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Abstract

In this work, we present CRIB (Continual Recognition

Inspired by Babies), a synthetic incremental object learn-

ing environment that can produce data that models visual

imagery produced by object exploration in early infancy.

CRIB is coupled with a new 3D object dataset, Toys-200,

that contains 200 unique toy-like object instances, and is

also compatible with existing 3D datasets. Through ex-

tensive empirical evaluation of state-of-the-art incremental

learning algorithms, we find the novel empirical result that

repetition can significantly ameliorate the effects of catas-

trophic forgetting. Furthermore, we find that in certain

cases repetition allows for performance approaching that

of batch learning algorithms. Finally, we propose an unsu-

pervised incremental learning task with intriguing baseline

results.

1. Introduction

Children are amazing learning machines.1 Infants ac-

quire extensive object knowledge through self-directed play

with minimal supervision, a fact which is remarkable in

contrast to the quantity of labeled data required by current

deep learning methods. During play, infants pick up, exam-

ine, and put down toys of their own volition. The moments

in which a supervisory signal is available, for example when

an adult names an object, are extremely rare in compari-

son to the huge volume of unlabeled perceptual inputs. See

Fig. 1 for a schematic of this play process.

Research in child development [8, 49, 22] has identified

five key properties of infants’ play experiences. First, while

infants become experts at object categorization, the bulk of

their early visual experience involves object instances, in

∗Equal contribution.
1In the domain of word learning, for example, children acquire an aver-

age of 8 to 10 new words per day and reach a vocabulary of 60,000 words

by adulthood [34].
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Figure 1: Schematic of incremental object learning based

on infant play. Objects occur sequentially as exposures con-

sisting of sets of frames with contiguous viewpoints. A

sparse and noisy supervisory signal for category learning

(naming events), accompanies the wealth of visual data.

the form of toys and everyday objects. Second, their ex-

posure to object instances is highly repetitive, with many

objects (e.g. a favorite sippy cup) recurring over and over

again [8]. Third, when infants hold and manipulate objects,

they generate extended, contiguous views that may help in

revealing 3D object shape [49, 21, 37]. Fourth, infant learn-

ing is fundamentally incremental, as objects are held and

examined in sequence, and once an object has been put

down, its imagery is no longer available for learning. Fifth,

infants must provide their own supervision when learning

about instances, and leverage a sparse, noisy, and unsyn-

chronized supervisory signal when learning object names.2

These properties of the infant learning environment stand

in stark contrast to current methods for object learning

in computer vision, which are based on processing mini-

batches of randomly-sampled, labelled frames that cover

a significant subset of the label space. This approach en-

sures that gradient updates do not favor one class over

another in moving collectively towards higher accuracy.

However, when data is processed incrementally in standard

deep learning architectures, the result is catastrophic for-

getting, in which object representations developed early in

training are forgotten at the expense of more recent exam-

ples [14, 17]. Recent works on incremental learning have

2While there is a debate in developmental science about the extent to

which children’s knowledge is innate versus learned, in this paper we focus

on the task of learning from visual experience.
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Figure 2: A rendering of approximately one third of the 3D models in Toys-200.

developed methods using distillation loss [29] and exem-

plars [38, 6] to address the catastrophic forgetting problem,

and they represent a valuable point of contact with infant

learning. Crucially, however, these prior works have not

incorporated repetition, which we will demonstrate to be

critical for effective incremental learning (see Sec. 4.3).

This paper introduces a developmentally-motivated en-

vironment for object learning known as CRIB (Continual

Recognition Inspired by Babies), which supports incremen-

tal learning of object instances (and categories) from con-

tiguous views with repetition, in both supervised and un-

supervised settings. CRIB is an ideal testbed for research

in incremental learning, as it provides convenient access to

unlimited data with the ability to precisely manipulate key

dimensions of the learning task and ensure reproducibility.

CRIB comes with a novel dataset, Toys-200, consisting of

3D models of 200 diverse and developmentally-appropriate

object instances. Our experiments with CRIB have uncov-

ered some intriguing empirical properties of incremental

learning tasks which have not been observed in prior work.

Specifically, we show that in incremental learning with rep-

etition it is possible to ameliorate the effects of catastrophic

forgetting, with the performance of pre-trained models ap-

proaching that of batch-learning. These findings hold for

both instance and category learning across a diversity of

datasets (Toys-200, ShapeNet [7], and CIFAR[26]).

CRIB is implemented as an API that can easily be incor-

porated into data loaders for standard deep learning frame-

works like PyTorch and TensorFlow, and will be made

freely-available to the research community. It supports

the paradigm illustrated in Figure 1, in which the learner

receives a sequence of object learning exposures, each

one consisting of a set of frames corresponding to a con-

tiguous sequence of views of a particular object instance.

CRIB supports three different incremental learning tasks,

and we provide baseline results and extensive experimen-

tal results for each in Sec. 4. We hope that CRIB will en-

able new lines of attack on both incremental learning and

developmentally-motivated object learning problems. In

summary, this work makes the following contributions:

• The CRIB environment for developmentally-inspired

object learning along with the Toys-200 dataset of

developmentally-plausible 3D object instances

• A freely-available data generator which integrates into

standard deep learning platforms, supports existing 3D

datasets, and is capable of generating unlimited data

for incremental instance and category learning

• The identification of incremental learning with repeti-

tion as a key learning task which makes it possible to

ameliorate the effects of catastrophic forgetting

• An extensive evaluation of the effects of distillation

loss, explicit exemplar memory and repetitions on

both supervised and unsupervised incremental learn-

ing tasks3

2. Related Work

This paper is most closely related to prior work on incre-

mental learning using deep models, and our experiments

leverage existing algorithms for learning without forget-

ting [29], iCARL [38], and E2EIL [6]. In comparison

to these works, we provide a novel learning environment

(CRIB with Toys-200) and several novel tasks, as well as

extensive experiments on multiple datasets that illuminate

important aspects of incremental learning approaches, such

as the role of repeated exposures, distillation loss, and the

impact of exemplar set size, on incremental learning per-

formance. In contrast, prior works [29, 24, 28, 32, 38, 6]

did not address instance learning or the use of 3D models

to learn from contiguous viewpoints. They addressed only

3All resources needed to reproduce the experimental results in this pa-

per and any subsequent releases of software and data will be available at

https://iolfcv.github.io/
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the single exposure paradigm for category learning using

existing image datasets of a fixed size.

Another related body of work is open world recognition

(of which representative citations are [2, 3, 10]). It is rel-

evant due to its emphasis on self-supervision. Our exper-

iments on weakly-supervised learning from sequential ob-

ject exposures in Sec. 4.4 are a point of contact with this

literature, although our specific paradigm and methods dif-

fer from this prior work.

Our development of CRIB is part of an on-going effort

to explore the use of computer graphics rendering and sim-

ulation environments to investigate machine learning top-

ics in controlled settings and address the large scale data

requirements of deep learning. Examples include purpose-

built autonomous driving simulators such as TORCS [47]

and CARLA [13], and efforts to leverage commercial video

games [25, 40, 39]. Multiple synthetic optical flow datsets

[33, 5, 46] have led to performance improvements, as have

generated 3D car assets from [35]. Although the Active Vi-

sion Dataset [1] is not synthetic, it is a dense collection of

RGB-D images of real scenes that can simulate the visual

information perceived by a robot moving through an envi-

ronment. We are not aware of any prior work on simulation

environments which specifically target the learning tasks or

synthetic data generation goals addressed by CRIB.

Our work on Toys-200 is related to other efforts in curat-

ing datasets of objects for recognition tasks. Prior work on

collecting real image datasets of 3D objects, such as NORB

[27], COIL [36], and more recently, CORe50 [31], are less

relevant to this work. More closely-related are works that

created synthetic 3D object datasets, such as ShapeNet [7]

and Sculptures [45], which have led to significant progress

in the domain [41]. In comparison, Toys-200 contains fewer

instances (307 for Sculptures and 51K for ShapeNet). How-

ever, it occupies a sweet-spot in terms of size and diversity,

as the Toys-200 objects are highly diverse in comparison to

both Sculptures and ShapeNet and were designed to reflect

the types of toys and everyday objects that infants would

be likely to encounter. In conjunction with CRIB, we can

support a much wider range of data generation approaches

than any prior works, as summarized in Table ?? of the Ap-

pendix.

This paper is also connected to a long line of research on

developmentally-inspired approaches to robotics and learn-

ing (e.g. venues such as [9]). Works such as Gepperth

et. al. [15] and Kanan et. al. [23] connect to our interest

in biologically-inspired incremental learning. Recent work

by Haber et. al. [18] shares our interest in play behavior.

Other works have developed specific computational models

for children’s cognitive processes (see [30] for a recent ex-

ample). None of these works address the specific tasks or

settings which characterize our paper.

3. Approach

In order to achieve our goal of exploring the behavior of

incremental object recognition algorithms in a developmen-

tally plausible setting, we require a visual learning environ-

ment with the following characteristics:

Unlimited Data: The ability to efficiently generate unlim-

ited visual data for each of our objects is critical because

it allows us to vary the amount of repetition and generate

arbitrarily long experimental runs while ensuring that the

learning algorithm continues to receive novel inputs.

Developmental relevance: Our goal is to generate visual

data which simulates the object exploration behaviors in

early infancy. This requires the use of developmentally-

plausible object sets and the ability to generate sequences

of contiguous object views.

Integration: To facilitate rapid experimentation, it must

be easy to integrate our learning environment with existing

data loading mechanisms in modern deep learning frame-

works.

We develop CRIB (Continual Recognition Inspired by

Babies)—a synthetic visual learning environment that ful-

fills these requirements. CRIB can generate unlimited

learning exposures in the form of contiguous views of ob-

ject instances. Since CRIB is implemented as a Python

API it is directly compatible with all popular deep learning

frameworks. CRIB is built using the free and cross platform

3D graphics software Blender and uses the Cycles ray trac-

ing engine for rendering. The following section describes

how CRIB provides a novel environment for incremental

learning experiments.

3.1. CRIB Learning Environment

In this section we describe the process by which we cre-

ated the Toys-200 dataset and the details of the object ren-

dering approach in CRIB.

3.1.1 3D Object Models for Toys-200

A highly diverse set of toy-like objects is central to gen-

erating developmentally plausible object instance data for

visual recognition. We collected the Toys-200 dataset of

200 unique toy object models from Blendswap [4], select-

ing models that were freely-available under a CC license.

We began by targeting a core set of 30 specific object cate-

gories [49] that are frequently used in research with infants,

identifying the best 3D model instance for each one. In

order to build a challenging and visually-diverse (See Fig-

ure 2) dataset, we supplemented this initial set with addi-

tional toy-like objects. The criterion of ”toy-like” was im-

plemented by selecting objects which were similar to the

core objects in terms of their level of detail in shape and

appearance, and their plausibility for being a child’s toy. A

specific material shader was developed to give Toys-200 by
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Figure 3: Steps in generating visual exposures using CRIB (top to bottom): 1. Foreground object rendering, 2. background

scene selection, 3. foreground and background compositing. A visual exposure consists of multiple clips corresponding to

arcs on view sphere.

combining basic Blender material shaders, set up to give the

objects surface texture and reflectance properties of plastic,

toy-like objects. For our experiments involving category

learning, we used the well-known ShapeNet [7] dataset,

with appropriate modifications to incorporate it into CRIB.

Refer to the Appendix for more details.

3.1.2 Generating Learning Exposures

A learning exposure is a sequence of images obtained by

rotating an object of interest relative to a fixed camera, de-

signed to simulate the kind of object views that children are

known to generate during object play [21]. An exposure

consists of a sequence of short video clips, where each clip

is generated by rendering a sequence of images of the object

as its pose is linearly interpolated between two fixed poses.

See Figure 3 for an illustration of one sequence. The final

object pose for one sequence is the starting pose for the next,

and the images from each sequence are concatenated into a

single contiguous sequence to form the learning exposure.

CRIB generates learning exposures from 3D object mod-

els using a set of user-specified API parameters. Below we

discuss key aspects of the rendering process, and a detailed

technical description of all the steps to generate a learning

exposure can be found in the Appendix.

Lighting: In the API, the user specifies a lighting setting

of either four point or three rod light sources placed above

the object. Further characteristics are defined by parameters

for pose, temperature and intensity.

Object rotation: Object rotation in CRIB is generated

by linearly interpolating between object poses (azimuth, ro-

tation, elevation, scale) over a number of frames. To spec-

ify the qualitative characteristics of object rotation in the

learning exposure, the user specifies parameters for the to-

tal number of frames in the learning exposure and the total

number of different object poses for interpolation.

Preprocessing: Once the API parameters are specified,

the following fully-automated process proceeds: The target

object is imported into Blender, its center of mass is esti-

mated and it is positioned in the center of the camera frame.

The object is then appropriately scaled so that it remains

remains inside the camera field of view during the rotating

motion around its center of mass and the change in scale.

Foreground rendering: The specified light sources are

instantiated and the sequence of frames is rendered with-

out a background. At this step, instance segmentations and

bounding boxes are collected for the foreground object.

Background rendering: Backgrounds are image se-

quences of objects from Toys-200, which are distributed

over the floor to create a cluttered background. The cam-

era above the objects moves slightly over time to emulate

head motion (such background frames are illustrated in Fig-

ure 3). This results in a dynamic, cluttered background en-

vironment which makes the recognition task more challeng-

ing and simulates real-life play scenarios in which a child

interacts with a set of toys (e.g. dumped from a toybox).

We ensure that the foreground object is not also present in

the background. Once the background sequence has been

rendered, the final step is to composite the foreground and

background layers in each frame, and add a small amount

of pixel-wise noise.

Testing image generation: For evaluation purposes,

CRIB can also generate single images of a target object at a

random rotation, elevation and scale, with random lighting

conditions and backgrounds.

3.2. Learning Tasks in CRIB

CRIB supports three different incremental learning sce-

narios, two of which are novel. In each case, CRIB provides

learning exposures which are combined with stored past im-

ages in forming minibatches which are used for training.

The details vary with the task and the architecture, and are

detailed in the following sections.

Supervised Single Exposure: This is the standard in-
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cremental learning task, in which classes or instances are

presented sequentially to the learner. The key property is

that the learner sees each object exactly once. This leads to

catastrophic forgetting in all of the cases that we evaluated.

Supervised Repeated Exposure: In this novel task,

classes or instances are presented to the learner sequentially

with repetition. At random, the learner is given new learn-

ing exposures for previously-seen objects. Our experiments

demonstrate that allowing a limited amount of repetition

(e.g. 10 exposures each for 200 object instances) allows

existing algorithms to approach the batch performance.4

Unsupervised Repeated Exposure: In this task, learn-

ers receive repeated exposures to a sequence of objects, but

no labels are provided. This is similar to discriminative in-

cremental clustering [16]. This very challenging task re-

quires the learner to identify learning instances correspond-

ing to novel objects, and re-identify previously-seen ob-

jects. It mirrors the challenge infants face during play, as

most of their learning exposures will not be accompanied

by an object name.

4. Experiments

In this section, we introduce the baseline algorithms in

our study, and present novel experimental results for the

three incremental learning tasks from Sec. 3.2. Performance

is measured using incremental accuracy as in [38]: Follow-

ing training on each learning exposure, the classification

accuracy is computed on unseen test samples from all in-

stances or categories the learner has seen up to that point.

All learning exposures generated with CRIB are 100

frames long and interpolate between three randomly-chosen

points on the view sphere, with scale smoothly varying

from 0.3 to 1.1. Light source position is jittered at random

and light intensity is randomly-sampled from 4000-6000K

(indoor lighting temperature range). 100 random testing

frames are generated for each object. Refer to the appendix

for additional details.

4.1. Incremental Learning Methods

We produced our own implementations of three recent

CNN-based incremental learning algorithms [29, 38, 6].

Differences in our implementation from the original are

described below and in the appendix. All methods use

ResNet-34 [19] as the backbone architecture.

LwF [29] addresses catastrophic forgetting by modify-

ing the loss function used to train a standard CNN incre-

mentally. Each time a new class is introduced, the fully

connected layer of the CNN is expanded by adding an out-

put sigmoid unit for the new class. Distillation loss [20] is

4Note that in experiments with 3D rendered data, such as Toys-200, it

is still the case that each rendered image is used only once, as each new

learning instance will correspond to a new trajectory on the view sphere.

applied to the outputs for the other classes in attempt to pre-

serve the information they encode and prevent significant

changes due to backprop on the current class. Our LwF dif-

fers from [29] in using sigmoid units rather than a softmax

layer for classification, and in performing additional data

augmentation.

iCaRL [38] builds on LwF by including explicit mem-

ory in the form of an exemplar set managed by the learn-

ing algorithm. The exemplars are used to perform nearest

exemplar mean classification in feature space. The infer-

ence procedure consists of computing normalized exemplar

mean features per class using the CNN, and then classifying

by determining the nearest exemplar mean from the normal-

ized features of each testing sample. Training follows LwF

when distillation loss is used, otherwise it is standard CNN

training. Our iCaRL [38] implementation uses additional

data augmentation.

E2EIL [6] builds on the previous two methods. During

training, the loss takes into account ground truth labels of

the samples from the other classes as well as the current

class. Unlike iCaRL, training is end-to-end since the net-

work outputs are used for classification. E2EIL adds bal-

anced fine-tuning which targets the case when the number

of samples from the other classes is significantly lower than

the number of samples for the current class. Exemplar set

construction follows iCaRL, but is done twice: after training

and after balanced fine-tuning. Our implementation adopts

a temperature-squared weighting [20] for distillation loss,

computes distillation loss over all seen classes, and uses a

different data augmentation scheme.

Our experiments include both training from scratch and

initializing weights from a pre-trained ILSVRC-2014 [11]

architecture. Based on prior transfer learning results [44,

48, 12], we would expect that starting from a pretrained ar-

chitecture should yield better performance, and our results

confirm this. We also train with and without distillation

loss, in order to quantify its benefit. Note that when dis-

tillation loss is not used, we apply the classification loss to

all output nodes and use the exemplar labels.

Our naming convention: in iCaRL-PT-ND, PT indicates

starting with a pre-trained backbone architecture, and ND

means that distillation loss is not used, whereas iCaRL-S-D

refers to training from scratch (i.e. random weight initial-

ization) and using distillation loss.

4.2. Single Exposure Yields Catastrophic Forgetting

In this section we demonstrate that the single exposure

task leads to catastrophic forgetting for all of our baseline

methods in two datasets: Toys-200 and CIFAR-100. In

comparison to prior work [29, 38, 6], our Toys-200 experi-

ments are the first demonstration of catastrophic forgetting

in instance learning, and our CIFAR-100 experiments differ

in that we present classes one-at-a-time rather than two or
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Figure 4: (a) Performance of iCaRL, E2EIL and LwF when presented with a single exposure for each object instance from

CRIB-Toys-200. (b) shows performance of the same methods with repeated exposure.

more. For the Toys-200 experiment, we use 200 exposures,

one for each object instance. E2EIL and iCaRL use an ex-

emplar set size of 600 images, or 3% of the total data (as

compared to 4% in [38, 6]). We computed standard error

bars by repeating each experiment 3 times.

As evident in Figure 4a, all results for Toys-200 have

a general downward trend, which is similar to the results

in [38, 29, 6] and is attributed to catastrophic forgetting of

the instances which were seen early in the sequence. The re-

sults for iCaRL-PT-(D/ND) show that training with distilla-

tion is not favorable in this task, while the results for E2EIL-

PT-(D/ND) show that distillation loss does not make a dif-

ference. We find that test accuracy can be easily improved

by using a pre-trained model, aligning with [44, 48, 12].

In addition, we tested on CIFAR-100 [26] with iCaRL-S-

ND and iCaRL-PT-ND (see Figure 5) with single classes

presented sequentially. Further experiments using random

initialization are included in the Appendix.
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Figure 5: Performance of iCaRL-S-ND and iCaRL-PT-ND

on CIFAR-100 confirm catastrophic forgetting. Both algo-

rithms have an exemplar set size of 2000.

4.3. Repetition Reduces Catastrophic Forgetting

In this section, we demonstrate that introducing repe-

titions during incremental learning ameliorates the effects

of catastrophic forgetting, resulting in improvements in ac-

curacy and enabling the majority of tested algorithms to

eventually approach the performance of a pre-trained batch

learning method. We also examine the effect of the number

of exemplars.

Our first experiments with repetition are with Toys-200,

using 2000 learning exposures (each object appearing ten

times), with an explicit memory of 600 exemplars. For ev-

ery experimental run, we generate a random sequence of

object instances such that all methods experience the same

number of objects by each time step, but not the same in-

stances in the same order. Figure 4b shows the results.

E2EIL and iCaRL-PT-ND achieve an accuracy close to the

batch learning algorithm, whereas iCaRL-PT-D does not

show an improvement. Note that the performance gap be-

tween iCaRL-PT-D and iCaRL-PT-ND in this task is larger

in comparison to the single exposure task. This poten-

tially indicates that distillation loss is hindering the ability

to leverage repeated exposures for iCaRL, and highlights

the advantage of simply using the exemplar labels. Results

for algorithms trained from random initialization in the Ap-

pendix further confirm this finding.

We perform further experiments using three datasets:

CRIB-Toys, CRIB-ShapeNet [7] and CIFAR [26] to (1)

evaluate whether incremental learning with repeated expo-

sures can allow incremental algorithms to get close to the

performance of batch algorithms beyond an instance learn-

ing task (2) evaluate the importance of the number of ex-

emplars on the accuracy gains from repeated exposure. We

perform the following experiments:

1. CRIB-Toys-50: 50 objects over 500 learning expo-

sures (each object is shown 10 times).

2. CRIB-ShapeNet-20: 20 categories over 500 learn-

ing exposures. (25 instances from each category are

shown)

3. CIFAR-20: 20 categories over 1000 learning expo-

sures (each category is shown 50 times).

Figure 6 contains the results for this experiment. It is

evident that the same trend applies to all three datasets: the

performance of the algorithms declines at first before in-

creasing as they get more repeated exposures of previously

seen objects, and towards the end gets close to the perfor-

mance of a batch learning algorithm. We believe these are

the first findings for learning with repetitions in incremental

learning.
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Figure 6: Top : Performance of (a) iCaRL-PT-ND and (b) E2EIL-PT-ND with different number of exemplars on 50 objects

of CRIB-Toys. Bottom : (c) Performance of iCaRL-PT-ND (400 exemplars) on 20 categories of CIFAR (d) Performance of

iCaRL-PT-ND (1500 exemplars) on 20 categories of CRIB-ShapeNet. (Best viewed with zoom)

For CRIB-Toys-50, as evident from Figures 6a and 6b,

both iCaRL-PT-ND and E2EIL-PT-ND maintain the up-

ward trend first observed in Figure 4b. Additionally, this

experiment demonstrates that for an instance task, regard-

less of the total number of exemplars (18%, 12%, 3% or

1% of the total data), given sufficient repetition, the accu-

racy of iCaRL-PT-ND is close to pre-trained batch perfor-

mance. While E2EIL-PT-ND maintains an increasing trend,

the variants trained with small numbers of exemplars are not

as close to the pre-trained batch model after 500 exposures.

CRIB-ShapeNet-20 is a categorization task where re-

peated exposures are different instances from the same cat-

egory. 25 instances for training and 15 for testing are cho-

sen randomly from 20 categories of the ShapeNet Core55

dataset [7]. Learning exposures generated with CRIB for

each instance are provided over 500 exposures and testing is

done on 100 frames of random object views, scale and light-

ing for each instance in the test set for a seen category. The

performance (Figure 6d), shows that repeated exposures to

new instances in the same category leads to improvements

for categorization. This result extends our initial finding of

improvement towards batch performance via repeated ex-

posures to a different task and dataset.

For CIFAR-20, we sample with replacement 100 images

from a total of 500 images per category for each learning

exposure. This exposes the algorithm to images repeatedly

during different exposures. The performance on iCaRL-PT-

ND decreases at first and starts to go up after all 20 objects

have been seen (Figure 6c). Coverage for each category is

the portion of unique images seen within a category, with

the mean over all categories shown on the plot. The accu-

racy improvement rate decreases after 100% of the data is

shown to iCaRL-PT-ND. The final incremental accuracy is

on par with a batch algorithm, showing that improvements

due to repetition of concepts are not unique to CRIB.

4.4. Incremental Learning Without Supervision

In this task a learning algorithm needs to do novelty

detection—to determine whether or not an exposure comes

from a novel instance, and recognition—to determine which

previously-seen instance it belongs to, prior to updating pa-

rameters.

Prior work on open set and open world recognition

[42, 43] tackles the subproblem of novelty detection by

thresholding on known class scores to detect whether a new

data point belongs to a class that has not been encountered.

Drawing from these works, we use the following algorithm

for our straightforward baseline based on iCaRL-PT-ND. At

any given exposure, in unit normalized feature space, the

algorithm first finds the distance of the images from a learn-

ing exposure to all the exemplar means. This is followed by

finding the mean distance of the images in the exposure, and

using it as a score to determine whether the current object

has been previously seen. If the minimum distance-score is

more than a given threshold, the exposure labeled as com-

ing from a new object instance, otherwise it gets classified

as the previously seen instance with the minimum distance-

score. The threshold used was found as the optimal oper-
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Figure 7: Performance of iCaRL-PT-ND (600 exemplars) on unsupervised repeated exposures of CRIB-Toys-50, 100, 150,

200 (left to right) with learning exposure lengths of 10 and 100. The 10 length learning exposures are the first 10 frames of

the 100 length learning exposure. (Best viewed with zoom)

ating point from a precision-recall analysis over the binary

classification problem of novelty detection.

We evaluate this baseline algorithm on different learn-

ing exposure lengths and number of repeated exposure tasks

with CRIB. After each learning exposure, testing is done on

random views of ground truth seen objects. Since the labels

given by a learning algorithm in this task need not have any

correspondence with the ground truth labels, a one-to-one

correspondence is first established between these sets of la-

bels based on a maximum accuracy matching, and then the

learning algorithm’s test accuracy is computed.

Figure 7 contains the results of this study. For 100 learn-

ing exposure length, the algorithm’s accuracy is constant

or decreases with a greater number of objects and four re-

peated exposures. Further, for the same learning exposure

length, the proportion of objects discovered compared to the

ground truth number of unique objects seen decreases with

greater object set sizes. Across all experiments with differ-

ent total numbers of objects, there is a consistent trend that

a smaller learning exposure length results in a lower final

accuracy. Furthermore, a lower learning exposure length re-

sults in higher variability in performance over multiple runs

with different order of objects encountered.

5. Conclusion

We introduce CRIB, a novel environment for generating

unlimited training data for incremental learning of object

categories and instances, based on rendering learning expo-

sures from 3D object models. CRIB models the kinds of

object views generated by infants during play. We intro-

duce a novel instance learning dataset called Toys-200. We

use CRIB to study three incremental learning scenarios and

demonstrate that allowing repeated exposures dramatically

improves the performance of state-of-the-art methods, al-

lowing them to converge to the batch learning accuracy in

many cases. Finally, we show intriguing results on the chal-

lenging new task of incremental learning without supervi-

sion. Our CRIB enviornment and data is freely-available,

and we hope that this work will enable and motivate the de-

velopment of new incremental learning methodology.
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