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Abstract

Ideally, 360◦ imagery could inherit the deep convolu-

tional neural networks (CNNs) already trained with great

success on perspective projection images. However, exist-

ing methods to transfer CNNs from perspective to spheri-

cal images introduce significant computational costs and/or

degradations in accuracy. We present the Kernel Trans-

former Network (KTN) to efficiently transfer convolution

kernels from perspective images to the equirectangular pro-

jection of 360◦ images. Given a source CNN for perspective

images as input, the KTN produces a function parameter-

ized by a polar angle and kernel as output. Given a novel

360◦ image, that function in turn can compute convolutions

for arbitrary layers and kernels as would the source CNN

on the corresponding tangent plane projections. Distinct

from all existing methods, KTNs allow model transfer: the

same model can be applied to different source CNNs with

the same base architecture. This enables application to mul-

tiple recognition tasks without re-training the KTN. Validat-

ing our approach with multiple source CNNs and datasets,

we show that KTNs improve the state of the art for spherical

convolution. KTNs successfully preserve the source CNN’s

accuracy, while offering transferability, scalability to typi-

cal image resolutions, and, in many cases, a substantially

lower memory footprint1.

1. Introduction

The 360◦ camera is an increasingly popular technol-

ogy gadget, with sales expected to grow by 1500% before

2022 [41]. As a result, the amount of 360◦ data is increasing

rapidly. For example, users uploaded more than a million

360◦ videos to Facebook in less than 3 years [2]. Besides

videography, 360◦ cameras are also gaining attention for

self-driving cars, automated drones, and VR/AR. Because

almost any application depends on semantic visual features,

this rising trend prompts an unprecedented need for visual

recognition algorithms on 360◦ images.

Today’s wildly successful recognition CNNs are the re-

sult of tremendous data curation and annotation effort [6,

1Code and data available at http://vision.cs.utexas.edu/projects/ktn/
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Figure 1: Our goal is to transfer CNNs trained on planar

images to 360◦ images. Common approaches either (A) ap-

ply CNNs directly on the equirectangular projection of a

360◦ image or (B) project the content to tangent planes and

apply the models on the tangent planes. In contrast, Kernel

Transformer Network (KTN) adapts the kernels in CNNs to

account for the distortion in 360◦ images.

14, 16, 30, 35, 40], but they all assume perspective pro-

jection imagery. How can they be repurposed for 360◦

data? Existing methods often take an off-the-shelf model

trained on perspective images and either 1) apply it repeat-

edly to multiple perspective projections of the 360◦ im-

age [10,37,39,42] or 2) apply it once to a single equirectan-

gular projection [19,29]. See Fig. 1(A,B). These two strate-

gies, however, have severe limitations. The first is expensive

because it has to project the image and apply the recogni-

tion model repeatedly. The second is inaccurate because the

visual content is distorted in equirectangular projection.

To overcome these challenges, recent work designs CNN

models specifically for spherical data [11, 12, 15, 36, 45].

Broadly speaking, they pursue one of three approaches.

The first adapts the network architecture for equirectangu-

lar projection and trains kernels of variable size to account

for its distortions [36]. While accurate, this approach suf-

fers from significant model bloat. The second approach

instead adapts the kernels on the sphere, resampling the

kernels or projecting their tangent plane features [12, 45].

While allowing kernel sharing and hence smaller mod-
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els, this approach degrades accuracy—especially for deeper

networks—due to an implicit interpolation assumption, as

we will explain below. The third approach defines convo-

lution in the spectral domain [11, 15], which has significant

memory overhead and thus far limited applicability to real-

world data. All of the above require retraining to handle a

new recognition task.

In light of these shortcomings, we propose the Ker-

nel Transformer Network (KTN). The KTN adapts source

CNNs trained on perspective images to 360◦ images. In-

stead of learning a new CNN on 360◦ images for a specific

task, KTN learns a function that takes a kernel in the source

CNN as input and transforms it to be applicable to a 360◦

image in its equirectangular projection. See Fig. 1 (C). The

function accounts for the distortion in 360◦ images, return-

ing different transformations depending on both the polar

angle θ and the source kernel. The model is trained to re-

produce the outputs of the source CNN on the perspective

projection for each tangent plane on an arbitrary 360◦ im-

age. Hence, KTN learns to behave similarly to the source

CNN while avoiding repeated projection of the image.

Key highlights of the proposed KTN are its transferabil-

ity and compactness—both of which owe to our function-

based design. Once trained for a base architecture, the same

KTN can transfer multiple source CNNs to 360◦ images.

For example, having trained a KTN for VGG [35] on Ima-

geNet classification, we can transfer the same KTN to run

a VGG-based Pascal object detector on 360◦ panoramas.

This is possible because the KTN takes the source CNN as

input rather than embed the CNN kernels into its own pa-

rameters (unlike [11,12,15,36,45]). Furthermore, since the

KTN factorizes source kernels from transformations, it is

implementable with a lightweight network (e.g., increasing

the footprint of a VGG network by only 25%).

Results show KTN models are orders of magnitude

smaller than the most accurate competitor, SphConv [36].

Compared with Spherical U-Net [45] and SphereNet [12],

KTN is much more data efficient because it does not require

any annotated 360◦ images for training, and it is more accu-

rate because it avoids their feature interpolation assumption.

2. Related Work

360◦ vision Ongoing work explores new projection mod-

els optimized for image display [5, 25, 43] or video stor-

age [1, 4, 27, 28, 38]. We adopt the most common equirect-

angular projection so our algorithm can be readily applied

to existing data. Other work explores how to improve the

display of 360◦ video via video stabilization [22, 23, 26],

new display interfaces [31–33], and automatic view selec-

tion [7, 10, 19, 29, 37, 39, 42]. The latter all rely on applying

CNNs to 360◦ data, and could benefit from our method.

CNNs on spherical data As discussed above, early meth-

ods take either the expensive but accurate reprojection ap-

proach [37, 39, 42, 44], or the inaccurate but fast direct

equirectangular approach [19, 29]. Recent work improves

accuracy by training vanilla CNNs on the cubemap projec-

tion, which introduces less distortion [3, 7], but the model

still suffers from cubemap distortion and discontinuities and

has sub-optimal accuracy for tasks such as object detection.

In the last year, several methods develop new spherical

CNN models. Some design CNN architectures that account

for the distortion in 360◦ images [12,36,45]. SphConv [36]

learns separate kernels for each row of the equirectangular

projection, training to reproduce the behavior of an off-the-

shelf CNN and adjusting the kernel shape based on its lo-

cation on the sphere. While more accurate than a vanilla

CNN, SphConv increases the model size significantly be-

cause it unties kernel weights along the rows. In contrast,

SphereNet [12] defines the kernels on the tangent plane and

projects features to the tangent planes before applying the

kernels. Similarly, Spherical U-Net [45] defines the kernels

on the sphere and resamples the kernels on the grid points

for every location in the equirectangular projection. Both

allow weight sharing, but they implicitly assume that fea-

tures defined on the sphere can be interpolated in the 2D

plane defined by equirectangular projection, which we show

is problematic. Instead of learning independent kernels or

using a fixed 2D transformation, our KTN learns a transfor-

mation that considers both spatial and cross-channel corre-

lation. Our model is more compact than SphConv by shar-

ing the kernels, and it is more accurate than SphereNet and

Spherical U-Net by learning a more generic transformation.

Another strategy is to define convolution in the spectral

domain in order to learn rotation invariant CNNs. One ap-

proach is to apply graph convolution and design the graph

structure [24] such that the outputs are rotation invariant.

Another approach transforms both the feature maps and

kernels into the spectral domain and applies convolution

there [11, 15]. However, orientation is often semantically

significant in real data (e.g., cars are rarely upside down)

and so removing orientation can unnecessarily restrict dis-

crimination. In addition, these approaches require caching

the basis functions and the frequency domain feature maps

in order to achieve efficient computation. This leads to sig-

nificant memory overhead and limits the viable input res-

olution. Both constraints limit the spectral methods’ accu-

racy on real world 360◦ images. Finally, unlike any of the

above prior work [3,7,11,12,15,36,45], our KTN can trans-

fer across different source CNNs with the same architecture

to perform new tasks without re-training; all other methods

require training a new model for each task.

CNNs with geometric transformations For perspective

images, too, there is interest in encoding geometric trans-

formations in CNN architectures. Spatial transformer net-

works [20] transform the feature map into a canonical

view to achieve transformation invariance. Active convo-

lution [21] and deformable convolution [13] model geomet-
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ric transformations using the receptive field of the kernel.

While these methods account for geometric transformations

in the input data, they are not suitable for 360◦ images be-

cause the transformation is location dependent rather than

content dependent in 360◦ images. Furthermore, all of them

model only geometric transformation and ignore the cor-

relation between different channels in the feature map. In

contrast, our method captures the properties of 360◦ images

and the cross channel correlation in the features.

3. Approach

In this section, we introduce the Kernel Transformer Net-

work for transferring convolutions to 360◦ images. We first

introduce the KTN module, which can replace the ordinary

convolution operation in vanilla CNNs. We then describe

the architecture and objective function of KTN. Finally, we

discuss the difference between KTN and existing methods

for learning CNNs on 360◦ data.

3.1. KTN for Spherical Convolution

Our KTN can be considered as an generalization of or-

dinary convolutions in CNNs. In the convolution layers of

vanilla CNNs, the same kernel is applied to the entire in-

put feature map to generate the output feature map. The

assumption underlying the convolution operation is that the

feature patterns, i.e., the kernels, are translation invariant

and should remain the same over the entire feature map.

This assumption, however, does not hold in 360◦ images. A

360◦ image is defined by the visual content projected on the

sphere centered at the camera’s optical center. To represent

the image in digital format, the sphere has to be unwrapped

into a 2D pixel array, e.g., with equirectangular projection

or cubemaps. Because all sphere-to-plane projections in-

troduce distortion, the feature patterns are not translation

invariant in the pixel space, and ordinary CNNs trained for

perspective images do not perform well on 360◦ images.

To overcome this challenge, we propose the Kernel

Transformer Network, which can generate kernels that ac-

count for the distortion. Assume an input feature map

I ∈ R
H×W×C and a source kernel K ∈ R

k×k×C defined

in undistorted images (i.e., perspective projection). Instead

of applying the source kernel directly

F [x, y] = Σi,jK[i, j] ∗ I[x− i, y − j], (1)

we learn the KTN (f ) that generates different kernels for

different distortions:

KΩ = f(K,Ω) (2)

F [x, y] = Σi,jKΩ[i, j] ∗ I[x− i, y − j] (3)

where the distortion is parameterized by Ω. Because the dis-

tortion in 360◦ images is location dependent, we can define

Ω as a function on the sphere

Ω = g(θ, φ), (4)

where θ and φ are the polar and azimuthal angle in spheri-

cal coordinates, respectively. Given the KTNs and the new

definition of convolution, our approach permits applying an

ordinary CNN to 360◦ images by replacing the convolution

operation in Eq. 1 with Eq. 3.

KTNs make it possible to take a CNN trained for some

target task (recognition, detection, segmentation, etc.) on

ordinary perspective images and apply it directly to 360

panoramas. Critically, KTNs do so without using any an-

notated 360◦ images. Furthermore, as we will see below,

once trained for a given architecture (e.g., VGG), the same

KTN is applicable for a new task using that architecture

without retraining the KTN. For example, we could train

the KTN according to a VGG network trained for ImageNet

classification, then apply the same KTN to transfer a VGG

network trained for Pascal object detection; with the same

KTN, both tasks can be translated to 360◦ images.

3.2. KTN Architecture

In this work, we consider 360◦ images that are un-

wrapped into 2D rectangular images using equirectangular

projection. Equirectangular projection is the most popular

format for 360◦ images and is part of the 360◦ video com-

pression standard [8]. The main benefit of equirectangu-

lar projection for KTNs is that the distortion depends only

on the polar angle. Because the polar angle has an one-to-

one correspondence with the image row (y=θH/π) in the

equirectangular projection pixel space, the distortion can be

parameterized easily using Ω = g(θ, φ) = y. Furthermore,

we can generate one kernel and apply it to the entire row

instead of generating one kernel for each location, which

leads to more efficient computation.

A KTN instance is based on a given CNN architecture.

There are two basic requirements for the KTN module.

First, it has to be lightweight in terms of both model size

and computational cost. A large KTN module would in-

cur a significant overhead in both memory and computation,

which would limit the resolution of input 360◦ images dur-

ing both training and test time. Because 360◦ images by

nature require a higher resolution representation in order to

capture the same level of detail compared with ordinary im-

ages, the accuracy of the model would degrade significantly

if we were forced to use lower resolution inputs.

Second, KTNs need to generate output kernels with vari-

able size, because the appropriate kernel shape may vary in

a single 360◦ image. A common way to generalize convo-

lution kernels on the 2D plane to 360◦ images is to define

the kernels on the tangent plane of the sphere. As a result,

the receptive field of the kernel on the 360◦ image is the

back projection of the receptive field on the tangent plane,

which varies at different polar angles [12,36,45]. While one

could address this naively by always generating the kernels

in the largest possible size, doing so would incur significant

overhead in both computation and memory.
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Figure 2: KTN consists of row dependent channel-wise

projections that resize the kernel to the target size and depth

separable convolution blocks. It takes a source kernel K
and θ as input and generates an output kernel KΩ. KΩ is

then applied to the 360◦ image in its equirectangular projec-

tion at row y=θH/π. The transformation accounts for the

distortion in equirectangular projection, while maintaining

cross-channel interactions.

We address the first requirement (size and cost) by em-

ploying depthwise separable convolutions [9,18] within the

KTN. Instead of learning 3D (i.e., height×width×channels)

kernels, KTN alternates between pointwise convolution that

captures cross-channel correlation and depthwise convolu-

tion that captures spatial correlation. Using the same 3x3

depthwise convolutions as in MobileNet [18], the computa-

tion cost is about 8 to 9 times less than standard convolution.

Furthermore, the model size overhead for KTN is roughly

1/k2 of the source kernels, where most of the parameters

are in the 1x1 convolution. The size overhead turns out to

be necessary, because cross channel correlation is captured

only by the 1x1 convolution in KTN, and removing it re-

duces the final spherical convolution accuracy significantly.

To address the second requirement (variable-sized ker-

nels), we learn a row dependent depthwise projection to re-

size the source kernel. The projection consists of h projec-

tion matrices Pi, for i ∈ [1, h], where h is the number of

rows in the 360◦ image. Let ri = hi × wi be the target

kernel receptive field at row i. The projection matrix has

the size Pi ∈ R
ri×k2

, which projects the source kernel into

the target size. Similar to the depthwise convolution, we

perform channel-wise projection to reduce the model size.

The complete architecture for KTN is in Fig. 2. We use a

Residual Network [17]-like architecture. For both the resid-

ual and shortcut branches, we first apply the row depen-

dent projection to resize the kernel to the target size. The

residual branch then applies depthwise separable convolu-

tion twice. Our depthwise separable convolution block con-

sists of ReLU-pointwise conv-ReLU-depthwise conv. This

design removes the batch normalization used in MobileNet

to reduce the model size and memory consumption. The

two branches are added together to generate the output ker-

nel, which is then applied to a 360◦ feature map as in Eq. 3.

Note that while the KTN can be applied to different kernels,

the structure of a KTN depends on Pi, which is determined

by the receptive field of the source kernel. Therefore, we

need one KTN for each layer of a source CNN.

3.3. KTN Objective and Training Process

Having introduced the KTN module and how to apply it

for CNNs on 360◦ images, we now describe the KTN ob-

jective function and training process. The goal of the KTN

is to adapt the source kernel to the 360◦ domain. Therefore,

we train the model to reproduce the outputs of the source

kernels. Let F l ∈ R
H×W×Cl

and F l+1 ∈ R
H×W×Cl+1

be the feature maps generated by the l-th and (l+1)-th layer

of a source CNN respectively. Our goal is to minimize the

difference between the feature map generated by the source

kernels Kl and that generated by the KTN module:

L = ∥F l+1 − f l(Kl,Ω) ∗ F l∥2 (5)

for any 360◦ image. Note that during training the feature

maps F l are not generated by applying the source CNN di-

rectly on the equirectangular projection of the 360◦ images.

Instead, for each point (x, y) in the 360◦ image, we project

the image content to the tangent plane of the sphere at

(θ, φ) = (
π × y

H
,
2π × x

W
) (6)

and apply the source CNN on the tangent plane. This en-

sures that the target training values are accurately computed

on undistorted image content. F l[x, y] is defined as the l-th
layer outputs generated by the source CNN at the point of

tangency. Our objective function is similar to that of Sph-

Conv [36], but, importantly, we optimize the model over the

entire feature map instead of on a single polar angle in order

to factor the kernel itself out of the KTN weights.

The objective function depends only on the source pre-

trained CNN and does not require any annotated data for

training. In fact, it does not require image data specific to

the target task, because the loss is defined over 360◦ images.

In practice, we sample arbitrary 360◦ images for training

regardless of the source CNN. For example, in experiments

we train a KTN on YouTube video frames and then apply it

for a Pascal object detection task. Our goal is to fully repro-

duce the behavior of the source kernel. Therefore, even if

the training images do not contain the same objects, scenes,

etc. as are seen in the target task, the KTN should still mini-

mize the loss in Eq. 5. Although KTN takes only the source

kernels and θ as input, the exact transformation f may de-

pend on all the feature maps F l, F l−1, . . . , F 1 to resolve

the error introduced by non-linearities. Our KTN learns the

important components of those transformations from data.
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Table 1: Comparison of different approaches. EQUIRECTANGULAR and CUBEMAP refer to applying the given CNN directly

to the equirectangular and cubemap projection, respectively. Supervised training means that the method requires annotated

360 images. The model size is the size for a single layer, where c, k,H refer to the number of channels, kernel size, and input

resolution (bandwidth) respectively. Note that c ∼ H ≫ k for real images and source CNNs, and we keep only the leading

term for each method.
Translation Rotation Supervised Model Transferable

Invariance Invariance Training Size Across Models

EQUIRECTANGULAR No No No c
2
k
2 No

CUBEMAP No No No c
2
k
2 No

S
2CNN [11] Yes Yes Yes c

2
H No

SPHERICAL CNN [15] Yes Yes Yes c
2
H No

SPHERICAL U-NET [45] Yes No Yes c
2
k
2 No

SPHERENET [12] Yes No Yes c
2
k
2 No

SPHCONV [36] Yes No No c
2
k
2
H No

KTN Yes No No c
2
k
2
+ c

2 Yes

KTN’s transferability across source kernels is analogous to

the generalizability of visual features across natural images.

In general, the more visual diversity in the unlabeled train-

ing data, the more accurately we can expect the KTN to be

trained. While one could replace all convolution layers in a

CNN with KTNs and train the entire model end-to-end us-

ing annotated 360◦ data, we believe that Eq. 5 is a stronger

condition while also enjoying the advantage of bypassing

any annotated training data.

3.4. Discussion

Compared to existing methods for convolution for 360◦

images, the main benefits of KTN are its compactness and

transferability. The information required to solve the target

task is encoded in the source kernel, which is fed into the

KTN as an input rather than part of the model. As a result,

the same KTN can be applied to another CNN having the

same base architecture but trained for a different target task.

In other words, without additional training, the same KTN

model can be used to solve multiple vision tasks on 360◦

images by replacing the source kernels, provided that the

source CNNs for each task have the same base architecture.

Most related to our work is the spherical convolution ap-

proach (SphConv) [36]. SphConv learns the kernels adapted

to the distortion in equirectangular projection. Instead of

learning the transformation function f in Eq. 2, SphConv

learns KΩ directly, and hence must learn one KΩ for every

different row of the equirectangular image. While SphConv

should be more accurate than KTN theoretically (i.e., re-

moving any limitations on memory and training time and

data) our experimental results show that the two methods

perform similarly in terms of accuracy. Furthermore, the

number of parameters in SphConv is hundreds of times

larger than KTN, which makes SphConv much more dif-

ficult to train and deploy. The difference in model size be-

comes even more significant when there are multiple mod-

els to be evaluated: the same KTN can apply to multi-

ple source CNNs and thus incurs only constant overhead,

x1

w2σ(w1x1)

x2

w2σ(w1x2)

x

c(x)

a b

w1

σ(x)

w2

Figure 3: Beyond the first CNN layer, the feature interpo-

lation assumption in SphereNet [12] yields only approxi-

mated results. See text for details.

whereas SphConv must fully retrain and store a new model

for each source CNN. For example, if we want to apply

five different VGG-based CNNs to 360◦ images, SphConv

will take 29×5=145GB of space, while KTN takes only

56×5+14=294MB (cf. Sec. 4.3). In addition, since Sph-

Conv trains KΩ for a single source kernel K, the model

does not generalize to different source CNNs.

SphereNet [12] formulates the transformation function f
using the sphere-to-tangent-plane image projection. While

the projection transformation leads to an analytical solution

for f , it implicitly assumes that CNN feature maps can be

interpolated like pixels. This assumption is only true for

the first layer in a network because of non-linear activation

functions used in modern CNNs between convolution lay-

ers. Consider a two layer 1D convolution with a kernel of

size 1, as sketched in Fig. 3. If we interpolate the pixel first

and apply the kernels, the output of at location x is

c(x) = w2 × σ(w1(ax1 + bx2)). (7)

However, if we apply the kernels and then interpolate the

features, the result is

c(x) = aw2 × σ(w1x1) + bw2 × σ(w1x2). (8)

These two values are not equal because σ is non-linear, and

the error will propagate as the network becomes deeper. The

interpolated feature can at most be an approximation for the

exact feature. Our experimental results show that a projec-

tion transformation for f leads to sub-optimal performance.
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Finally, other methods attempt to reduce distortion by

unwrapping a single 360◦ image into multiple images using

perspective projection locally [3,7], e.g., with cubemap pro-

jection. It is non-trivial to define convolution across multi-

ple image planes, where two cube faces meet. Prior work

addresses this problem by “cube-padding” the feature maps

using output from adjacent image planes [3, 7], but exper-

imental results indicate that the resultant features are not

accurate enough and degrade the accuracy. The reason is

that the same object may have different appearance on dif-

ferent tangent planes, especially when the field-of-view is

large and introduces significant perspective distortion. Al-

ternatively, one could sample the tangent planes densely and

apply convolution on each tangent plane independently, but

doing so incurs unrealistic computational overhead [37].

Table 1 summarizes the tradeoffs between existing

spherical convolution models. In short, KTN is distinct

from all others in its ability to transfer to new tasks without

any labeled data. Furthermore, KTN has the favorable prop-

erties of a highly compact model and the ability to preserve

orientation-specific features (typically desirable for recog-

nition and other high-level tasks).

4. Experiments

We evaluate KTN on multiple datasets and multiple

source models. The goal is to 1) validate the accuracy of

KTN as compared to other methods for learning CNNs on

360◦ images, 2) demonstrate KTN’s ability to generalize to

novel source models, and 3) examine KTN’s memory and

computation overhead compared to existing techniques.

Datasets Our experiments make use of both unannotated

360◦ videos and 360◦ images with annotation.

Spherical MNIST is constructed from the MNIST dataset

by back projecting the digits into equirectangular projection

with 160×80 resolution. The digit labels are used to train

the source CNN (recognition model), but they are not used

to train the KTN. Classification accuracy on the 360◦-ified

test set is used as the evaluation metric.

Pano2Vid is a real world 360◦ video dataset [39]. We

sample frames from non-overlapping videos for training

and testing, and the frames are resized to 640×320 reso-

lution. The models are trained to reproduce the convolution

outputs of the source model, so no labels are required for

training. The root-mean-square error (RMSE) of the final

convolution outputs is used as the evaluation metric.

Pascal VOC 2007 is a perspective image dataset with

object annotations. We backproject the object bounding

boxes to equirectangular projection with 640×320 resolu-

tion. Following [36], we use the accuracy of the detector

network in Faster R-CNN on the validation set as the eval-

uation metric. This dataset is used for evaluation only.

Source Models For Spherical MNIST, we train the source

CNN on the MNIST training set. The model consists

of three convolution layers followed by one fully con-

nected layer. Each convolution layer consists of 5x5Conv-

MaxPool-ReLU, and the number of kernels is 32, 64, and

128, respectively. For Pano2Vid and Pascal VOC, we take

off-the-shelf Faster R-CNN [34] models with VGG archi-

tecture [35] as the source model. The Faster R-CNN is

trained on Pascal VOC if not mentioned specifically. Source

models are not fine-tuned on 360◦ data in any form.

Baselines We compare to the following existing methods:

• EQUIRECTANGULAR—Apply ordinary CNNs on the

360◦ image in its equirectangular projection.

• CUBEMAP—Apply ordinary CNNs on the 360◦ image in

its cubemap projection.

• S2CNN [11]—We train S2CNN using the authors’ im-

plementation. For Pano2Vid and Pascal VOC, we reduce

the input resolution to 64×64 due to memory limits (see

Supp). We add a linear read-out layer at the end of the

model to generate the final feature map.

• SPHERICAL CNN [15]—We train SPHERICAL CNN us-

ing the authors’ implementation. Again, the resolution of

input is scaled down to 80×80 due to memory limits for

Pano2Vid and Pascal VOC.

• SPHERICAL U-NET [45]—We use the spherical convo-

lution layer in Spherical U-Net to replace ordinary con-

volution in CNN. Input resolution is reduced to 160×80
for Pano2Vid and Pascal VOC due to memory limits.

• SPHERENET [12]—We implement SPHERENET using

row dependent channel-wise projection.2 We derive the

weights of the projection matrices using the feature pro-

jection operation and train the source kernels. For the

Pano2Vid dataset, we train each layer independently us-

ing the same objective as KTN due to memory limits.

• SPHCONV [36]—We use the authors’ implementation.

• PROJECTED—Similar to SPHERENET, except that it uses

the source kernels without training.

The network architecture for EQUIRECTANGULAR and

CUBEMAP is the same as the source model. For all meth-

ods, the number of layers and kernels are the same as the

source model.

Note that the resolution reductions specified above were

necessary to even run those baseline models on the non-

MNIST datasets, even with state-of-the-art GPUs. All ex-

periments were run on NVIDIA V100 GPU with 16GB

memory—the largest in any generally available GPU to-

day. Therefore, the restriction is truly imposed by the latest

hardware technology. Compatible with these limits, the res-

olution in the authors’ own reported results is restricted to

60 × 60 [11], 64 × 64 [15], or 150 × 300 [45]. On the

SphericalMNIST dataset, all methods use the exact same

2The authors’ code and data were not available at the time of publication.
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Table 2: Model accuracy.

MNIST Pano2Vid Pascal VOC

(Acc.↑) (RMSE ↓) (Acc.↑)

EQUIRECTANGULAR 95.24 3.44 41.63

CUBEMAP 68.53 3.57 49.29

S
2CNN [11] 95.79 2.37 4.32

SPHERICAL CNN [15] 97.48 2.36 6.06

SPHERICAL U-NET [45] 98.43 2.54 24.98

SPHERENET [12] 87.20 2.46 46.68

SPHCONV [36] 98.72 1.50 63.54

PROJECTED 10.70 4.24 6.15

KTN 97.94 1.53 69.48

image resolution. The fact that KTN scales to higher res-

olutions is precisely one of its technical advantages, which

we demonstrate on the other datasets.

For Spherical MNIST, the baselines are trained to predict

the digit projected to the sphere except SPHCONV. SPH-

CONV and our KTN are trained to reproduce the conv3

outputs of the source model. For Pano2Vid, all methods

are trained to reproduce the conv5 3 outputs.

Please see Supp. file for additional details.

4.1. Model Accuracy

Table 2 summarizes the methods’ CNN accuracy on all

three 360◦ datasets. KTN performs on par with the best

baseline method (SPHCONV) on Spherical MNIST. The re-

sult verifies that KTN can transfer the source kernels to the

entire sphere by learning to reproduce the feature maps, and

it can match the accuracy of existing models trained with

annotated 360◦ images.

KTN and SPHCONV perform significantly better than

the other baselines on the high resolution datasets, i.e.,

Pano2Vid and Pascal VOC. S2CNN , SPHERICAL CNN,

and SPHERICAL U-NET suffer from their memory con-

straints, which as discussed above restricts them to lower

resolution inputs. Their accuracy is significantly worse

on realistic full resolution datasets. These models cannot

take higher resolution inputs even after using model paral-

lelism over four GPUs with a total of 64GB of memory.

Although EQUIRECTANGULAR and CUBEMAP are trained

and applied on the full resolution inputs, they do not account

for the distortion in 360◦ images and yield lower accuracy.

Finally, the performance of PROJECTED and SPHERENET

suggests that the transformation f cannot be modeled by a

tangent plane-to-sphere projection. Although SPHERENET

shows that the performance can be significantly improved

by training the source kernels on 360◦ images, the accu-

racy is still worse than KTN because feature interpolation

introduces error. The error accumulates across layers, as

discussed in Sec. 3.4, which substantially degrades the ac-

curacy when applying a deep CNN. Note that the number of

learnable parameters in KTN is much smaller than that in

Figure 4: KTN object detection examples on Pano2Vid.

See Supp. for detection examples on Pascal VOC.

SPHERENET, but it still achieves a much higher accuracy.

Interestingly, although SPHCONV performs better in

RMSE on Pano2Vid, KTN peforms better in terms of object

classification accuracy on Pascal VOC. We attribute this to

KTN’s inherent generalizability. SPHCONV has a larger

number of parameters, and the kernels at different θ are

trained independently. In contrast, the parameters in KTN

are shared across different θ and thus trained with richer in-

formation. Therefore, SPHCONV is more prone to overfit

the training loss, which is to minimize the RMSE for both

models. Furthermore, our KTN has a significant compact-

ness advantage over SPHCONV, as discussed above.

Similarly, although SPHERICAL U-NET and

SPHERENET perform slightly worse than S2CNN
and SPHERICAL CNN on Pano2Vid, they are significantly

better than those baselines on Pascal VOC. This result

reinforces the practical limitations of imposing rotation

invariance. S2CNN and SPHERICAL CNN require full

rotation invariance; the results show that orientation infor-

mation is in fact important in tasks like object recognition.

Thus, the additional rotational invariance constraince limits

the expressiveness of the kernels and degrades the perfor-

mance of S2CNN and SPHERICAL CNN. Furthermore,

the kernels in S2CNN and SPHERICAL CNN may span

the entire sphere, whereas spatial locality in kernels has

proven important in CNNs for visual recognition.

Fig. 4 shows example outputs of KTN with a Faster R-

CNN source model. The detector successfully detects ob-

jects despite the distortion. On the other hand, KTN can fail

when a very close object cannot be captured in the field-of-

view of perspective images.

4.2. Transferability

Next, we evaluate the transferability of KTN across dif-

ferent source models on Pano2Vid. In particular, we eval-

uate whether KTNs trained with a Faster R-CNN that is

trained on COCO can be applied to another Faster R-CNN

(both using VGG architecture) that is trained on Pascal

VOC and vice versa. We denote KTN trained on a different

source CNN than it is being tested on as KTN-TRANSFER

and KTN otherwise.
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Figure 5: Model transferability. The title indicates the

source CNN being tested. KTN performs almost identi-

cally regardless of the source network it is trained on. The

results show we can learn a single KTN and apply it to other

source CNNs with the same architecture, even if that source

model is trained for a different task.

Fig. 5 shows the results. The accuracy of KTN-

TRANSFER is almost identical to KTN. The results demon-

strate that KTN indeed learns a task-independent transfor-

mation and can be applied to different source models with

the same base architecture. None of the existing mod-

els [11, 12, 15, 36, 45] are equipped to perform this kind

of transfer, because they learn fixed kernels for a specific

task in some form. Hence, the PROJECTED baseline is the

only baseline shown in Fig. 5. Although PROJECTED can

be applied to any source CNN without training, the per-

formance is significantly worse than KTN. Again, the re-

sults indicate that a projection operation is not sufficient to

model the required transformation f . The proposed KTN

is the first approach to spherical convolution that translates

across models without requiring labeled 360◦ images or re-

training. We also perform the same experiments between

VGG trained for ImageNet classification and Faster R-CNN

trained for Pascal object detection, and the results are simi-

lar. See Supp.

4.3. Size and Speed

Finally, we compare the overhead introduced by KTN

versus that required by the baseline methods. In particular,

we measure the model size and speed for the convolution

layers in the VGG architecture. For the model size, we com-

pute the total size of the parameters using 32-bit floating

point numbers for the weights. While there exist algorithms

that compress neural networks, they are equally applicable

for all methods. For the speed, we measure the average pro-

cessing time (I/O excluded) of an image for computing the

conv5 3 outputs. All methods are evaluated on a dedicated

AWS p3.8xlarge instance. Because the model size for SPH-

CONV is 29GB and cannot fit in GPU memory (16GB), it is

run on CPUs. Other methods are run on GPUs.

Fig. 6 shows the results. We can see that the model size

of KTN is very similar to EQUIRECTANGULAR, CUBEMAP

and PROJECTED. In fact, it is only 25% (14MB) larger than
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Figure 6: Model size (top) and speed (bottom) vs. accu-

racy for VGG. KTN is orders of magnitude smaller than

SPHCONV, and it is similarly or more compact as all other

models, while being significantly more accurate.

the source CNN. At the same time, KTN achieves a much

better accuracy compared with all the models that have a

comparable size. Compared with SPHCONV, KTN not only

achieves a higher accuracy but is also orders of magnitude

smaller. Similarly, S2CNN and SPHERICAL CNN increase

model size by 131% and 727% while performing worse in

terms of accuracy. Note that we do not include parame-

ters that can be computed analytically, such as the bases

for S2CNN and the projection matrices for SPHERENET,

though in practice they also add further memory overhead

for those baselines.

On the other hand, the computational cost of KTN is

naturally much higher than EQUIRECTANGULAR. The lat-

ter only needs to run the source CNN on an equirectangular

image, whereas the convolution kernels are generated at run

time for KTN. However, as all the results show, KTN is

much more accurate. Furthermore, KTN is 26 times faster

than SPHCONV, since the smaller model size allows the

model to be evaluated on GPU.

5. Conclusion

We propose the Kernel Transformer Network for trans-

fering CNNs from perspective images to 360◦ images. KTN

learns a function that transforms a kernel to account for the

distortion in the equirectangular projection of 360◦ images.

The same KTN model can transfer to multiple source CNNs

with the same architecture, significantly streamlining the

process of visual recognition for 360◦ images. Our results

show KTN outperforms existing methods while providing

superior scalability and transferability.
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