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Abstract

Spatio-temporal action localization consists of three lev-

els of tasks: spatial localization, action classification, and

temporal segmentation. In this work, we propose a new

Progressive Cross-stream Cooperation (PCSC) framework

to use both region proposals and features from one stream

(i.e. Flow/RGB) to help another stream (i.e. RGB/Flow) to

iteratively improve action localization results and generate

better bounding boxes in an iterative fashion. Specifically,

we first generate a larger set of region proposals by com-

bining the latest region proposals from both streams, from

which we can readily obtain a larger set of labelled training

samples to help learn better action detection models. Sec-

ond, we also propose a new message passing approach to

pass information from one stream to another stream in or-

der to learn better representations, which also leads to bet-

ter action detection models. As a result, our iterative frame-

work progressively improves action localization results at

the frame level. To improve action localization results at

the video level, we additionally propose a new strategy to

train class-specific actionness detectors for better temporal

segmentation, which can be readily learnt by focusing on

“confusing” samples from the same action class. Compre-

hensive experiments on two benchmark datasets UCF-101-

24 and J-HMDB demonstrate the effectiveness of our newly

proposed approaches for spatio-temporal action localiza-

tion in realistic scenarios.

1. Introduction

Deep learning has significantly improved performance in

various computer vision tasks [6; 16; 15; 14; 26; 13; 30] in-

cluding human action detection. Human action detection,

also known as the spatio-temporal action localization, has

attracted increasing research interests due to its wide spec-

trum of applications in video surveillance (a brief review

of the related works is provided in Section 2). It consists

of three levels of tasks: i) spatial localization, i.e., finding

the spatial locations of persons within each frame, ii) ac-

tion classification, i.e., identifying the action categories, and

iii) temporal segmentation, i.e., determining the beginning

and the end of actions. Action detection in videos is a very

challenging task due to cluttered background, occlusion and

large intra-class variance, etc., especially when targeting the

three levels of tasks together.

Our work builds upon the existing observations that ap-

pearance and motion information are often complementary

to each other in recognizing and localizing human actions

at the feature level [21; 20; 17]. In addition, we further

observe that the two types of information are also comple-

mentary to each other at the region proposal level, so it is

beneficial to fully exploit the two types of information at

both region proposal and feature levels in order to further

improve spatial-temporal action localization results, which

is our first motivation.

Specifically, existing region proposals using either ap-

pearance or motion clues are not perfect, and they often

succeed or fail to detect region proposals in different sce-

narios. Therefore, they can help each other by providing

region proposals to each other. For example, when the mo-

tion clue is noisy because of subtle movement or cluttered

background, region proposal detectors based on motion in-

formation will fail, but region proposal detectors based on

appearance information may still successfully find candi-

date action regions and remove a large amount of back-

ground or non-action regions. In another example, it is

difficult to detect region proposals based on appearance in-

formation when certain type human actions exhibit extreme

poses, but human actions could be captured by motion in-

formation from human movements. Therefore, we can use

the bounding boxes detected from the motion as the region

proposals for improving action detection results based on

the appearance information, and vice versa.

On the other hand, the detected bounding boxes for ac-

tions in individual frames need to be linked in order to form

action tubes and temporally segmented out from the en-

tire video clip. Current works [4; 17; 20; 23] for temporal

segmentation are mainly based on data association meth-

ods that depend on the temporal overlap and smoothness,
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as well as action class scores. It is observed that it is often

difficult for such methods to precisely identify the temporal

boundaries of actions. When the appearance and motion

gradually change across temporal boundaries, the frames

near boundaries may have only subtle difference. In such

a case, it is extremely hard to precisely decide the temporal

boundary, and produces a large room for further improve-

ment of the existing temporal refinement methods, which is

our second motivation.

Based on the first motivation, in this paper, we propose a

progressive framework called Progressive Cross-stream Co-

operation (PCSC) to iteratively use both region proposals

and features from one stream to progressively help learn

better action detection models for another stream. To ex-

ploit the information from both streams at the region pro-

posal level, we propose to combine the latest region propos-

als from both streams in order to collect a larger set of train-

ing samples. At the feature level, we propose a new mes-

sage passing approach to pass information from one stream

to another stream in order to learn better representations. As

a result, we can progressively learn better action detection

models and improve action localization results at the frame-

level by leveraging both region proposals and features from

one stream to help another stream. Based on the second

motivation, we also propose a new temporal segmentation

method for training a set of class-specific binary classifiers

(also known as actionness detectors) to detect the happen-

ing of a certain type of actions. These actionness detectors

are trained by focusing on “confusing” samples from the ac-

tion tube of the same class, and therefore can learn critical

features that are good at discriminating the subtle changes

across the action boundaries.

Our contributions are briefly summarized as follows:

• We propose the Progressive Cross-stream Cooperation

(PCSC) framework to iteratively use both features and

region proposals from one stream to help learn better

action detection models for another stream, which in-

cludes a new message passing approach and a simple

region proposal combination strategy.

• We also propose to learn class-specific actionness de-

tectors to improve temporal segmentation results.

• Comprehensive experiments on two benchmark

datasets UCF-101-24 and J-HMDB demonstrate

that our approach outperforms the state-of-the-art

methods for localizing human actions both spatially

and temporally in realistic scenarios.

2. Related Work

2.1. Spatial temporal localization methods

Spatio-temporal action localization involves three types

of tasks: spatial localization, action classification, and tem-

poral segmentation. A huge amount of efforts have been

dedicated to improve the three tasks from different perspec-

tives. First, for spatial localization, the state-of-the-art hu-

man detection methods are utilized to obtain precise ob-

ject proposals, (including the use of fast and faster R-CNN

in [3; 20] as well as Single Shot Multibox Detector (SSD)

in [23; 10]).

Second, discriminant features are also employed for both

spatial localization and action classification. For example,

to remove the ambiguity of actions in each single frame,

some methods [10; 3] stack neighbouring frames near one

key frame to extract more discriminant features in order to

better represent this key frame. Other methods [22; 18; 3]

utilize recurrent neural networks to link individual frames

or use 3D CNNs [2; 27] to exploit temporal informa-

tion. Meanwhile, complementary information from multi-

modalities is also utilized to improve feature extraction re-

sults. For example, a number of works [20; 10; 17; 3] fuse

the appearance and motion clues to extract more robust fea-

tures for action classification.

Third, temporal segmentation is to form action tubes

from per-frame detection results. Methods for this task are

largely based on the association of per-frame detection re-

sults, such as the overlap, continuity and smoothness of ob-

jects, as well as the action class scores. To improve segmen-

tation accuracies, a variety of temporal refinement meth-

ods have been proposed, e.g., the traditional temporal slid-

ing windows [17], dynamic programming [23; 20], tubelets

linking [10], and thresholding-based refinement [3], etc.

Finally, several methods were also proposed to improve

action detection efficiency. For example, without requir-

ing time-consuming multi-stage training process, the works

in [20; 17] proposed to train a single CNN model by simul-

taneously performing action classification and bounding

box regression. More recently, an online real-time spatio-

temporal localization method is also proposed in [23].

2.2. Two­stream R­CNN

Based on the observation that appearance and motion

clues are often complementary to each other, several state-

of-the-art action detection models [20; 10; 17; 3] followed

the standard two-stream R-CNN approach. The features ex-

tracted from the two streams are fused to improve action

detection performance. For example, in [20], the softmax

score of each motion bounding box is used to help the ap-

pearance bounding boxes with largest overlap. In [3], three

types of fusion strategies are discussed: i) simply averaging

the softmax outputs of the two streams, ii) learning per-class

weights to weigh the original pre-softmax outputs and ap-

plying softmax on the weighted sum, and iii) training a fully

connected layer on top of the concatenated output from each

stream. It is reported in [3] that the third fusion strategy

achieves the best performance.
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Please note that the appearance and motion fusion ap-

proaches in the existing works as discussed above are all

based on the late fusion strategy. They are only trained (if

there is any training process) on top of the detection net-

works of the two streams. In contrast, in this work we it-

eratively use both features and bounding boxes from one

stream to progressively help learn better action detection

models for another stream, which is intrinsically different

with these existing approaches [23; 10] that fuse two-stream

information only at the feature level in a late fusion fashion.

3. Action Detection Model

Building upon the two-stream framework [17], we

propose a Progressive Cross-stream Cooperation (PCSC)

model for action detection at the frame level. In this model,

the RGB (appearance) stream and the flow (motion) stream

iteratively help each other at both features level and region

proposal level in order to achieve better localization results.

Finally, the action tube refinement module introduced in

Section 3.4 is used to link the detection boxes at each frame.

3.1. PCSC Overview

The overview of our PCSC model (i.e., the frame-level

detection model) is given in Fig. 1. As shown in Fig. 1(a),

our PCSC is composed of a set of “stages”. Each stage

refers to one round of cross-stream cooperation, in which

the features and region proposals from one stream will help

improve action localization performance for another stream.

Specifically, each stage comprises of two cooperation mod-

ules and a detection head module. Our detection head

module is a standard one, which consists of several layers

for region classification and regression.

The two cooperation modules include region-proposal-

level cooperation and feature-level cooperation, which are

introduced in details in Section 3.2 and Section 3.3, re-

spectively. For region-proposal-level cooperation, the de-

tection results from one stream (e.g, the RGB stream) are

used as the additional region proposals, which are com-

bined with the region proposals from the other stream (e.g,

the flow stream) to refine the region proposals and improve

the action localization results. Based on the refined re-

gion proposals, we also perform feature-level cooperation

by first extracting RGB/flow features from these ROIs and

refine these RGB/flow features via a message-passing mod-

ule shown in Fig. 1(b), and Fig. 1(c), which will be in-

troduced in Section 3.3. The refined ROI features in turn

lead to better region classification and regression results in

the detection head module, which benefits the subsequent

action localization process in the next stage. By perform-

ing the aforementioned processes for multiple rounds, we

can progressively improve the action detection results. The

whole network is trained in an end-to-end fashion by mini-

mizing the overall loss, which is the summation of the losses

from all stages.

After performing frame-level action detection, our ap-

proach links the per-frame detection results to form action

tubes, in which the temporal boundary is further refined by

using our proposed class-specific actionness detectors. The

details are provides in Section 3.4.

3.2. Cross­stream Region Proposal Cooperation

We employ the two-stream Faster R-CNN method [19]

for frame-level action localization. Each stream has its own

Region Proposal Network (RPN) [19] to generate candi-

date action regions, and these candidates are then used as

training samples to train a bounding box regression network

for action localization. Based on our observation, the re-

gion proposals generated by either stream can only partially

cover the true action regions, which degrades the detection

performance. Therefore, in our model, we use the region

proposals from one stream to help another stream.

In this paper, the bounding boxes from RPN are called

region proposals, while the bounding boxes from the de-

tection head are called detection boxes.

The region proposals from the RPNs of the two streams

are first used to train their own detection head separately

in order to obtain their own corresponding detection boxes.

The set of region proposals for each stream is then refined

by combining two subsets. The first subset is from the de-

tection boxes of its own stream (e.g, RGB) at the previous

stage. The second subset is from the detection boxes of

another stream (e.g, flow) at the current stage. To remove

more redundant boxes, a lower NMS threshold is used when

the detection boxes in another stream (e.g. flow) is used for

the current stream (e.g. RGB).

Mathematically, let P(i) and B(i) denote the set of region

proposals and the set of the detection boxes, respectively,

where i indicates the ith stream, t denotes the tth stage. The

region proposal P
(i)
t is updated as P

(i)
t = B

(i)
t−2 ∪ B

(j)
t−1,

and the detection box B
(j)
t is updated as B

(j)
t = G(P

(j)
t ),

where G(·) denotes the mapping function from the detec-

tion head module. Initially, when t = 0, P
(i)
0 is the region

proposal from RPN for the ith stream. This process is re-

peated between the two streams for several stages, which

will progressively improve the detection performance of

both streams.

As can been seen, with our approach, the diversity of re-

gion proposals from one stream will be enhanced by using

the complementary boxes from another stream. This could

help reduce the missing bounding boxes. Moreover, only

bounding boxes with high confidence are utilized in our ap-

proach, which increases the chances to add more precisely

detected bounding boxes and thus further help improve the

detection performance. These aforementioned strategies,

together with the cross-modality feature cooperation strat-

egy that will be described in Section 3.3, effectively im-
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Figure 1: (a) Overview of our Cross-stream Cooperation framework (four stages are used as an example for better illustration).

The region proposals and features from the flow stream help improve action detection results for the RGB stream at Stage 1

and Stage 3, while the region proposals and features from the RGB stream help improve action detection results for the flow

stream at Stage 2 and Stage 4. Each stage comprises of two cooperation modules and the detection head. The region-proposal

level cooperation module refines the region proposals Pi
t and the feature-level cooperation module improves the features Fi

t,

where the superscript i ∈ {RGB,F low} denotes the RGB/Flow stream and the subscript t denotes stage number. The

detection head is used for estimating the action location and the class label. For region-proposal level cooperation, we

combine the most recent region proposals from the two streams. (b) (c) Details of our feature-level cooperation modules

through message passing from one stream to another stream. The flow features are used to help the RGB features in (b),

while the RGB features are used to help the flow features in (c).

prove the frame-level action detection results.

Our cross-stream cooperation strategy at the region pro-

posal level shares similar high-level ideas with the two-view

learning method co-training [1], as both methods make

use of predictions from one stream/view to generate more

training samples (i.e., the additional region proposals in

our approach) to improve the prediction results for another

stream/view. However, our approach is intrinsically differ-

ent with co-training in the following two aspects. As a semi-

supervised learning method, the co-training approach [1]

selects unlabelled testing samples and assigns pseudo-labels

to those selected samples to enlarge the training set. In con-

trast, the additional region proposals in our work still come

from training videos instead of testing videos, so we know

the labels of the new training samples by simply compar-

ing these additional region proposals with the ground-truth

bounding boxes. Also, in co-training [1], the learnt classi-

fiers will be directly used for predicting the labels of testing

data in the testing stage so the complementary information

from the two views for the testing data is not exploited. In
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contrast, in our work, the same pipeline used in the training

stage will also be adopted for testing samples in the testing

stage, and thus we can further exploit the complementary

information from the two streams for the testing data.

3.3. Cross­stream Feature Cooperation

To extract spatio-temporal features for action detection,

similar to [5], we use the I3D network as the backbone

network for each stream. Moreover, we follow Feature

Pyramid Network (FPN) [12] to build feature pyramid with

high-level semantics, which has been found to be useful

to improve bounding box proposals and object detection.

This involves a bottom-up pathway and a top-down path-

way and lateral connections. The bottom-up pathway uses

the feed-forward computation along the backbone I3D net-

work, which produces a feature hierarchy with increasing

semantic levels but decreasing spatial resolutions. Then

these features are upsampled by using the top-down path-

way, which are merged with the corresponding features in

the bottom-up pathway through lateral connections.

Following [12], we use the feature maps at the layers

of Conv2c, Mixed3d, Mixed4f, Mixed5c in I3D to con-

struct the feature hierarchy in the bottom-up pathway, and

denote these feature maps as {Ci
2, Ci

3, Ci
4, Ci

5}, where

i ∈ {RGB, Flow}, indicating the RGB and the flow streams,

respectively. Accordingly, the corresponding feature maps

in the top-down pathway are denoted as {U i
2, U i

3, U i
4, U i

5}.

Most two-stream action detection frameworks [23; 17;

10] only exploit the complementary RGB and flow infor-

mation by fusing softmax scores or concatenating the fea-

tures from the final classifiers, which are insufficient for the

features from the two streams to exchange information from

one stream to another and benefit from such information ex-

change. Based on this observation, we develop a message-

passing module to bridge these two streams, so that they

help each other for feature refinement.

We pass the messages between the feature maps in the

bottom-up pathway of the two streams. Denote l as the

index for the set of feature maps in {Ci
2, Ci

3, Ci
4, Ci

5},

l ∈ {2, 3, 4, 5}. Let us use improvement of the RGB fea-

tures as an example (the same method is applied to improve-

ment of the flow features). Our message-passing module

improves the features CRGB
l with the help of the features

CFlow
l as follows:

CRGB
l = fθ(C

Flow
l )⊕ CRGB

l . (1)

where ⊕ denotes the element-wise addition of the feature

maps, fθ(·) is the mapping function (parameterized by θ)

of our message-passing module. The function fθ(C
Flow
l )

nonlinearly extracts the message from the feature CFlow
l ,

and then use the extracted message for improving the fea-

tures CRGB
l .

The output of fθ(·) has to produce the feature maps with

the same number of channels and resolution as CRGB
l and

CFlow
l . To this end, we design our message-passing mod-

ule by stacking two 1 × 1 convolutional layer with relu as

the activation function. The first 1 × 1 convolutional lay-

ers reduces the channel dimension and the second convolu-

tional layer restores the channel dimension back to its orig-

inal number. This design saves the number of parameters

to be learnt in the module and exchange message by us-

ing two-layer non-linear transform. Once the feature maps

CRGB
l in the bottom-up pathway are refined, the corre-

sponding features maps URGB
l in the top-down pathway

are generated accordingly.

The above process is for image-level messaging pass-

ing only. The image-level message passing is only per-

formed from the Flow stream to the RGB stream once.

This message passing provides good features to initialise

the message-passing stages.

Denote the image-level feature map sets for the RGB and

flow streams by IRGB and IFlow respectively. They are

used to extract features F̂RGB
t and F̂Flow

t by ROI pool-

ing in each stage t, as shown in Fig. 1. At Stage 1 and

Stage 3, the ROI-feature F̂Flow
t of the flow stream is used

to help improve the ROI-feature F̂RGB
t of the RGB stream,

as illustrated in Fig. 1 (b). Specifically, the improved RGB

feature FRGB
t is obtained by applying the same method in

Eqn. (1). Similarly, at Stage 2 and Stage 4, the ROI-feature

F̂RGB
t of the RGB stream is also used to help improve

the ROI-feature F̂Flow
t of the flow stream, as illustrated in

Fig. 1 (c). The message passing between ROI-features aims

to provide better features for action box detection and re-

gression, which benefits the next cross-stream cooperation

stage.

3.4. Action Tube Refinement

After frame-level detection results are generated, we

then build action tubes by linking them. Here we use the

same linking strategy as in [23], except that we do not apply

temporal labeling. Although this linking strategy is robust

to missing detection, it is still difficult to accurately deter-

mine the start and the end of each action tube, which is a key

factor that degrades video-level performance of our action

detection framework.

To solve this problem, we develop a class-specific ac-

tionness detector to detect the actionness (i.e.the happening

of an action) at each given location (spatially and tempo-

rally). To simplify the action tube refinement process, the

input features for actionness detection are the same features

for frame-level action detection. Specifically, we use the

features after feature level cooperation (see Section 3.3).

Taking advantage of the predicted action class labels from
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the frame-level detection results, we construct our action-

ness detector by using N binary classifiers, where N is

the number of action classes. Each classifier addresses the

actionness of a specific class. This strategy is more ro-

bust than learning a general actionness classifier for all ac-

tion classes. Specifically, after frame-level detection, each

bounding box has a class label, based on which, the bound-

ing boxes from the same class are traced and linked to form

action tubes [23]. To train the binary actionness classifier

for each action class i, the bounding boxes that are within

the action tubes predicted as class i by the frame-level de-

tector are used as the training samples. Each bounding box

is labeled either as 1 when its overlap with the ground-truth

box is greater than 0.5, or as 0 otherwise. Note the training

samples may include those bounding boxes falsely detected

near a temporal boundary and included into the action tubes

of Class i. Therefore, they are useful for the actionness clas-

sifier to learn the subtle but critical features that determines

the begining and the end of this action. The output of the

actionness classifier is a probability of actionness of class i.

At the testing stage, given an action tube formed us-

ing [23], we apply the class-specific actionness detector at

every frame-level bounding box in this tube to predict its

actionness probablity (called actionness score). Then a me-

dian filter over multiple frames is employed to smooth the

actionness scores of all bounding boxes in this tube. If a

bounding box has a smoothed score lower than a preset

threshold, it will be filtered out from this action tube, and

then we can refine the action tubes so that they have more

accurate temporal boundaries. Note that when a non-action

region near a temporal boundary is falsely detected, it is

included in the training set to train our class-specific action-

ness detector. Therefore, our approach takes advantage of

the “confusing samples” across temporal boundary to ob-

tain better action tubes at the testing stage.

3.5. Training Details

For better spatial localization at the frame-level, we fol-

low [10] to stack neighbouring frames to exploit temporal

context and improve action detection performance for key

frames. A key frame is a frame containing the ground-truth

actions. Each training sample, which is used to train the

RPN in our PCSC method, is composed of k neighouring

frames with the key frame in the middle. The region propos-

als generated from the RPN are assigned with positive la-

bels when they have an intersection-over-union (IoU) over-

lap higher than 0.5 with any ground-truth bounding box,

or negative labels if their IoU overlap is lower than 0.5

with all ground-truth boxes. This label assignment strategy

also applies to the additional bounding boxes from the as-

sistant stream during the region proposal-level cooperation

process.

4. Experimental results

We introduce our experimental setup and datasets in Sec-

tion 4.1, and then compare our method with the state-of-

the-art methods in Section 4.2, and conduct ablation study

in Section 4.3.

4.1. Experimental Setup

Datasets. We evaluate our PCSC model on two bench-

marks: UCF-101-24 [24] and J-HMDB-21 [9]. UCF-101-

24 contains 3207 untrimmed videos from 24 sports classes,

which is a subset of the UCF-101 dataset, with spatio-

temporal annotations provided by [23]. Following the com-

mon practice, we use the predefined “split 1” protocol to

split the training and test sets, and report the results based

on this split. J-HMDB-21 contains 928 videos from 21 ac-

tion classes. All the videos are trimmed to contain the ac-

tions only. We experiment on three predefined training-test

splits, and report the averaged results on this dataset.

Metrics. We evaluate the action detection performance

at both frame-level and video-level by mean Average pre-

cision (mAP). To calculate mAP, we consider a detection

box is correct when its overlap with a ground-truth box or

tube is greater than a threshold δ. The overlap between

our detection results and the ground truth is measured by

the intersection-over-union (IoU) at the frame-level and the

spatio-temporal tube overlap at the video-level. In addition,

we also report the results based on COCO evaluation met-

ric [11], which averages the mAPs over 10 different IoU

thresholds from 0.5 to 0.95 with an interval of 0.05.

Implementation Details. We use the I3D features [2]

for both streams, and the I3D model is pretrained with Ki-

netics. The optical flow images are extracted from FlowNet

v2 [8]. The mini-batch size used to train the RPN and the

detection head is 256 and 512, respectively. Our PCSC

model is trained for 6 epochs by using three 1080Ti GPUs.

The initial learning rate is set as 0.01, which drops 10% at

the 5th epoch and another 10% at the 6th epoch.

4.2. Comparison with the State­of­the­art methods

We compare our PCSC method with the state-of-the-art

methods. The results of the existing methods are quoted di-

rectly from their original papers. In addition, we also evalu-

ate the object detection model in [12] with the I3D network

as its backbone network. Specifically, the model in [12]

(denoted as “Faster R-CNN + FPN”) and our PCSC only

differ in that the PCSC method has the cross-stream coop-

eration modules while the work in [12] does not have them.

Therefore, the comparison between the two approaches can

better demonstrate the benefit of our cross-stream coopera-

tion strategy.
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4.2.1 Results on the UCF-101-24 Dataset

The results on the UCF-101-24 dataset are reported in Ta-

ble 1 and Table 2.

Table 1: Comparison (mAPs % at the frame level) of dif-

ferent methods on the UCF-101-24 dataset when using the

IoU threshold δ at 0.5.

mAPs

Weinzaepfel et al. [29] 35.8

Peng and Schmid [17] 65.7

Kalogeiton et al. [10] 69.5

Gu et al. [5] 76.3

Faster R-CNN + FPN [12] 75.5

PCSC (Ours) 79.2

Table 2: Comparison (mAPs % at the video level) of differ-

ent methods on the UCF-101-24 dataset when using differ-

ent IoU thresholds.

IoU threshold δ 0.2 0.5 0.75 0.5:0.95

Weinzaepfel et al. [29] 46.8 - - -

Peng and Schmid [17] 73.5 32.1 02.7 07.3

Saha et al. [20] 66.6 36.4 0.79 14.4

Singh et al. [23] 73.5 46.3 15.0 20.4

Kalogeiton et al. [10] 76.5 49.2 19.7 23.4

Gu et al. [5] - 59.9 - -

Faster R-CNN + FPN [12] 80.1 53.2 15.9 23.7

PCSC + TR (Ours) 84.3 61.0 23.0 27.8

Table 1 shows the mAPs from different methods at the

frame-level on the UCF-101-24 dataset. All mAPs are cal-

culated based on the IoU threshold δ = 0.5. As can be

seen, our PCSC model achieves an mAP of 79.2%, outper-

forming all the existing methods by a large margin. Espe-

cially, PCSC performs better than [12] by an improvement

of 3.7%. This improvement can be fully due to the proposed

cross-stream cooperation framework, which is the only dif-

ference between [12] and our PCSC. It is interesting to ob-

serve that both methods [10] and [5] additionally utilize

the temporal context for per frame-level action detection.

They do not fully exploit the complementary of appear-

ance and motion information, and therefore are worse than

our method. As can be seen, our method outperforms [10]

and [5] by 9.7% and 2.9%, respectively, in terms of frame-

level mAPs.

Table 2 reports the video-level mAPs at various IoU

thresholds (0.2, 0.5, and 0.75) on the UCF-101-24 dataset.

The results based on the COCO evaluation metrics [11] are

reported in the last column of Table 2. Our method is de-

noted as “PCSC + TR” in Table 2, where the proposed tem-

poral refinement (TR) method is applied to refine the action

tubes generated from our PCSC model. Consistent with the

observations on the frame-level, our method outperforms

all the state-of-the-art methods under all evaluation metrics.

When using the IoU threshold δ = 0.5, we achieve an mAP

of 61.0% on the UCF-101-24 dataset. This result beats [10]

and [5], which only achieve the mAPs of 49.2% and 59.9%,

respectively. Moreover, as the IoU threshold increases, we

observe that the performance of our method drops less when

compared with other state-of-the-art methods. This demon-

strates that our detection method achieves higher localiza-

tion accuracy than other competitive methods.

4.2.2 Results on the J-HMDB Dataset

For the J-HMDB dataset, the results in terms of frame-level

mAPs and video-level mAPs are reported in Table 3 and Ta-

ble 4, respectively. Since the videos in J-HMDB dataset are

trimmed to only contain actions, the temporal refinement

process is not required, so we do not apply our TR method

when generating action tubes on the J-HMDB dataset.

Table 3: Comparison (mAPs % at the frame level) of dif-

ferent methods on the J-HMDB dataset when using the IoU

threshold δ at 0.5.

mAPs

Peng and Schmid [17] 58.5

Kalogeiton et al. [10] 65.7

Hou et al. [7] 61.3

Gu et al. [5] 73.3

Sun et al. [25] 77.9

Faster R-CNN + FPN [12] 70.2

PCSC (Ours) 74.8

Table 4: Comparison (mAPs % at the video level) of differ-

ent methods on the J-HMDB dataset when using different

IoU thresholds.

IoU threshold δ 0.2 0.5 0.75 0.5:0.95

Gkioxari and Malik [4] - 53.3 - -

Wang et al. [28] - 56.4 - -

Weinzaepfel et al. [29] 63.1 60.7 - -

Saha et al. [20] 72.6 71.5 43.3 40.0

Peng and Schmid [17] 74.1 73.1 - -

Singh et al. [23] 73.8 72.0 44.5 41.6

Kalogeiton et al. [10] 74.2 73.7 52.1 44.8

Hou et al. [7] 78.4 76.9 - -

Gu et al. [5] - 78.6 - -

Sun et al. [25] - 80.1 - -

Faster R-CNN + FPN [12] 79.1 78.5 57.2 47.6

PCSC (Ours) 82.6 82.2 63.1 52.8

We have similar observation as in the UCF-101-24
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dataset. At the video-level, our method is again the best per-

former under all evaluation metrics on the J-HMDB dataset

(see Table 4). When using the IoU threshold δ = 0.5, our

PCSC method outperforms [5] and [25] by 3.6% and 2.1%,

respectively.

At the frame-level (see Table 3), our PCSC method per-

forms the second best, which is only worse than a very

recent work [25]. However, the work in [25] uses S3D-

G as the backbone network, which provides much stronger

features when compared with the I3D features used in our

method. In addition, please note that, our method outper-

forms [25] in terms of mAPs at the video level (see Table 4),

which demonstrates promising performance of our PCSC

method. Moreover, as a general framework, our PCSC

method could also take advantage of strong features pro-

vided by the S3D-G model to further improve the results,

which will be explored in our future work.

4.3. Ablation Study

To investigate the contributions of different components

in our PCSC model, we construct a mini-UCF-101-24

dataset by sampling every 10 frames from the videos in

UCF-101-24, which is only used as the training data in our

ablation study. The test data of UCF-101-24 for evaluation

in all experiments are kept unchanged.

Table 5: Ablation study for our PCSC method at different

training stages on the mini-UCF-101-24 dataset.

Stage
PCSC w/o feature

cooperation
PCSC

0 72.7 75.7

1 73.3 76.1

2 73.5 76.4

3 73.9 76.6

4 73.9 76.7

Table 6: Ablation study for our temporal refinement method

on the mini-UCF-101-24 dataset.

video mAP

Faster R-CNN + FPN [12] 53.2

PCSC 55.8

PCSC + TR 59.4

Progressive cross-stream cooperation. In Table 5, we

report the results of an alternative approach of our PCSC

(called PCSC w/o feature cooperation approach). In the

second column, we remove the feature-level cooperation

module from Fig. 1, and only use the region-proposal-level

cooperation module. As our PCSC is conducted in a pro-

gressive manner, we also report the performance at differ-

ent stages to verify the benefit of this progressive strategy.

It is worth mentioning that the output at each stage is ob-

tained by combining the detected bounding boxes from both

the current stage and all previous stages, and then we ap-

ply non-maximum suppression (NMS) to obtain the final

bounding boxes. For example, the output at stage 4 is ob-

tained by applying NMS to the union set of the detected

bounding boxes from Stages 0, 1, 2, 3 and 4. At Stage 0, the

detection results from both RGB and the Flow streams are

simply combined. From Table 5, we observe that the detec-

tion performance of our PCSC method with or without the

feature-level cooperation module is improved as the num-

ber of stages increases. However, such improvement seems

to become saturated when reaching Stage 4, as indicated

by the marginal performance gain from Stage 3 to Stage 4.

Meanwhile, when comparing our PCSC with the alterna-

tive approach PCSC w/o feature cooperation at every stage,

we observe that both region-proposal-level and feature-level

cooperation contributes to performance improvement.

Action tubes refinement. In Table 6, we also investi-

gate the effectiveness of our temporal refinement method by

reporting the results with/without the temporal refinement

module, in which video-level mAPs at the IoU threshold

δ = 0.5 are reported. By generating higher quality detec-

tion results at each frame, our PCSC method outperforms

the work in [12] that does not use the two-stream coopera-

tion strategy by 2.6%. After applying our action tube refine-

ment method to further boost the video-level performance,

we arrive at the video-level mAP of 59.4%, which demon-

strates that it is beneficial to use our action tube refinement

method to refine the temporal boundaries of action tubes.

5. Conclusion

In this work, we have proposed the Progressive Cross-
stream Cooperation (PCSC) framework to progressively
improve spatio-temporal action localization results at the
frame level, which consists of several iterative stages.
At each stage, we improve action localization results
for one stream (i.e., RGB/flow) by the leveraging the
information from another stream (flow/RGB) at both
region proposal level and feature level. We addition-
ally propose a simple but effective approach to improve
temporal segmentation results by training class-specific
actionness detectors based on the training samples around
temporal boundaries. The effectiveness of our newly
proposed approaches is demonstrated by extensive ex-
periments on both UCF-101-24 and J-HMDB datasets.
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