Cross-modal retrieval in the real-world could be chal-

lenging with ambiguous instances (each instance can have multi-

ple meanings/concepts) and their partial associations (not all in-

dividual meanings/concepts may match). Addressing these two

challenges is the focus of this work.

to-one mapping from an instance x (or y) to a single point

z ∈ R
d in the embedding space. They are often optimized

to satisfy the following constraint:

d(f(xi), g(yi)) < d(f(xi), g(yj)), ∀i 6= j (1)

where d(·, ·) is a certain distance measure, such as Eu-

clidean and cosine distance. This simple and intuitive setup,

which we refer to as injective instance embedding, is cur-

rently the most popular approach in the literature [44].

Unfortunately, injective embedding can suffer when

there is ambiguity in individual instances. Consider an am-

biguous instance with multiple meanings/senses, e.g., poly-

semy words and images containing multiple objects. Even

though each of the meanings/senses can map to different

points in the embedding space, injective embedding is al-

ways forced to find a single point, which could be an (inac-

curate) weighted geometric mean of all the desirable points.

The issue gets intensified for videos and sentences because

the ambiguity in individual images and words can aggregate

and get compounded, severely limiting its use in real-world

applications such as text-to-video retrieval.

Another case where injective embedding could be prob-
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lematic is partial cross-domain association, a characteris-

tic commonly observed in the real-world datasets. For in-

stance, a text sentence may describe only certain regions

of an image while ignoring other parts [47], and a video

may contain extra frames not described by its associated

sentence [24]. These associations are implicit/hidden, mak-

ing it unclear which part(s) of the image/video the text de-

scription refers to. This is especially problematic for in-

jective embedding because information about any ignored

parts will be lost in the mapped point and, once mapped,

there is no way to recover from the information loss.

In this work, we address the above issues by (1) formu-

lating instance embedding as a one-to-many mapping task

and (2) optimizing the mapping functions to be robust to

ambiguous instances and partial cross-modal associations.

To address the issues with ambiguous instances, we

propose a novel one-to-many instance embedding model,

Polysemous Instance Embedding Network (PIE-Net),

which extracts K embeddings of each instance by combin-

ing global and local information of its input. Specifically,

we obtain K locally-guided representations by attending to

different parts of an input instance (e.g., regions, frames,

words) using a multi-head self-attention module [27, 41].

We then combine each of such local representation with

global representation via residual learning [15] to avoid

learning redundant information. Furthermore, to prevent

the K embeddings from collapsing into the mode (or the

mean) of all the desirable embeddings, we regularize the K
locally-guided representations to be diverse. To our knowl-

edge, we are the first to apply multi-head self-attention with

residual learning for the application of instance embedding.

To address the partial association issue, we tie-up two

PIE-Nets and train our model in the multiple-instance

learning (MIL) framework [5]. We call this approach

Polysemous Visual-Semantic Embedding (PVSE). Our in-

tuition is: when two instances are only partially associated,

the learning constraint of Equation 1 will unnecessarily pe-

nalize embedding mismatches because it expects two in-

stances to be perfectly associated. Capitalizing on our one-

to-many instance embedding, our MIL objective relaxes the

constraint of Equation 1 so that only one of K ×K embed-

ding pairs is well-aligned, making our model more robust

to partial cross-domain association. We illustrate this intu-

ition in Figure 2. This relaxation, however, could cause a

discrepancy between two embedding distributions because

(K × K − 1) embedding pairs are left unconstrained. We

thus regularize the learned embedding space by minimiz-

ing the discrepancy using the Maximum Mean Discrepancy

(MMD) [13], a popular technique for determining whether

two sets of data are from the same probability distribution.

We demonstrate our approach on two cross-modal re-

trieval scenarios: image-text and video-text. For image-text

retrieval, we evaluate on the MS-COCO dataset [25]; for

d = (   ,   )

MIL

d = ([        ], [        ])

Conventional

Video concepts: {    ,    ,    }     Sentence concepts: {    ,    ,    }

Figure 2. We represent each instance with k embeddings, each

representing different parts of the instance, e.g., regions of an im-

age, frames of a video, or words of a sentence. Conventional ap-

proaches measure the visual-semantic distance by considering all

k embeddings, and thus would suffer when not all concepts are re-

lated. We instead assume there is a partial match and measure the

distance between only the most related combination (squares).

video-text retrieval, we evaluate on the TGIF dataset [24] as

well as our new MRW (my reaction when) dataset, which

we collected to promote further research in cross-modal

video-text retrieval under ambiguity and partial association.

The dataset contains 50K video-sentence pairs collected

from social media, where the videos depict physical or emo-

tional reactions to certain situations described in text. We

compare our method with well-established baselines and

carefully conduct an ablation study to justify various design

choices. We report strong performance on all three datasets,

and achieve the state-of-the-art result on image-to-text re-

trieval task on the MS-COCO dataset.

2. Related Work

Here we briefly review some of the most relevant work

on instance embedding for cross-modal retrieval.

Correlation maximization: Most existing methods are

based on one-to-one mapping of instances into a shared em-

bedding space. One popular approach is maximizing cor-

relation between related instances in the embedding space.

Rasiwasia et al. [33] use canonical correlation analysis

(CCA) to maximize correlation between images and text,

while Gong et al. [11] extend CCA to a triplet scenario,

e.g., images, tags, and their semantic concepts. Most recent

methods incorporate deep neural networks to learn their em-

bedding models in an end-to-end fashion. Andrew et al. [2]

propose deep CCA (DCCA), and Yan et al. [48] apply it to

image-to-sentence and sentence-to-image retrieval.

Triplet ranking: Another popular approach is based on

triplet ranking [9, 21, 45, 49], which encourages the dis-

tance between positive pairs (e.g., ground-truth pairs) to be

closer than negative pairs (e.g., randomly selected pairs).

Frome et al. [9] propose a deep visual-semantic embedding

(DeViSE) model, using a hinge loss to implement triplet

ranking. Faghri et al. [7] extend this with the idea of hard
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negative mining, which focuses on maximum violating neg-

ative pairs, and report improved convergence rates.

Learning with auxiliary tasks: Several methods learn

the embeddings in conjunction by solving auxiliary tasks,

e.g., signal reconstruction [8, 6, 40], semantic concept cat-

egorization [33, 18], and minimizing the divergence be-

tween embedding distributions induced by different modali-

ties [40, 50]. Adversarial training [12] is also used by many:

Wang et al. [43] encourage the embeddings from different

modalities to be indistinguishable using a domain discrimi-

nator, while Gu et al. [14] learn the embeddings with image-

to-text and text-to-image synthesis tasks in the adversarial

learning framework.

Attention-based embedding: All the above approaches

are based on one-to-one mapping and thus could suffer from

polysemous instances. To alleviate this, recent methods in-

corporate cross-attention mechanisms to selectively attend

to local parts of an instance given the context of a condi-

tioning instance from another modality [17, 23], e.g., attend

to different image regions given different text queries. Intu-

itively, this can resolve the issues with ambiguous instances

and their partial associations because the same instance can

be mapped to different points depending on the presence of

the conditioning instance. However, such approach comes

with computational overhead at inference time because each

query instance needs to be encoded as many times as the

number of references instances in the database; this severely

limits its use in real-world applications. Different from pre-

vious approaches, our method is based on multi-head self-

attention [27, 41] which does not require a conditioning in-

stance when encoding, and therefore each instance is en-

coded only once, significantly reducing computational over-

head at inference time.

Beyond injective embedding: Similar to our motiva-

tion, some attempts have been made to go beyond the in-

jective mapping. One approach is to design the embedding

function to be stochastic and map an instance to a certain

probability distribution (e.g., Gaussian) instead of a single

point [35, 30, 31]. However, learning distributions is typi-

cally difficult/expensive and often lead to approximate so-

lutions such as Monte Carlo sampling.

The work most similar to ours is by Ren et al. [36],

where they compute multiple representations of an im-

age by extracting local features using the region proposal

method [10]; text instances are still represented by a single

embedding vector. Different from theirs, our method com-

putes multiple and diverse representations from both modal-

ities, where each representation is a combination of global

context and locally-guided features, instead of just a local

feature. Song et al. [39], a prequel to this work, also com-

pute multiple representations of each instance using multi-

head self-attention. We extend their approach by combin-

ing global and locally-guided features via residual learning.

We also extend the preliminary version of the MRW dataset

with an increased number of sample pairs. Lastly, we report

more comprehensive experimental results, adding results on

the MS-COCO [25] dataset for image-text cross-retrieval.

3. Approach

Our Polysemous Visual-Semantic Embedding (PVSE)

model, shown in Figure 3, is composed of modality-specific

feature extractors followed by two sub-networks with an

identical architecture; we call the sub-network Polysemous

Instance Embedding Network (PIE-Net). The two PIE-Nets

are independent of each other and do not share the weights.

The PIE-Net takes as input a global context vector

and multiple local feature vectors (Section 3.1), computes

locally-guided features using the local feature transformer

(Section 3.2), and outputs K embeddings by combining

the global context vector with locally-guided features (Sec-

tion 3.3). We train the PVSE model in the Multiple Instance

Learning (MIL) [5] framework. We explain how we make

our model robust to ambiguous instances and partial cross-

modal associations via our loss functions (Section 3.4) and

finish with implementation details (Section 3.5).

3.1. Modality­Specific Feature Encoder

Image encoder: We use the ResNet-152 [15] pretrained

on ImageNet [38] to encode an image x. We take the fea-

ture map before the final average pooling layer as local fea-

tures Ψ(x) ∈ R
7×7×2048. We then apply average pooling

to Ψ(x) and feed the output to one fully-connected layer to

obtain global features φ(x) ∈ R
H .

Video encoder: We use the ResNet-152 to encode each

of T frames from a video x, taking the 2048-dim output

from the final average pooling layer, and use them as local

features Ψ(x) ∈ R
T×2048. We then feed Ψ(x) into a bidi-

rectional GRU (bi-GRU) [4] with H hidden units, and take

the final hidden states as global features φ(x) ∈ R
H .

Sentence encoder: We encode each of L words from a

sentence x using the GloVe [32] pretrained on the Common-

Crawl dataset, producing L 300-dim vectors, and use them

as local features Ψ(x) ∈ R
L×300. We then feed them into

a bi-GRU with H hidden units, and take the final hidden

states as global features φ(x) ∈ R
H .

3.2. Local Feature Transformer

The local feature transformer takes local features Ψ(x)
and transforms them into K locally-guided representations

Υ(x). Our intuition is that different combinations of local

information could yield diverse and refined representations

of an instance. We implement this intuition by employ-

ing a multi-head self-attention module to obtain K attention

maps, prepare K combinations of local features by attend-

ing to different parts of an instance, and apply non-linear

transformations to obtain K locally-guided representations.
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Figure 3. The architecture of Polysemous Visual-Semantic Embedding (PVSE) for video-sentence data.

We use a two-layer perceptron to implement the multi-

head self-attention module.1 Given local features Ψ(x) ∈
R

B×D2, it computes K attention maps α ∈ R
K×B :

α = softmax (w2 tanh (w1Ψ(x)⊺)) (2)

where w2 ∈ R
K×A, w1 ∈ R

A×D; we set A = D/2 per

empirical evidence. The softmax is applied row-wise so that

each of the K attention coefficients sum up to one.

Finally, we multiply the attention map with local features

and further apply a non-linear transformation to obtain K
locally-guided representations Υ(x) ∈ R

K×H :

Υ(x) = σ ((αΨ(x))w3 + b3) (3)

where w3 ∈ R
D×H and b3 ∈ R

H . We use the sigmoid as

our activation function σ(·).

3.3. Feature Fusion With Residual Learning

The fusion block combines global features φ(x) and

locally-guided features Υ(x) to obtain the final K embed-

ding output. We note that there is an inherent information

overlap between the two features (both are derived from the

same instance). To prevent Υ(x) from becoming redundant

with φ(x) and encourage it to learn only locally-specific in-

formation, we cast the feature fusion as a residual learning

task. Specifically, we consider φ(x) as input to the residual

block and Υ(x) as residuals with its own parameters to opti-

mize (w1, w2, w3, b3). As shown in [15], this residual map-

ping makes it easier to optimize the parameters associated

with Υ(x), helping us find meaningful locally-specific in-

formation; in the extreme case, if global features φ(x) were

the optimal, the residuals will be pushed to zero and the ap-

proach will fall back to the standard injective embedding.

1We have experimented with a more sophisticated version of the multi-

head self-attention [41], but it did not improve performance further.
2
B is 49 (= 7 × 7) for images, T for videos, and L for sentences; D

is 2048 for images and videos, and 300 for sentences

We compute K embedding vectors z ∈ R
K×H as:

z = LayerNorm (Φ(x) + Υ(x)) (4)

where Φ(x) ∈ R
K×H is K repetitions of φ(x). Following

[41], we apply the layer normalization [3] to the output.

3.4. Optimization and Inference

Given a dataset D = {(xi, yi)}
N
i=1

with N instance pairs

(x are either images or videos, y are sentences), we optimize

our PVSE model to minimize a learning objective:

L = Lmil + λ1Ldiv + λ2Lmmd (5)

where λ1 and λ2 are scalar weights that balance the influ-

ence of the loss terms. We describe each loss term below.

MIL Loss: We train our model in the Multiple Instance

Learning (MIL) framework [5], designing a learning con-

straint for the cross-modal retrieval scenario:

min
p,q

d(zxi,p, z
y
i,q) < d(zxi,p, z

y
j,q), ∀i 6= j, ∀p, q (6)

where zx and zy are the PIE-Net embeddings of x and y, re-

spectively, and p, q = 1, · · · ,K. We use the cosine distance

as our distance metric, d(a, b) = (a · b)/(‖a‖‖b‖).

Making an analogy to the MIL for binary classifica-

tion [1], the left side of the constraint is the “positive” bag

where at least one of K × K embedding pairs is assumed

to be positive (match), while the right side is the “negative”

bag containing only negative (mismatch) pairs. Optimizing

under this constraint allows our model to be robust to partial

cross-modal association because it can ignore mismatching

embedding pairs of partially associated instances.

We implement the above constraint by designing our

MIL loss function Lmil to be:

1

N2

N
∑

i,j

max

(

0, ρ−min
p,q

d(zxi,p, z
y
j,q) + min

p,q
d(zxi,p, z

y
i,q)

)
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where ρ is a margin parameter. Notice that we have the min

operator for d(zxi,p, z
y
j,q), similar to [36]; this can be seen

as a form of hard negative mining, which we found to be

effective and accelerate the convergence.

Diversity Loss: To ensure that our PIE-Net produces di-

verse representations of an instance, we design a diversity

loss Ldiv that penalizes the redundancy among K locally-

guided features. To measure the redundancy, we compute a

Gram matrix of Υ(x) (and of Υ(y)) that encodes the corre-

lations between all combinations of locally-guided features,

i.e., Gi,j =
∑

h Υ(x)ihΥ(x)jh. We normalize each Υ(x)i
prior to the computation so that they are on an l2 ball.

The diagonal entries in G are always one (they are on a

unit ball); the off-diagonals are zero iff two locally-guided

features are orthogonal to each other. Therefore, the sum of

off-diagonal entries in G indicates the redundancy among

K locally-guided features. Based on this, we define our

diversity loss as:

Ldiv =
1

K2
(‖Gx − I‖2 + ‖Gy − I‖2) (7)

where Gx and Gy are the gram matrices of Υ(x) and Υ(y),
respectively, and I ∈ R

K×K is an identity matrix.

Note that we do not compute the diversity loss on the

final embedding representations zx and zy because they al-

ready have global information baked in, making the orthog-

onality constraint invalid. This also ensures that the loss

gets back-propagated through appropriate parts in the com-

putational graph, and does not affect the global feature en-

coders, i.e., the FC layer for the image encoder, and the

bi-GRUs for the video and sentence encoders.

Domain Discrepancy Loss: Optimizing our model un-

der the MIL loss has one drawback: two distributions in-

duced by zx and zy , which we denote by Zx and Zy , re-

spectively, may diverge quickly because we only consider

the minimum distance pair, minp,q d(z
x
p , z

y
q ), in loss com-

putation and let the other (K ×K − 1) pairs left to be un-

constrained. It is therefore necessary to regularize the dis-

crepancy between the two distributions.

One popular way to measure the discrepancy between

two probability distributions is the Maximum Mean Dis-

crepancy (MMD) [13]. The MMD between two distribu-

tions P and Q over a function space F is

MMD(P,Q) = sup
f∈F

(EX∼P [f(X)]− EY∼Q [f(Y )]) (8)

When F is a reproducing kernel Hilbert space (RKHS) with

a kernel κ : X × X → R that measures the similar-

ity between two samples, Gretton et al. [13] showed that

the supremum is achieved at f(x) = EX′∼P [κ(x,X
′)] −

EX′∼Q[κ(x,X
′)]. Substituting this to Equation 8 and

squaring the result, and approximating the expectation over

our empirical distributions Zx and Zy , we have our domain

discrepancy loss Lmmd defined as

∑

κ(zxi,p, z
x
j,q)− 2

∑

κ(zxi,p, z
y
j,q) +

∑

κ(zyi,p, z
y
j,q)

K2N2

where the summation in each term is taken over all pairs of

embeddings (i, j, p, q) ∈ [1, · · · ,K2N2]. We use a radial

basis function (RBF) kernel as our kernel function.

Inference: At test time, we assume a database of M
instances (e.g., videos) and their KM embedding vectors.

Given a query instance (e.g., a sentence), we compute K
embedding vectors and find the best matching instance in

the database by comparing the cosine distances between all

K2M combinations of embeddings.

3.5. Implementation Details

We subsample frames at 8 FPS and store them in a bi-

nary storage format.3 We set the maximum length of video

to be 8 frames; for videos longer than 8 frames we select

random subsequences during training, while during infer-

ence we sample 8 frames evenly spread across each video.

We do not limit the sentence length as it has a minimal

effect on the GPU memory footprint. We cross-validate

the optimal hyper-parameter settings, varying K ∈ [1 :
8], H ∈ [512, 1024, 2048], ρ ∈ [0.1 : 1.0], λ1, λ2 ∈
[0.1, 0.01, 0.001]. We use the AMSGRAD optimizer [34]

with an initial learning rate of 2e-4 and reduce it by half

when the loss stagnates. We train our model end-to-end,

except for the pretrained CNN weights, for 50 epochs with

a batch of 128 samples. We then finetune the whole model

(including the CNN weights) for another 50 epochs.

4. MRW Dataset

To promote future research in video-text cross-modal re-

trieval, especially with ambiguous instances and their par-

tial cross-domain association, we release a new dataset of

50K video-sentence pairs collected from social media; we

call our dataset MRW (my reaction when).

Table 1 provides descriptive statistics of several video-

sentence datasets. Most existing datasets are designed for

video captioning [37, 46, 24], with sentences providing tex-

tual descriptions of visual content in videos (video → text

relationship). Our dataset is unique in that it provides videos

that display physical or emotional reactions to the given

sentences (text → video relationship); these are called reac-

tion GIFs. According to a subreddit r/reactiongif4:

A reaction GIF is a physical or emotional response that

is captured in an animated GIF which you can link in

response to someone or something on the Internet. The

reaction must not be in response to something that hap-

pens within the GIF, or it is considered a “scene”.

3https://github.com/TwentyBN/GulpIO
4https://www.reddit.com/r/reactiongifs
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(a) Physical Reaction

MRW a witty comment I wanted

to make was already said

(b) Emotional Reaction

MFW I see a cute girl on Facebook 

change her status to single

(d) Lexical Reaction (Caption)

MRW a family member asks me 

why his computer isn’t working

(c) Animal Reaction

MFW I can’t remember if 

I’ve locked my front door

Figure 4. Our dataset contains videos depicting reactions to the situations described in the corresponding sentences. Here we show the four

most common reaction types: (a) physical, (b) emotional, (c) animal, (d) lexical.

#clips #sentences vocab text source

LSMDC16 [37] 128,085 128,085 22,898 DVS

MSR-VTT [46] 10,000 200,000 29,316 AMT

TGIF [24] 100,000 125,781 11,806 AMT

DiDeMo [16] 26,982 40,543 7,785 AMT

MRW 50,107 50,107 34,835 In-the-wild

Table 1. Descriptive statistics of our dataset compared to existing

video-sentence datasets.

This definition clearly differentiates ours from existing

datasets: There is an inherently weaker association of con-

cepts between video and text; see Figure 4. This introduces

several additional challenges to cross-modal retrieval, part

of which are the focus of this work, i.e., dealing with am-

biguous instances and partial cross-domain association. We

provide detailed data analyses and compare it with existing

video captioning datasets in the supplementary material.

5. Experiments

We evaluate our approach on image-text and video-

text cross-modal retrieval scenarios. For image-text cross-

retrieval, we evaluate on the MS-COCO dataset [25]; for

video-text we use the TGIF [24] and our MRW datasets.

For MS-COCO we use the data split of [21], which pro-

vides 113,287 training, 5K validation and 5K test samples;

each image comes with 5 captions. We report results on

both 1K unique test images (averaged over 5 folds) and

the full 5K test images. For TGIF we use the original data

split [24] with 80K training, 10,708 validation and 34,101

test samples; since most test videos come with 3 captions,

we report results on 11,360 unique test videos. For MRW,

we use a data split of 44,107 training, 1K validation and 5K

test samples; all the videos come with one caption.

Following the convention in cross-modal retrieval, we re-

port results using Recall@k (R@k) at k = 1, 5, 10, which

measures the the fraction of queries for which the correct

item is retrieved among the top k results. We also report the

median rank (Med R) of the closest ground truth result in

the list, as well as the normalized median rank (nMR) that

divides the median rank by the number of total items. For

cross-validation, we select the best model that achieves the

highest rsum = R@1 + R@5 + R@10 in both directions

(visual-to-text and text-to-visual) on a validation set.

While we report quantitative results in the main paper,

our supplementary material contains qualitative results with

visualizations of multi-head self-attention maps.

5.1. Image­Text Retrieval Results

Table 2 shows the results on MS-COCO. To facili-

tate comprehensive comparisons, we provide previously re-

ported results on this dataset.5 Our approach outperforms

most of the baselines, and achieves the new state-of-the-art

on the image-to-text task on the 5K test set. We note that

both GXN [14] and SCO [18] are trained with multiple ob-

jectives; in addition to solving the ranking task, GXN per-

forms image-text cross-modal synthesis as part of training,

while SCO performs classification of semantic concepts and

their orders as part of training. Compared to the two meth-

ods, our model is trained with a single objective (ranking)

and thus could be considered as a simpler model.

The most direct comparison to ours would be with

VSE++ [7]. Both our model and VSE++ share the same

image and sentence encoders. When we let our PIE-Net

to produce single embeddings for input instances (K=1),

the only difference becomes that VSE++ directly uses our

global features as their embedding representations, while

we use the output from our PIE-Nets. The performance gap

between ours (K=1) and VSE++ shows the effectiveness of

our PIE-Net, which combines global context with locally-

guided features produced by our local feature transformer.

5.2. Video­Text Retrieval Results

Table 3 and Table 4 show the results on TGIF and MRW

datasets. Because there is no previously reported results

on these datasets for the cross-model retrieval scenario, we

run the baseline models and report their results. We can

see that our method show strong performance compared to

all the baselines. We provide implementation details of the

baseline models in the supplementary material.

5We omit results from cross-attention models [17, 23] that require a

pair of instances (e.g., image and text) when encoding each instance.
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Method

1K Test Images 5K Test Images

Image-to-Text Text-to-Image Image-to-Text Text-to-Image

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

DVSA [20] 38.4 69.9 80.5 27.4 60.2 74.8 16.5 39.2 52.0 10.7 29.6 42.2

GMM-FV [22] 39.4 67.9 80.9 25.1 59.8 76.6 17.3 39.0 50.2 10.8 28.3 40.1

m-CNN [29] 42.8 73.1 84.1 32.6 68.6 82.8 - - - - - -

Order [42] 46.7 - 88.9 37.9 - 85.9 23.3 - 65.0 18.0 - 57.6

DSPE [45] 50.1 79.7 89.2 39.6 75.2 86.9 - - - - - -

VQA-A [26] 50.5 80.1 89.7 37.0 70.9 82.9 23.5 50.7 63.6 16.7 40.5 53.8

2WayNet [6] 55.8 75.2 - 39.7 63.3 - - - - - - -

RRF-Net [28] 56.4 85.3 91.5 43.9 78.1 88.6 - - - - - -

CMPM [50] 56.1 86.3 92.9 44.6 78.8 89.0 31.1 60.7 73.9 22.9 50.2 63.8

VSE++ [7] 64.6 90.0 95.7 52.0 84.3 92.0 41.3 71.1 81.2 30.3 59.4 72.4

GXN [14] 68.5 - 97.9 56.6 - 94.5 - - - - - -

SCO [18] 69.9 92.9 97.5 56.7 87.5 94.8 42.8 72.3 83.0 33.1 62.9 75.5

PVSE (K=1) 66.7 91.0 96.2 53.5 85.1 92.7 41.7 73.0 83.0 30.6 61.4 73.6

PVSE 69.2 91.6 96.6 55.2 86.5 93.7 45.2 74.3 84.5 32.4 63.0 75.0

Table 2. MS-COCO results. Besides our results, we also provide previously reported results to facilitate comprehensive comparisons.

Figure 5. Performance (rsum) with different numbers of embed-

dings, K = [0 : 8]. The results at K = 0 is when we take out the

PIE-Net and use the global feature as the embedding output.

We notice is that the overall performance is much lower

than the results from MS-COCO. This shows how chal-

lenging video-text retrieval is (and video understanding in

a broader context), and calls for further research in this

task. We can also see that there is a large performance gap

between the two datasets. This suggests the two datasets

have significantly different characteristics: the TGIF con-

tains sentences describing visual content in videos, while

our MRW dataset contains videos showing one of possible

reactions to certain situations described in sentences. This

makes the association between video and text modalities

much weaker for the MRW than for the TGIF.

5.3. Ablation Results

The number of embeddings K: Tables 2, 3, 4 show

that computing multiple embeddings per instance improves

performance compared to just a single embedding (see the

last two rows in each table). To better understand the ef-

fect of K, we vary it from 1 to 8, and also compare with

K = 0, a baseline where we bypass our Local Feature

Transformer and simply use the global feature as the fi-

nal embedding representation. Figure 5 shows the perfor-

mance on all three datasets based on the rsum metric (R@1

Figure 6. Performance (rsum) on MS-COCO and MRW with dif-

ferent ablative settings. The error bars are obtained from multiple

runs over K = [1 : 8].

Figure 7. Performance (rsum) on MS-COCO with different loss

weights for Ldiv and Lmmd. The error bars are obtained from

multiple runs of K = [2 : 4] and λ(·) = [0.0, 0.01, 0.1, 1.0].

+ R@5 + R@10 for image/video-to-text and back). The re-

sults are from the models before fine-tuning the ResNet-152

weights. We can see that there is a significant improvement

from K = 0 to K = 1; this shows the effectiveness of

our Local Feature Transformer. We can make an interest-

ing observation by comparing the optimal K settings across

different datasets: K = 3 for COCO and TGIF, and K = 5
for MRW. While this cannot be used as strong evidence, we

believe this shows the level of ambiguity is higher on MRW

than the other two datasets.
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Method
Video-to-Text Text-to-Video

R@1 R@5 R@10 Med R (nMR) R@1 R@5 R@10 Med R (nMR)

DeViSE [9] 0.84 3.53 6.02 379 (0.03) 0.83 3.38 5.99 378 ( 1.03)

VSE++ [7] 0.42 1.63 3.60 692 (0.09) 0.55 1.89 3.77 620 (0.09)

Order [42] 0.51 2.09 3.80 500 (0.04) 0.48 2.13 3.86 478 (0.04)

Corr-AE [8] 0.89 3.41 5.61 365 (0.03) 0.90 3.48 5.97 352 (0.03)

PVSE (K=1) 1.51 5.67 8.75 292 (0.03) 1.61 5.23 8.51 284 (0.03)

PVSE 2.32 7.49 11.94 162 (0.01) 2.17 7.76 12.25 155 (0.01)

Table 3. Experimental results on the TGIF dataset.

Method
Video-to-Text Text-to-Video

R@1 R@5 R@10 Med R (nMR) R@1 R@5 R@10 Med R (nMR)

DeViSE [9] 0.02 0.18 0.56 1917 (0.38) 0.10 0.38 0.54 1917 (0.38)

VSE++ [7] 0.12 0.38 0.82 1781 (0.36) 0.14 0.44 0.88 1767 (0.35)

Order [42] 0.04 0.14 0.40 1771 (0.35) 0.02 0.14 0.32 1780 (0.36)

Corr-AE [8] 0.14 0.54 1.06 1605 (0.32) 0.04 0.26 0.60 1614 (0.37)

PVSE (K=1) 0.10 0.40 0.76 1595 (0.32) 0.10 0.38 0.66 1619 (0.32)

PVSE 0.16 0.68 1.80 1586 (0.32) 0.16 0.60 1.83 1573 (0.37)

Table 4. Experimental results on the MRW dataset.

Global vs. locally-guided features: We analyze the im-

portance of global and locally-guided features, as well as

different strategies to combine them. Figure 6 shows re-

sults on several ablative settings: No Global is when we

use locally-guided features alone (discard global features);

No Residual is when we simply concatenate global

and locally-guided features, instead of combining them via

residual learning. We report results on both MS-COCO and

MRW because the two datasets exhibit the biggest differ-

ence in the level of ambiguity.

We notice that the performance drops significantly on

both datasets when we discard global features. Together

with K = 0 results in Figure 5 (discard locally-guided fea-

tures), this shows the importance of balancing global and

local information in the final embedding. We also see that

simply concatenating the two features (no residual learning)

hurts the performance, and the drop is more significant on

the MRW dataset. This suggests our residual learning setup

is especially crucial for highly ambiguous data.

MIL objective: Figure 6 also shows the result of No

MIL, which is when we concatenate the K embeddings and

optimize the standard triplet ranking objective [9, 21, 7],

i.e., the “Conventional” setup in Figure 2. While the differ-

ences are relatively smaller than with the other ablative set-

tings, there are statistically significant differences between

the two results on both datasets (p = 0.046 on MS-COCO

and p = 0.015 on MRW). We also see that the difference

between No MIL and Ours on MRW is more pronounced

than on MS-COCO. This suggests thed MIL objective is es-

pecially effective for highly ambiguous data.

Sensitivity analysis on different loss weights: Figure 7

shows the sensitivity of our approach when we vary the rel-

ative loss weights, i.e., λ1 and λ2 in Equation 5. Note that

the weights are relative, not absolute, e.g., instead of di-

rectly multiplying λ1 = 1.0 to Ldiv , we first scale it to

λ1 × (Lmil/Ldiv) and then multiply it to Ldiv . The re-

sults show that both loss terms are important in our model.

We can see, in particular, that Lmmd plays an important

role in our model. Without it, the two embedding spaces

induced by different modalities may diverge quickly due

to the MIL objective, which may result in a poor conver-

gence rate. Overall, our results suggests that the model is

not much sensitive to the two relative weight terms.

6. Conclusion

Ambiguous instances and their partial associations pose

significant challenges to cross-modal retrieval. Unlike the

traditional approaches that use injective embedding to com-

pute a single representation per instance, we propose a Pol-

ysemous Instance Embedding Network (PIE-Net) that com-

putes multiple and diverse representations per instance. To

obtain visual-semantic embedding that is robust to partial

cross-modal association, we tie-up two PIE-Nets, one per

modality, and jointly train them using the Multiple Instance

Learning objective. We demonstrate our approach on the

image-text and video-text cross-modal retrieval scenarios

and report strong results compared to several baselines.

Part of our contribution is also in the newly collected

MRW dataset. Unlike existing video-sentence datasets that

contain sentences describing visual content in videos, ours

contain videos illustrating one of possible reactions to cer-

tain situations described in sentences, which makes video-

sentence association somewhat ambiguous. This poses new

challenges to cross-modal retrieval; we hope there will be

further progress on this challenging new dataset.
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