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Abstract

We explore the problem of view synthesis from a nar-

row baseline pair of images, and focus on generating high-

quality view extrapolations with plausible disocclusions.

Our method builds upon prior work in predicting a multi-

plane image (MPI), which represents scene content as a set

of RGBα planes within a reference view frustum and ren-

ders novel views by projecting this content into the target

viewpoints. We present a theoretical analysis showing how

the range of views that can be rendered from an MPI in-

creases linearly with the MPI disparity sampling frequency,

as well as a novel MPI prediction procedure that theoret-

ically enables view extrapolations of up to 4× the lateral

viewpoint movement allowed by prior work. Our method

ameliorates two specific issues that limit the range of views

renderable by prior methods: 1) We expand the range of

novel views that can be rendered without depth discretiza-

tion artifacts by using a 3D convolutional network architec-

ture along with a randomized-resolution training procedure

to allow our model to predict MPIs with increased disparity

sampling frequency. 2) We reduce the repeated texture arti-

facts seen in disocclusions by enforcing a constraint that the

appearance of hidden content at any depth must be drawn

from visible content at or behind that depth.

1. Introduction

View synthesis, the problem of predicting novel views

of a scene from a set of captured images, is a central prob-

lem in computer vision and graphics. The ability to render

nearby views from a single image or a stereo pair can en-

able compelling photography effects such as 3D parallax

and synthetic defocus blur. Furthermore, given a collection

of images of a scene taken from different viewpoints, view

synthesis could enable free-viewpoint navigation for virtual

and augmented reality.

However, there is still a long way to go. State-of-the-art

view synthesis algorithms use their input images to estimate

a 3D scene representation, which can then be reprojected to

render novel views. This approach works well for content
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Figure 1. Given two input images taken from nearby viewpoints,

our algorithm predicts an MPI scene representation that can render

view extrapolations with disocclusions. Our model improves upon

prior work in two specific ways: 1) We reduce depth discretization

artifacts due to insufficient depth sampling, as seen in the red zoom

of the wood table. 2) We mitigate the repeated texture artifacts

produced by prior methods by predicting plausible hidden scene

content, as shown in the blue and green zooms where we predict

realistic textures behind the fruit bowl and lamp.

visible in the input images, but the quality of novel views

degrades rapidly as the target viewpoint moves further away

from the input views, thereby revealing more previously-

occluded scene content. In this work, we study the prob-

lem of view extrapolation where regions of the rendered im-

ages observe disoccluded content, and focus specifically on

demonstrating view synthesis from a stereo input.

We build upon a state-of-the-art deep learning approach

for view synthesis [38] that predicts a scene representation
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called a multiplane image (MPI) from an input narrow-

baseline stereo pair. An MPI consists of a set of fronto-

parallel RGBα planes sampled within a reference view

camera frustum, as illustrated by Figure 2. Diffuse volu-

metric scene representations such as the MPI are becom-

ing increasingly popular for view synthesis for a number of

reasons: 1) They can represent geometric uncertainty in am-

biguous regions as a distribution over depths, thereby trad-

ing perceptually-distracting artifacts in those ambiguous re-

gions for a more visually-pleasing blur [17, 21]. 2) They are

able to convincingly simulate non-Lambertian effects such

as specularities [38]. 3) They are straightforward to repre-

sent as the output of a CNN and they allow for differentiable

rendering, which enables us to train networks for MPI pre-

diction using only triplets of frames from videos for input

and supervision [38]. In this work, we extend the MPI pre-

diction framework to enable rendering high-quality novel

views up to 4× further from the reference view than was

possible in prior work. Our specific contributions are:

Theoretical analysis of MPI limits (Section 3.2). We

present a theoretical framework, inspired by Fourier theory

of volumetric rendering and light fields, to analyze the lim-

its of views that can be rendered from diffuse volumetric

representations such as the MPI. We show that the extent of

renderable views is limited by the MPI’s disparity sampling

frequency, even for content visible in both the input and ren-

dered views, and that this “renderable range” increases lin-

early with the MPI’s disparity sampling frequency.

Improved view extrapolation for visible content (Sec-

tion 3.3). View extrapolation in previous work on MPIs is

limited in part by a network architecture that fixes the num-

ber of disparity planes during training and testing. Increas-

ing the renderable range of an MPI by simply increasing its

fixed number of planes during training is not computation-

ally feasible due to the memory limits of current GPUs. We

present a simple solution that increases disparity sampling

frequency at test time by replacing the previously used 2D

convolutional neural network (CNN) with a 3D CNN archi-

tecture and a randomized-resolution training procedure. We

demonstrate that this change reduces the depth discretiza-

tion artifacts found in distant views rendered by prior work,

as shown in Figure 1.

Predicting disoccluded content for view extrapolation

(Section 4). We observe and explain why MPIs predicted

by prior work [38] contain approximately the same RGB

content at each plane, and differ only in α. This behav-

ior results in unrealistic disocclusions with repeated texture

artifacts, as illustrated in Figure 1. In general, the appear-

ance of hidden scene content is inherently ambiguous, so

training a network to simply minimize the distance between

rendered and ground truth target views tends to result in

unrealistic hallucinations of this occluded content. We pro-

pose to improve the realism of predicted disocclusions by

constraining the appearance of occluded scene content at

every depth to be drawn from visible scene points at or be-

yond that depth, and present a two-step MPI prediction pro-

cedure that enforces this constraint. We demonstrate that

this strategy forces predicted disocclusions to contain plau-

sible textures, alleviates the artifacts found in prior work,

and produces more compelling extrapolated views than al-

ternative approaches, as illustrated in Figures 1 and 5.

2. Related Work

Traditional approaches for view synthesis. View synthe-

sis is an image-based rendering (IBR) task, with the goal of

rendering novel views of scenes given only a set of sampled

views. It is useful to organize view synthesis algorithms by

the extent to which they use explicit scene geometry [24].

At one extreme are light field rendering [11, 18] techniques,

which require many densely sampled input images so that

they can render new views by simply slicing the sampled

light field without relying on accurate geometry estimation.

At the other extreme are techniques such as view dependent

texture mapping that rely entirely on an accurate estimated

global mesh and then reproject and blend the texture from

nearby input views to render new views [5].

Many successful modern approaches to view synthe-

sis [3, 13, 21, 40] follow a strategy of computing detailed

local geometry for each input view followed by forward

projecting and blending the local texture from multiple in-

put views to render a novel viewpoint. This research has

traditionally focused on interpolating between input views

and therefore does not attempt to predict content that is oc-

cluded in all input images. In contrast, we focus on the case

of view extrapolation, where predicting hidden scene con-

tent is crucial for rendering compelling images.

Deep learning approaches for view synthesis. Recently, a

promising line of work has focused on training deep learn-

ing pipelines end-to-end to render novel views. One class of

methods focuses on the challenging problem of training net-

works to learn about geometry and rendering from scratch

and synthesize arbitrarily-distant views from such limited

input as a single view [7, 20, 39]. However, the lack of built-

in geometry and rendering knowledge limits these methods

to synthetic non-photorealistic scenarios.

Other end-to-end approaches have focused on photore-

alistic view synthesis by learning to model local geometry

from a target viewpoint and using this geometry to back-

wards warp and blend input views. This includes algorithms

for interpolating between views along a 1D camera path [9],

interpolating between four input corner views sampled on a

plane [15], and expanding a single image into a local light

field of nearby views [28]. These methods separately pre-

dict local geometry for every novel viewpoint and are not
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able to guarantee consistency between these predictions, re-

sulting in temporal artifacts when rendering a sequence of

novel views. Furthermore, the use of backward projection

means that disoccluded regions must be filled in with repli-

cas of visible pixels, so these techniques are limited in their

ability to render convincing extrapolated views.

The most relevant methods to our work are algorithms

that predict a 3D scene representation from a source im-

age viewpoint and render novel views by differentiably for-

ward projecting this representation into each target view-

point. This approach ensures consistency between rendered

views and allows for the prediction of hidden content. Tul-

siani et al. and Dhamo et al. predict a layered depth image

(LDI) representation [6, 31], but this approach is unable to

approximate non-Lambertian reflectance effects. Further-

more, training networks to predict LDIs using view synthe-

sis as supervision has proven to be difficult, and the train-

ing procedure requires a regularization term that encourages

hidden content to resemble occluding content [31], limit-

ing the quality of rendered disocclusions. Zhou et al. pro-

posed the MPI scene representation [38], where novel views

are rendered by forward projecting and alpha compositing

MPI layers, and a deep learning pipeline is used to train an

MPI prediction network using held-out views as supervi-

sion. They demonstrated that the MPI scene representation

can convincingly render parallax and non-Lambertian ef-

fects for a small range of rendered views. We build upon

this work and present a theoretical analysis of limits on

views rendered from MPIs as well as a new MPI predic-

tion framework that is able to render more compelling view

extrapolations with disocclusions.

Inpainting occluded content. Predicting the appearance

of content hidden behind visible surfaces can be thought of

as 3D scene inpainting. The problem of inpainting in 2D

images has an extensive history [12], ranging from early

propagation techniques [2] to modern CNN-based inpaint-

ing [36]. However, such algorithms must be applied sepa-

rately to each rendering and therefore do not ensure consis-

tency between different views of the same occluded content.

A few recent works [1, 14, 22, 29] focus on multi-view

inpainting, i.e. removing objects and inpainting the result-

ing empty pixels in a collection of multiple input images.

This strategy operates on input image collections instead of

scene representations, so it cannot be used to predict oc-

cluded content that only appears during view extrapolation.

Finally, a recent line of work [8, 27, 34] focuses on scene

shape completion. These methods require an input depth

image and only focus on inpainting the shape and seman-

tics of hidden content and not its appearance, so the pre-

dicted scenes cannot be used for rendering novel views. In

contrast to prior methods, our work addresses the problem

of jointly inpainting the geometry, color, and opacity of hid-

den content in scenes to render convincing disocclusions.

Input Image 1 (Reference Viewpoint)

Input Image 2

3D MPI Scene Representation

MPI Prediction

Figure 2. MPI scene representation. Our work builds on the MPI

scene representation and prediction procedure introduced in [38].

We train a deep network that takes two narrow-baseline images

of a scene as input (captured at the blue and green camera poses

shown above), and predicts an MPI scene representation, consist-

ing of a set of fronto-parallel RGBα planes within a reference

camera frustum (signified by the green camera above). Novel

views are rendered by alpha compositing along rays from the MPI

voxels into the novel viewpoint.

3. View Extrapolation for Visible Content

3.1. MPI scene representation

The multiplane image (MPI) scene representation, intro-

duced by Zhou et al. [38] and illustrated in Figure 2, con-

sists of a set of fronto-parallel RGBα planes within a ref-

erence camera’s view frustum. An MPI can be thought of

as a frustum-shaped volumetric scene representation where

each “voxel” consists of a diffuse RGB color and opacity

α. Novel views are rendered from an MPI by alpha com-

positing the color along rays into the novel view using the

“over” operator [17, 23], which is easily implemented as

homography-warping each MPI plane onto the sensor plane

of the novel view (see Equation 2 in Zhou et al. [38]), and

alpha compositing the resulting images from back to front.

3.2. Theoretical signal processing limits for render­
ing visible content

Perhaps surprisingly, there is a limit on views that can

be rendered with high fidelity from an MPI, even if we just

consider mutually-visible content, i.e., content visible from

all input and target viewpoints. Rendering views beyond

this limit results in depth discretization artifacts similar to

aliasing artifacts seen in volume rendering [17].

We formalize this effect in the context of MPI render-

ings, and make use of Fourier theory to derive a bound

on viewpoints that can be rendered from an MPI with

high fidelity. Our model of rendering mutually-visible con-

tent from an MPI is conceptually similar to Frequency do-

main volume rendering [30] using a shear-warp factoriza-
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(a) MPI Spatial Domain (b) MPI Fourier Domain (c) Renderable Range

Δ
d

= a Δ
d

= b Δ
d
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2Δx

1

2Δd

Figure 3. Viewpoint limits for rendering visible content from an MPI. Views rendered from an MPI without occlusions can be expressed

as sheared integral projections of that MPI. (a) Here, we visualize a 2D slice from an MPI, where the y dimension is constant and only

the x and z dimensions vary. This MPI is in the reference viewpoint v0. (b) In the frequency domain, rendered views are equivalent

to 1D slices of the 2D MPI spectrum, where views further from the reference viewpoint correspond to Fourier slices at steeper slopes.

The MPI spectrum is bandlimited due to its spatial and disparity sampling frequencies, so there is a range of viewpoints outside which

rendered views will have a lower spatial bandwidth than the original MPI plane images. Viewpoint v1 represents the maximum extent of

this “renderable range”, and v2 represents a viewpoint outside this range. (c) The renderable range of views is shaped like a truncated cone,

and we visualize how the range of renderable views shrinks linearly as we increase the disparity sampling interval ∆d from a < b < c.

tion [16]. Additionally, our derivation of an MPI’s “ren-

derable range” is inspired by derivations for a 3D display’s

depth-of-field [41] and light field photography’s “refocus-

able range” [19]. Our main insight is that the 2D Fourier

Transform of a view rendered from an MPI can be con-

sidered as a 2D slice through the 3D Fourier Transform

of the MPI. An MPI is bandlimited by its fixed sampling

frequency, so there exists a range of viewpoints outside of

which rendered views will have a smaller spatial frequency

bandwidth than the input images, potentially resulting in

aliasing artifacts. We cover the main steps of this deriva-

tion below. Please refer to our supplementary materials for

detailed intermediate steps and diagrams.

Let us consider rendering views from an MPI in the sim-

plified case where (a) the camera is translated but not ro-

tated, and (b) there is no occlusion, so all content is equally

visible from every viewpoint. The rendered view ru,s(x) at

a lateral translation u and axial translation s relative to the

reference camera center can then be expressed as:

ru,s(x) =
∑

d∈D

c(x′, d) =
∑

d∈D

c ((1− sd)x+ ud, d) (1)

where c(x, d) is the pre-multiplied RGBα at each pixel co-

ordinate x and disparity plane d within the set of MPI dis-

parity planes D. Note that u and s are in units of pixels

(such that the camera focal length f = 1), and we limit s to

the range −∞ < s < 1/dmax because renderings are not de-

fined for viewpoints within the MPI volume. Additionally,

note that the disparity d is in units 1/pixel.
To study the limits of views rendered from an MPI, let

us consider a worst-case MPI with content in the subset of

closest planes, for which we make a locally linear approxi-

mation to the coordinate transformation (x, d) → (x′, d):

ru,s(x) =
∑

d∈D

c ((1− sdmax )x+ ud, d) (2)

where dmax is a constant. Now, we have expressed the ren-

dering of mutually-visible content as a sheared and dilated

integral projection of the MPI. We apply the generalized

Fourier slice theorem [19] to interpret the Fourier trans-

form of this integral projection as a 2D slice through the

3D MPI’s Fourier transform. The resulting rendered view is

the slice’s inverse Fourier transform:

ru,s(x) = F−1

{

C

(

kx
1− sdmax

,
−ukx

1− sdmax

)}

(3)

where F−1 is the inverse Fourier transform and C(kx, kd)
is the Fourier transform of c(x, d).

An MPI is a discretized function, so the frequency sup-

port of C lies within a box bounded by +−1/2∆x and +−1/2∆d,

where ∆x is the spatial sampling interval (set by the num-

ber of pixels in each RGBα MPI plane image) and ∆d is

the disparity sampling interval (set by the number of MPI

planes within the MPI disparity range).

Figures 3a and 3b illustrate Fourier slices through the

MPI’s Fourier transform that correspond to rendered views

from different lateral positions. Rendered views further

from the reference view correspond to slices at steeper

slopes. There is a range of slice slopes within which the

spatial bandwidth of the rendered views is equal to that of

the MPI, and outside of which the spatial bandwidth of the

rendered views decreases linearly with the slice slope.

We can solve for the worst-case “renderable range” by

determining the set of slopes whose slices intersect the box

in Figure 3b at the spatial frequency boundary +−1/2∆x.

This provides constraints on camera positions (u, s), within

which rendered views enjoy the full image bandwidth:

s ≤ 0, |u| ≤
∆x (1− sdmax )

∆d

(4)

Figure 3c plots the renderable ranges with varying dis-

parity intervals ∆d, for an MPI with disparities up to dmax .
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The allowed lateral motion extent increases linearly as the

target viewpoint moves further axially from the MPI, start-

ing at the reference viewpoint. Decreasing ∆d linearly in-

creases the amount of allowed lateral camera movement. In-

tuitively, when rendering views at lateral translations from

the reference viewpoint, the renderable range boundary cor-

responds to views in which adjacent MPI planes are shifted

by a single pixel relative to each other before compositing.

3.3. Increasing disparity sampling frequency with
3D CNN and randomized­resolution training

Section 3.2 establishes that additional MPI planes in-

creases the view extrapolation ability, and that this rela-

tionship is linear. Accordingly, the range of extrapolated

views rendered by the original MPI method [38] is limited

because it uses a 2D CNN to predict a small fixed number

of planes (32 planes at a spatial resolution of 1024×576).

Simply increasing this fixed number of planes in the net-

work is computationally infeasible during training due to

GPU memory constraints. Additionally, training on smaller

spatial patches to allow for increased disparity sampling fre-

quency prevents the network from utilizing larger spatial

receptive fields, which is important for resolving depth in

ambiguous untextured regions.

We propose a simple solution to predict MPIs at full res-

olution with up to 128 planes at test time by using a 3D

CNN architecture, theoretically increasing the view extrap-

olation ability by 4×. The key idea is that because our net-

work is fully 3D convolutional along the height, width, and

depth planes dimensions, it can be trained on inputs with

varying height, width, and number of depth planes. We use

training examples across a spectrum of MPI spatial and dis-

parity sampling frequencies that fit in GPU memory, rang-

ing from MPIs with low spatial and high disparity sampling

frequency (128 planes) to MPIs with high spatial and low

disparity sampling frequency (32 planes). Perhaps surpris-

ingly, we find that the trained network learns to utilize a

receptive field equal to the maximum number of spatial and

disparity samples it sees during training, even though no in-

dividual training example is of that size.

Our MPI prediction network takes as input a plane-

sweep-volume tensor of size [H,W,D, 3N ], where H and

W are the image height and width, D = |D| is the num-

ber of disparity planes, and N is the number of input im-

ages (N = 2 in our experiments). This tensor is created

by reprojecting each input image to disparity planes D in a

reference view frustum. We use a 3D encoder-decoder net-

work with skip connections and dilated convolutions [35] in

the network bottleneck, so that the network’s receptive field

can encompass the maximum spatial and disparity sampling

frequencies used during training. Please refer to our sup-

plementary materials for a more detailed description of our

network architecture and training procedure.

4. View Extrapolation for Hidden Content

In the previous section, we described how view extrapo-

lation is limited by the disparity sampling frequency, which

is a fundamental property of the MPI scene representation.

View extrapolation is also limited by the quality of hid-

den content, which is instead a property of the MPI pre-

diction model. Models that train a CNN to directly predict

an MPI from an input plane-sweep-volume (which contains

homography-warped versions of the same RGB content at

each plane) learn the undesirable behavior of predicting ap-

proximately the same RGB content at each MPI plane with

variation only in α (see Figure 5 in Zhou et al. [38]). We

observe that this behavior is consistent for models that use

either the original 2D CNN architecture or our 3D CNN ar-

chitecture (Section 3.3). Copies of the same RGB content

at different MPI layers lead to “repeated texture” artifacts

in extrapolated views, where disoccluded content contains

repeated copies of the occluder, as visualized in Figure 1.

We believe that this undesirable learned behavior is due

to both the inductive bias of CNNs that directly predict an

MPI from a plane-sweep-volume and the output uncertainty

for disocclusions. The probability distribution over hidden

scene content, conditioned on observed content, is highly

multimodal—there may be many highly plausible versions

of the hidden content. As a result, training a network to

minimize the distance between rendered and ground truth

views produces unrealistic predictions of disocclusions that

are some mixture over the space of possible outputs.

We propose to reduce the output uncertainty by con-

straining the predicted hidden content at any depth, such

that its appearance is limited to re-using visible scene con-

tent at or behind that depth. This effectively forces the

network to predict occluded scene content by copying tex-

tures and colors from nearby visible background content.

One possible limitation is that this constraint will have dif-

ficulty predicting the appearance of self-occlusions where

an object extends backwards perpendicular to the viewing

direction. However, as argued by the generic viewpoint as-

sumption [10], it is unlikely that our reference viewpoint

happens to view an object exactly at the angle at which it

extends backwards along the viewing direction. In general,

the majority of disoccluded pixels view background content

instead of self-occlusions.

We enforce our constraint on the appearance of occluded

content with a two-step MPI prediction procedure. The first

step provides an initial estimate of the geometry and appear-

ance of scene content visible from the reference viewpoint.

The second step uses this to predict a final MPI where the

color at each voxel is parameterized by a flow vector that

points to a visible surface’s color to copy.

In the first step, an input plane-sweep volume p is con-

structed by reprojecting j input images ivj
, each captured at

a viewpoint vj , to disparity planes d ∈ D. The 3D CNN Φ1
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Φ1

3D CNN Φ2

3D CNN

Flow-Based Gather
Input PSVs p(x,y,d,j)

Initial MPI:  

cinit(x,y,d), 

 init(x,y,d)

Accumulated  

Renderings rvis(x,y,d)

Final MPI:  

cfin(x,y,d), 

 fin(x,y,d)

Final Opacities 

fin(x,y,d)

2D Flows f(x,y,d)

α

Remove 

Occluded 

Content

α α

Visible MPI:  

cvis(x,y,d), 

 vis(x,y,d)α

Figure 4. Two-step MPI prediction pipeline. We propose a two-step procedure to predict convincing hidden content in an MPI for view

extrapolation. In the first step, a 3D CNN predicts an initial MPI from the input images’ plane-sweep-volumes. Next, occluded content

in this MPI is softly removed, resulting in a “first-visible-surface” MPI. In the second step, another 3D CNN predicts final MPI opacities

and a 2D flow vector for each MPI voxel. The final MPI RGB colors are computed by using these predicted flows to gather RGB colors

from back-to-front cumulative renderings of the visible content. This encourages hidden content at any depth to be synthesized by copying

textures of visible content at or behind the same depth, which reduces the output space uncertainty for hidden content and thereby enables

convincing view extrapolation with realistic disocclusions.

of Section 3.3 takes this plane-sweep volume and predicts

an initial MPI’s RGB and α values, cinit and αinit :

cinit(x, y, d), αinit(x, y, d) = Φ1

(

p(x, y, d, j)
)

. (5)

This initial MPI typically contains repeated foreground tex-

tures in occluded regions of the scene. In the second step

of our procedure, we aim to preserve the predicted geome-

try and appearance of the first visible surface from the ini-

tial MPI while re-predicting the appearance and geometry

of hidden content and enforcing our flow-based appearance

constraint. We softly remove hidden RGB content from this

initial MPI by multiplying each MPI RGB value by its trans-

mittance t relative to the reference viewpoint v0:

tv0
(x, y, d) = αinit(x, y, d)

∏

d′>d

[1− αinit(x, y, d
′)] (6)

cvis(x, y, d) = cinit(x, y, d)tv0
(x, y, d)

αvis(x, y, d) = tv0
(x, y, d) (7)

where cvis and αvis are the MPI RGBα planes from which

content that is occluded from the reference view has been

softly removed. Intuitively, a voxel’s transmittance (Equa-

tion 6) describes the extent to which an MPI voxel’s color

contributes to the rendered reference view.

A second CNN Φ2 takes this reference-visible MPI,

consisting of cvis and αvis , as input and predicts opaci-

ties αfin(x, y, d) and a 2D flow vector for each MPI voxel

f(x, y, d) = [fx(x, y, d), fy(x, y, d)]:

αfin(x, y, d), f(x, y, d) = Φ2

(

cvis(x, y, d), αvis(x, y, d)
)

. (8)

The final MPI’s colors cfin(x, y, d) are computed by using

these predicted flows to gather colors from renderings of the

visible content at or behind each plane rvis(x, y, d):

rvis(x, y, d) =
∑

d′≤d

[

cvis(x, y, d
′)
]

(9)

cfin(x, y, d) = rvis (x+ fx(x, y, d), y + fy(x, y, d), d) .

We gather the color from rvis using bilinear interpolation

for differentiability. This constraint restricts the appearance

of hidden content at each depth to be drawn from visible

scene points at or beyond that depth.

5. Training Loss

As in Zhou et al. [38], we train our MPI prediction

pipeline using view synthesis as supervision. Our training

loss is simply the sum of reconstruction losses for render-

ing a held-out novel view rgt at target camera pose vt, us-

ing both our initial and final predicted MPIs. These MPIs

are predicted from input images iv0
and iv1

. We use a

deep feature matching loss LVGG for layers from the VGG-

19 network [26], using the implementation of Chen and

Koltun [4]. The total loss L for each training example is:

L =LVGG(rinit(iv0
, iv1

,vt), rgt)+

LVGG(rfin(iv0
, iv1

,vt), rgt)
(10)

where rinit and rfin are rendered views from the initial and

final predicted MPIs.

6. Results

The following section presents quantitative and qualita-

tive evidence to validate the benefits of our method. Please

view our supplementary video for rendered camera paths

that demonstrate our predicted MPIs’ ability to render high

quality extrapolated views that are consistent with a 3D

scene representation and contain realistic disocclusions.

6.1. Experiment details

We train and evaluate on the open-source YouTube Real

Estate 10K dataset [38]1, which contains approximately

10,000 YouTube videos of indoor and outdoor real estate

1https://google.github.io/realestate10k/
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Algorithm SSIMfov SSIMocc NATocc

Original MPI [38] 0.838 0.803 0.805

Our rinit 0.858 0.811 0.904

rinit + Adversarial Disocclusion 0.853 0.791 0.849

Disocclusion Inpainting [36] 0.808 0.691 0.227

Our rfin 0.853 0.814 0.931

Table 1. Quantitative evaluation. Images rendered from our pre-

dicted MPIs are quantitatively superior to those rendered from the

original MPI model [38]. Furthermore, our method predicts dis-

occlusions that are both closer to the ground truth hidden content

and more perceptually plausible than alternative methods.

scenes along with computed camera poses for each video

frame. We generate training examples on the fly by sam-

pling two source frames and a target frame from a randomly

chosen video, so that the target image is not in between the

source images (and therefore requires view extrapolation,

not view interpolation) for ∼87% of the training examples.

The dataset is split into 9,000 videos for training and

1,000 for testing, where the test set videos do not overlap

with those in the training dataset. From these test videos,

we randomly sample 6,800 test triplets, each consisting of

two input frames and a single target frame.

6.2. Evaluation metrics

We use three metrics for our quantitative comparisons:

SSIMfov: To evaluate the overall quality of rendered im-

ages, we use the standard SSIM [32] metric computed over

the region of the target image that views all MPI planes.

SSIMocc: To specifically assess the accuracy of predicted

disocclusions, we evaluate SSIM over the subset of pixels

that were not visible from the input reference viewpoint.

We determine whether a pixel in a rendered target image

is disoccluded by examining the MPI voxels that contribute

to the rendered pixel’s value, and thresholding the maxi-

mum change in transmittance of these contributing voxels

between the reference and target viewpoint. Similarly to

Equation 6, we can compute the transmittance of each MPI

voxel from a target viewpoint vt as:

tvt
(x, y, d) = αvt

(x, y, d)
∏

d′>d

[1− αvt
(x, y, d′)] (11)

where αvt
is an MPI α plane homography-warped onto the

sensor plane of viewpoint vt. We consider a pixel (x, y)
in the target rendered view as a member of the disoccluded

pixels set H if the transmittance t of any contributing MPI

voxel is some threshold value greater than the same voxel’s

transmittance when rendering the reference viewpoint:

H =

{

(x, y) : max
d

(

tvt
(x, y, d)− tv0→vt

(x, y, d)
)

≥ ǫ

}

(12)

where tv0→vt
is the transmittance relative to the reference

viewpoint, warped into the target viewpoint so that both

transmittances are in the same reference frame. We com-

pute disoccluded pixels using αinit for all models, to ensure

that each model is evaluated on the same set of pixels. We

set ǫ = 0.075 in our experiments. Please see our supple-

mentary materials for visualizations of disoccluded pixels.

NATocc: To quantify the perceptual plausibility of predicted

disoccluded content, we evaluate a simple image prior over

disoccluded pixels. We use the negative log of the Earth

Mover’s (Wasserstein-1) distance between gradient magni-

tude histograms of the rendered disoccluded pixels and the

ground-truth pixels in each target image. Intuitively, re-

alistic rendered image content should have a distribution

of gradients that is similar to that of the true natural im-

age [25, 33], and therefore a higher NATocc score.

6.3. Comparison to baseline MPI prediction

We first show that renderings from both our initial and

final predicted MPIs (rinit and rfin ) are superior to those

from the original MPI method [38], which was demon-

strated to significantly outperform other recent view synthe-

sis methods [15, 37]. The increase in SSIMfov from “Orig-

inal MPI” (Table 1 row 2) to “Our rinit” (row 3) demon-

strates the improvement from our method’s increased dis-

parity sampling frequency. Furthermore, the increase in

SSIMocc and NATocc from “Original MPI” (row 2) to “Our

rfin” (row 6) demonstrates that our method predicts disoc-

cluded content that is both closer to the ground truth and

more plausible. Figure 5 qualitatively demonstrates that

renderings from our method contain fewer depth discretiza-

tion artifacts than renderings from the original MPI work,

and that renderings from our final MPI contain more realis-

tic disocclusions without “repeated texture” artifacts.

6.4. Evaluation of hidden content prediction

We compare occluded content predicted by our model to

the following alternative disocclusion prediction strategies:

Our rinit: We first compare renderings “Our rfin” from our

full method to the ablation “Our rinit”, which does not

enforce our flow-based occluded content appearance con-

straint. The improvement in SSIMocc and NATocc from Ta-

ble 1 row 3 to row 6 and the qualitative results in Figure 5

demonstrate that our full method renders disocclusions that

are both closer to the ground truth and more perceptually

plausible with fewer “repeated texture” artifacts.

“rinit + Adversarial Disocclusions”: Next, we compare to

an alternative two-step MPI prediction strategy. We use an

identical Φ1 to predict the initial MPI, but Φ2 directly pre-

dicts RGBα planes instead of α and flow planes. We apply

an adversarial loss to the resulting rendered target image to

encourage realistic disocclusions (additional details in our

supplementary materials). Table 1 row 4 demonstrates that

this strategy renders disocclusions that are less accurate but

more perceptually plausible than the original MPI method,
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Truth Orig. MPI [38]

Inpaint [36] Adversarial

Our rfinOur rinit

Our Rendered Novel View rfinInput View 1

Input View 2

Truth Orig. MPI [38]

Inpaint [36] Adversarial

Our rfinOur rinit

Our Rendered Novel View rfinInput View 1

Input View 2

Figure 5. Qualitative comparison of rendered novel views. Our method predicts MPIs with convincing hidden content, as demonstrated

by the disoccluded foliage textures to the left of the wooden pole in the top example, and the disoccluded region to the left of the grey pillow

in the bottom example. Renderings from alternative methods contain depth discretization artifacts, implausible colors, blurry textures, and

repeated textures in disoccluded regions.

due to the adversarial loss. However, Figure 5 demonstrates

that the renderings from our full method contain sharper

content and more accurate colors than those of the “rinit +

Adversarial Disocclusions” strategy. We hypothesize that

this is due to the difficulty of training a discriminator net-

work when the number and location of “fake” disoccluded

pixels varies drastically between training examples.

“Disocclusion Inpainting”: Finally, we compare to an

image-based disocclusion prediction strategy. We remove

the disoccluded pixels from our final MPI renderings and

re-predict them using a state-of-the-art deep learning image

inpainting model [36]. Table 1 row 5 shows that this strat-

egy results in an overall quality reduction, especially for the

accuracy and plausibility of disoccluded regions. Figure 5

visualizes the unrealistic inpainting results. Furthermore, as

shown in our video, predicting disocclusions separately for

each rendered image creates distracting temporal artifacts

in rendered camera paths because the appearance of disoc-

cluded content changes with the viewpoint.

7. Conclusion

We have presented a theoretical signal processing anal-

ysis of limits for views that can be rendered from an MPI

scene representation, and a practical deep learning method

to predict MPIs that theoretically allow for 4× more lat-

eral movement in rendered views than prior work. This im-

provement is due to our method’s ability to predict MPIs

with increased disparity sampling frequency and our flow-

based hidden content appearance constraint to predict MPIs

that render convincing disocclusion effects. However, there

is still a lot of room for improvement in predicting scene

representations for photorealistic view synthesis that con-

tain convincing occluded 3D content and are amenable to

deep learning pipelines, and we hope that this work inspires

future progress along this exciting research direction.
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