
Pixel-Adaptive Convolutional Neural Networks

Hang Su1, Varun Jampani2, Deqing Sun2, Orazio Gallo2, Erik Learned-Miller1, and Jan Kautz2

1UMass Amherst 2NVIDIA

Abstract

Convolutions are the fundamental building blocks of

CNNs. The fact that their weights are spatially shared is

one of the main reasons for their widespread use, but it is

also a major limitation, as it makes convolutions content-

agnostic. We propose a pixel-adaptive convolution (PAC)

operation, a simple yet effective modification of standard

convolutions, in which the filter weights are multiplied with

a spatially varying kernel that depends on learnable, lo-

cal pixel features. PAC is a generalization of several pop-

ular filtering techniques and thus can be used for a wide

range of use cases. Specifically, we demonstrate state-of-

the-art performance when PAC is used for deep joint im-

age upsampling. PAC also offers an effective alternative to

fully-connected CRF (Full-CRF), called PAC-CRF, which

performs competitively compared to Full-CRF, while being

considerably faster. In addition, we also demonstrate that

PAC can be used as a drop-in replacement for convolution

layers in pre-trained networks, resulting in consistent per-

formance improvements.

1. Introduction

Convolution is a basic operation in many image process-

ing and computer vision applications and the major build-

ing block of Convolutional Neural Network (CNN) archi-

tectures. It forms one of the most prominent ways of prop-

agating and integrating features across image pixels due to

its simplicity and highly optimized CPU/GPU implementa-

tions. In this work, we concentrate on two important charac-

teristics of standard spatial convolution and aim to alleviate

some of its drawbacks: Spatial Sharing and its Content-

Agnostic nature.

Spatial Sharing: A typical CNN shares filters’ parame-

ters across the whole input. In addition to affording trans-

lation invariance to the CNN, spatially invariant convolu-

tions significantly reduce the number of parameters com-

pared with fully connected layers. However, spatial sharing

is not without drawbacks. For dense pixel prediction tasks,

such as semantic segmentation, the loss is spatially varying

because of varying scene elements on a pixel grid. Thus

𝐾 𝑊

f-1,-1 f-1,0 f-1,1

f0,-1 f0,0 f0,1

f1,-1 f1,0 f1,1

𝐾(f-1,-1,f0,0) 𝐾(f-1,0,f0,0) 𝐾(f-1,1,f0,0)

𝐾(f0,-1,f0,0) 𝐾(f0,0,f0,0) 𝐾(f0,1,f0,0)

𝐾(f1,-1,f0,0) 𝐾(f1,0,f0,0) 𝐾(f1,1,f0,0)

𝐾

Figure 1: Pixel-Adaptive Convolution. PAC modifies a standard

convolution on an input v by modifying the spatially invariant fil-

ter W with an adapting kernel K. The adapting kernel is con-

structed using either pre-defined or learned features f . ⊗ denotes

element-wise multiplication of matrices followed by a summation.

Only one output channel is shown for the illustration.

the optimal gradient direction for parameters differs at each

pixel. However, due to the spatial sharing nature of convo-

lution, the loss gradients from all image locations are glob-

ally pooled to train each filter. This forces the CNN to learn

filters that minimize the error across all pixel locations at

once, but may be sub-optimal at any specific location.

Content-Agnostic: Once a CNN is trained, the same con-

volutional filter banks are applied to all the images and all

the pixels irrespective of their content. The image content

varies substantially across images and pixels. Thus a sin-

gle trained CNN may not be optimal for all image types

(e.g., images taken in daylight and at night) as well as dif-

ferent pixels in an image (e.g., sky vs. pedestrian pixels).

Ideally, we would like CNN filters to be adaptive to the

type of image content, which is not the case with standard

CNNs. These drawbacks can be tackled by learning a large

number of filters in an attempt to capture both image and

pixel variations. This, however, increases the number of

parameters, requiring a larger memory footprint and an ex-

tensive amount of labeled data. A different approach is to

use content-adaptive filters inside the networks.

Existing content-adaptive convolutional networks can be

111166

broadly categorized into two types. One class of techniques

make traditional image-adaptive filters, such as bilateral fil-

ters [2, 41] and guided image filters [18] differentiable, and

use them as layers inside a CNN [24, 28, 51, 11, 9, 21, 29,

8, 13, 30, 43, 45]. These content-adaptive layers are usually

designed for enhancing CNN results but not as a replace-

ment for standard convolutions. Another class of content-

adaptive networks involve learning position-specific kernels

using a separate sub-network that predicts convolutional fil-

ter weights at each pixel. These are called “Dynamic Fil-

ter Networks” (DFN) [47, 22, 12, 46] (also referred to as

cross-convolution [47] or kernel prediction networks [4])

and have been shown to be useful in several computer vi-

sion tasks. Although DFNs are generic and can be used as

a replacement to standard convolution layers, such a kernel

prediction strategy is difficult to scale to an entire network

with a large number of filter banks.

In this work, we propose a new content-adaptive convo-

lution layer that addresses some of the limitations of the ex-

isting content-adaptive layers while retaining several favor-

able properties of spatially invariant convolution. Fig. 1 il-

lustrates our content-adaptive convolution operation, which

we call “Pixel-Adaptive Convolution” (PAC). Unlike a typ-

ical DFN, where different kernels are predicted at differ-

ent pixel locations, we adapt a standard spatially invariant

convolution filter W at each pixel by multiplying it with a

spatially varying filter K, which we refer to as an “adapt-

ing kernel”. This adapting kernel has a pre-defined form

(e.g., Gaussian or Laplacian) and depends on the pixel fea-

tures. For instance, the adapting kernel that we mainly use

in this work is Gaussian: e−
1

2
||fi−fj ||

2

, where fi ∈ R
d is

a d-dimensional feature at the ith pixel. We refer to these

pixel features f as “adapting features”, and they can be ei-

ther pre-defined, such as pixel position and color features,

or can be learned using a CNN.

We observe that PAC, despite being a simple modifi-

cation to standard convolution, is highly flexible and can

be seen as a generalization of several widely-used filters.

Specifically, we show that PAC is a generalization of spatial

convolution, bilateral filtering [2, 41], and pooling opera-

tions such as average pooling and detail-preserving pool-

ing [35]. We also implement a variant of PAC that does

pixel-adaptive transposed convolution (also called deconvo-

lution) which can be used for learnable guided upsampling

of intermediate CNN representations. We discuss more

about these generalizations and variants in Sec. 3.

As a result of its simplicity and being a generalization of

several widely used filtering techniques, PAC can be useful

in a wide range of computer vision problems. In this work,

we demonstrate its applicability in three different vision

problems. In Sec. 4, we use PAC in joint image upsampling

networks and obtain state-of-the-art results on both depth

and optical flow upsampling tasks. In Sec. 5, we use PAC in

a learnable conditional random field (CRF) framework and

observe consistent improvements with respect to the widely

used fully-connected CRF [24]. In Sec. 6, we demonstrate

how to use PAC as a drop-in replacement of trained con-

volution layers in a CNN and obtain performance improve-

ments after fine-tuning. In summary, we observe that PAC

is highly versatile and has wide applicability in a range of

computer vision tasks.

2. Related Work

Image-adaptive filtering. Some important image-adaptive

filtering techniques include bilateral filtering [2, 41], guided

image filtering [18], non-local means [6, 3], and propa-

gated image filtering [34], to name a few. A common line

of research is to make these filters differentiable and use

them as content-adaptive CNN layers. Early work [51, 11]

in this direction back-propagates through bilateral filtering

and can thus leverage fully-connected CRF inference [24]

on the output of CNNs. The work of [21] and [13] pro-

poses to use bilateral filtering layers inside CNN archi-

tectures. Chandra et al. [8] propose a layer that performs

closed-form Gaussian CRF inference in a CNN. Chen et

al. [9] and Liu et al. [30] propose differentiable local prop-

agation modules that have roots in domain transform fil-

tering [14]. Wu et al. [45] and Wang et al. [43] propose

neural network layers to perform guided filtering [18] and

non-local means [43] respectively inside CNNs. Since these

techniques are tailored towards a particular CRF or adap-

tive filtering technique, they are used for specific tasks and

cannot be directly used as a replacement of general convo-

lution. Closest to our work are the sparse, high-dimensional

neural networks [21] which generalize standard 2D convo-

lutions to high-dimensional convolutions, enabling them to

be content-adaptive. Although conceptually more generic

than PAC, such high-dimensional networks can not learn

the adapting features and have a larger computational over-

head due to the use of specialized lattices and hash tables.

Dynamic filter networks. Introduced by Jia et al. [22], dy-

namic filter networks (DFN) are an example of another class

of content-adaptive filtering techniques. Filter weights are

themselves directly predicted by a separate network branch,

and provide custom filters specific to different input data.

The work is later extended by Wu et al. [46] with an addi-

tional attention mechanism and a dynamic sampling strat-

egy to allow the position-specific kernels to also learn from

multiple neighboring regions. Similar ideas have been ap-

plied to several task-specific use cases, e.g., motion pre-

diction [47], semantic segmentation [17], and Monte Carlo

rendering denoising [4]. Explicitly predicting all position-

specific filter weights requires a large number of parame-

ters, so DFNs typically require a sensible architecture de-

sign and are difficult to scale to multiple dynamic-filter lay-

ers. Our approach differs in that PAC reuses spatial filters

11167

just as standard convolution, and only modifies the filters in

a position-specific fashion. Dai et al. propose deformable

convolution [12], which can also produce position-specific

modifications to the filters. Different from PAC, the modifi-

cations there are represented as offsets with an emphasis on

learning geometric-invariant features.

Self-attention mechanism. Our work is also related to the

self-attention mechanism originally proposed by Vaswani

et al. for machine translation [42]. Self-attention modules

compute the responses at each position while attending to

the global context. Thanks to the use of global information,

self-attention has been successfully used in several appli-

cations, including image generation [50, 33] and video ac-

tivity recognition [43]. Attending to the whole image can

be computationally expensive, and, as a result, can only be

afforded on low-dimensional feature maps, e.g., as in [43].

Our layer produces responses that are sensitive to a more lo-

cal context (which can be alleviated through dilation), and

is therefore much more efficient.

3. Pixel-Adaptive Convolution
In this section, we start with a formal definition of

standard spatial convolution and then explain our gener-

alization of it to arrive at our pixel-adaptive convolution

(PAC). Later, we will discuss several variants of PAC and

how they are connected to different image filtering tech-

niques. Formally, a spatial convolution of image features

v = (v1, . . . ,vn),vi ∈ R
c over n pixels and c channels

with filter weights W ∈ R
c′×c×s×s can be written as

v′
i =

∑

j∈Ω(i)

W [pi − pj]vj + b (1)

where pi = (xi, yi)
⊺ are pixel coordinates, Ω(·) defines an

s×s convolution window, and b ∈ R
c′ denotes biases. With

a slight abuse of notation, we use [pi−pj] to denote index-

ing of the spatial dimensions of an array with 2D spatial

offsets. This convolution operation results in a c′-channel

output, v′
i ∈ R

c′ , at each pixel i. Eq. 1 highlights how the

weights only depend on pixel position and thus are agnos-

tic to image content. In other words, the weights are spa-

tially shared and, therefore, image-agnostic. As outlined in

Sec. 1, these properties of spatial convolutions are limiting:

we would like the filter weights W to be content-adaptive.

One approach to make the convolution operation

content-adaptive, rather than only based on pixel locations,

is to generalize W to depend on the pixel features, f ∈ R
d:

v′
i =

∑

j∈Ω(i)

W (fi − fj)vj + b (2)

where W can be seen as a high-dimensional filter oper-

ating in a d-dimensional feature space. In other words,

we can apply Eq. 2 by first projecting the input signal

v into a d-dimensional space, and then performing d-

dimensional convolution with W. Traditionally, such high-

dimensional filtering is limited to hand-specified filters such

as Gaussian filters [1]. Recent work [21] lifts this re-

striction and proposes a technique to freely parameterize

and learn W in high-dimensional space. Although generic

and used successfully in several computer vision applica-

tions [21, 20, 38], high-dimensional convolutions have sev-

eral shortcomings. First, since data projected on a higher-

dimensional space is sparse, special lattice structures and

hash tables are needed to perform the convolution [1] re-

sulting in considerable computational overhead. Second, it

is difficult to learn features f resulting in the use of hand-

specified feature spaces such as position and color features,

f = (x, y, r, g, b). Third, we have to restrict the dimension-

ality d of features (say, < 10) as the projected input image

can become too sparse in high-dimensional spaces. In addi-

tion, the advantages that come with spatial sharing of stan-

dard convolution are lost with high-dimensional filtering.

Pixel-adaptive convolution. Instead of bringing convolu-

tion to higher dimensions, which has the above-mentioned

drawbacks, we choose to modify the spatially invariant con-

volution in Eq. 1 with a spatially varying kernel K ∈
R

c′×c×s×s that depends on pixel features f :

v′
i =

∑

j∈Ω(i)

K (fi, fj)W [pi − pj]vj + b (3)

where K is a kernel function that has a fixed parametric

form such as Gaussian: K(fi, fj) = exp(− 1
2 (fi− fj)

⊺(fi−
fj)). Since K has a pre-defined form and is not param-

eterized as a high-dimensional filter, we can perform this

filtering on the 2D grid itself without moving onto higher

dimensions. We call the above filtering operation (Eq. 3) as

“Pixel-Adaptive Convolution” (PAC) because the standard

spatial convolution W is adapted at each pixel using pixel

features f via kernel K. We call these pixel features f as

“adapting features” and the kernel K as “adapting kernel”.

The adapting features f can be either hand-specified such as

position and color features f = (x, y, r, g, b) or can be deep

features that are learned end-to-end.

Generalizations. PAC, despite being a simple modification

to standard convolution, generalizes several widely used fil-

tering operations, including

• Spatial Convolution can be seen as a special case of

PAC with adapting kernel being constant K(fi, fj) =
1. This can be achieved by using constant adapting

features, fi = fj , ∀i, j. In brief, standard convolution

(Eq. 1) uses fixed, spatially shared filters, while PAC

allows the filters to be modified by the adapting kernel

K differently across pixel locations.

• Bilateral Filtering [41] is a basic image processing op-

eration that has found wide-ranging uses [32] in im-

age processing, computer vision and also computer

11168

graphics. Standard bilateral filtering operation can be

seen as a special case of PAC, where W also has a

fixed parametric form, such as a 2D Gaussian filter,

W [pi − pj] = exp(− 1
2 (pi − pj)

⊺Σ−1(pi − pj)).
• Pooling operations can also be modeled by PAC. Stan-

dard average pooling corresponds to the special case

of PAC where K(fi, fj) = 1, W = 1
s2 · 1. De-

tail Preserving Pooling [35, 44] is a recently proposed

pooling layer that is useful to preserve high-frequency

details when performing pooling in CNNs. PAC can

model the detail-preserving pooling operations by in-

corporating an adapting kernel that emphasizes more

distinct pixels in the neighborhood, e.g., K(fi, fj) =

α+
(
|fi − fj |

2 + ǫ2
)λ

.

The above generalizations show the generality and the

wide applicability of PAC in different settings and applica-

tions. We experiment using PAC in three different problem

scenarios, which will be discussed in later sections.

Some filtering operations are even more general than the

proposed PAC. Examples include high-dimensional filter-

ing shown in Eq. 2 and others such as dynamic filter net-

works (DFN) [22] discussed in Sec. 2. Unlike most of those

general filters, PAC allows efficient learning and reuse of

spatially invariant filters because it is a direct modification

of standard convolution filters. PAC offers a good trade-off

between standard convolution and DFNs. In DFNs, filters

are solely generated by an auxiliary network and different

auxiliary networks or layers are required to predict kernels

for different dynamic-filter layers. PAC, on the other hand,

uses learned pixel embeddings f as adapting features, which

can be reused across several different PAC layers in a net-

work. When related to sparse high-dimensional filtering in

Eq. 2, PAC can be seen as factoring the high-dimensional

filter into a product of standard spatial filter W and the

adapting kernel K. This allows efficient implementation

of PAC in 2D space alleviating the need for using hash ta-

bles and special lattice structures in high dimensions. PAC

can also use learned pixel embeddings f instead of hand-

specified ones in existing learnable high-dimensional filter-

ing techniques such as [21].

Implementation and variants. We implemented PAC as a

network layer in PyTorch with GPU acceleration1. Our im-

plementation enables back-propagation through the features

f , permitting the use of learnable deep features as adapt-

ing features. We also implement a PAC variant that does

pixel-adaptive transposed convolution (also called “decon-

volution”). We refer to pixel-adaptive convolution shown

in Eq. 3 as PAC and the transposed counterpart as PAC⊺.

Similar to standard transposed convolution, PAC⊺ uses frac-

tional striding and results in an upsampled output. Our PAC

and PAC⊺ implementations allow easy and flexible specifi-

1Code can be found at https://suhangpro.github.io/pac/

Encoder

Guidance

C
O
N
V

PA
C
T

PA
C
T

PA
C
T

C
O
N
V

C
O
N
V

C
O
N
V

C
O
N
V

Decoder

C
O
N
V

C
O
N
V

C
O
N
V

Figure 2: Joint upsampling with PAC. Network architecture

showing encoder, guidance and decoder components. Features

from the guidance branch are used to adapt PAC⊺ kernels that are

applied on the encoder output resulting in upsampled signal.

cation of different options that are commonly used in stan-

dard convolution: filter size, number of input and output

channels, striding, padding and dilation factor.

4. Deep Joint Upsampling Networks

Joint upsampling is the task of upsampling a low-

resolution signal with the help of a corresponding high-

resolution guidance image. An example is upsampling

a low-resolution depth map given a corresponding high-

resolution RGB image as guidance. Joint upsampling is

useful when some sensors output at a lower resolution than

cameras, or can be used to speed up computer vision appli-

cations where full-resolution results are expensive to pro-

duce. PAC allows filtering operations to be guided by the

adapting features, which can be obtained from a separate

guidance image, making it an ideal choice for joint image

processing. We investigate the use of PAC for joint upsam-

pling applications. In this section, we introduce a network

architecture that relies on PAC for deep joint upsampling,

and show experimental results on two applications: joint

depth upsampling and joint optical flow upsampling.

4.1. Deep joint upsampling with PAC

A deep joint upsampling network takes two inputs,

a low-resolution signal x ∈ R
c×h/m×w/m and a high-

resolution guidance g ∈ R
cg×h×w, and outputs upsampled

signal x↑ ∈ R
c×h×w. Here m is the required upsampling

factor. Similar to [26], our upsampling network has three

components (as illustrated in Fig. 2):

• Encoder branch operates directly on the low-resolution

signal with convolution (CONV) layers.

• Guidance branch operates solely on the guidance im-

age, and generates adapting features that will be used

in all PAC⊺ layers later in the network.

• Decoder branch starts with a sequence of PAC⊺, which

perform transposed pixel-adaptive convolution, each

of which upsamples the feature maps by a factor of

2. PAC⊺ layers are followed by two CONV layers to

generate the final upsampled output.

11169

Input Guide Bilinear DJF Ours GT

Figure 3: Deep joint upsampling. Results of different methods for 16× joint depth usampling (top row) and 16× joint optical flow

upsampling (bottom row). Our method produces results that have more details and are more faithful to the edges in the guidance image.

Each of the CONV and PAC⊺ layers, except the final one,

is followed by a rectified linear unit (ReLU).

4.2. Joint depth upsampling

Here, the task is to upsample a low-resolution depth by

using a high-resolution RGB image as guidance. We ex-

periment with the NYU Depth V2 dataset [37], which has

1449 RGB-depth pairs. Following [26], we use the first

1000 samples for training and the rest for testing. The low-

resolution depth maps are obtained from the ground-truth

depth maps using nearest-neighbor downsampling. Tab. 1

shows root mean square error (RMSE) of different tech-

niques and for different upsampling factors m (4×, 8×,

16×). Results indicate that our network outperforms oth-

ers in comparison and obtains state-of-the-art performance.

Sample visual results are shown in Fig. 3.

We train our network with the Adam optimizer using a

learning rate schedule of [10−4× 3.5k, 10−5× 1.5k, 10−6×
0.5k] and with mini-batches of 256×256 crops. We found

this training setup to be superior to the one recommended

in DJF [26], and also compare with our own implementa-

tion of it under such a setting (“DJF (Our impl.)” in Tab. 1).

We keep the network architecture similar to that of previous

Table 1: Joint depth upsampling. Results (in RMSE) show

that our upsampling network consistently outperforms other tech-

niques for different upsampling factors.

Method 4× 8× 16×

Bicubic 8.16 14.22 22.32

MRF 7.84 13.98 22.20

GF [18] 7.32 13.62 22.03

JBU [23] 4.07 8.29 13.35

Ham et al. [15] 5.27 12.31 19.24

DMSG [19] 3.78 6.37 11.16

FBS [5] 4.29 8.94 14.59

DJF [26] 3.54 6.20 10.21

DJF+ [27] 3.38 5.86 10.11

DJF (Our impl.) 2.64 5.15 9.39

Ours-lite 2.55 4.82 8.52

Ours 2.39 4.59 8.09

state-of-the-art technique, DJF [26]. In DJF, features from

the guidance branch are simply concatenated with encoder

outputs for upsampling, whereas we use guidance features

to adapt PAC⊺ kernels. Although with similar number of

layers, our network has more parameters compared with

DJF (see supp. mat. for details). We also trained a lighter

version of our network (“Ours-lite”) that matches the num-

ber of parameters of DJF, and still observe better perfor-

mance showing the importance of PAC⊺ for upsampling.

4.3. Joint optical flow upsampling

We also evaluate our joint upsampling network for

upsampling low-resolution optical flow using the origi-

nal RGB image as guidance. Estimating optical flow is

a challenging task, and even recent state-of-the-art ap-

proaches [39] resort to simple bilinear upsampling to pre-

dict optical flow at the full resolution. Optical flow is

smoothly varying within motion boundaries, where accom-

panying RGB images can offer strong clues, making joint

upsampling an appealing solution. We use the same net-

work architecture as in the depth upsampling experiments,

with the only difference being that instead of single-channel

depth, input and output are two-channel flow with u, v com-

ponents. We experiment with the Sintel dataset [7] (clean

pass). The same training protocol in Sec. 4.2 is used, and the

low-resolution optical flow is obtained from bilinear down-

sampling of the ground-truth. We compare with baselines

of bilinear interpolation and DJF [26], and observe consis-

tent advantage (Tab. 2). Fig. 3 shows a sample visual re-

sult indicating that our network is capable of restoring fine-

structured details and also produces smoother predictions in

areas with uniform motion.

Table 2: Joint optical flow upsampling. End-Point-Error (EPE)

showing the improved performance compared with DJF [26].

4× 8× 16×

Bilinear 0.465 0.901 1.628

DJF [26] 0.176 0.438 1.043

Ours 0.105 0.256 0.592

11170

5. Conditional Random Fields
Early adoptions of CRFs in computer vision tasks were

limited to region-based approaches and short-range struc-

tures [36] for efficiency reasons. Fully-Connected CRF

(Full-CRF) [24] was proposed to offer the benefits of dense

pairwise connections among pixels, which resorts to ap-

proximate high-dimensional filtering [1] for efficient infer-

ence. Consider a semantic labeling problem, where each

pixel i in an image I can take one of the semantic labels

li ∈ {1, ...,L}. Full-CRF has unary potentials usually de-

fined by a classifier such as CNN: ψu(li) ∈ R
L. And, the

pairwise potentials are defined for every pair of pixel loca-

tions (i, j): ψp(li, lj |I) = µ(li, lj)K(fi, fj), where K is a

kernel function and µ is a compatibility function. A com-

mon choice for µ is the Potts model: µ(li, lj) = [li 6= lj].
[24] utilizes two Gaussian kernels with hand-crafted fea-

tures as the kernel function:

K(fi, fj) =w1 exp

{

−
‖pi − pj‖

2

2θ2α
−
‖Ii − Ij‖

2

2θ2β

}

+ w2 exp

{

−
‖pi − pj‖

2

2θ2γ

}

(4)

wherew1, w2, θα, θβ , θγ are model parameters, and are typ-

ically found by a grid-search. Then, inference in Full-

CRF amounts to maximizing the following Gibbs distribu-

tion: P (l|I) = exp(−
∑

i ψu(li)−
∑

i<j ψp(li, lj)), l =
(l1, l2, ..., ln). Exact inference of Full-CRF is hard, and [24]

relies on mean-field approximation which is optimizing for

an approximate distribution Q(l) =
∏

iQi(li) by minimiz-

ing the KL-divergence between P (l|I) and the mean-field

approximation Q(l). This leads to the following mean-field

(MF) inference step that updates marginal distributions Qi

iteratively for t = 0, 1, ... :

Q
(t+1)
i (l)←

1

Zi
exp

{

− ψu(l)

−
∑

l′∈L

µ(l, l′)
∑

j 6=i

K(fi, fj)Q
(t)
j (l′)

}

(5)

The main computation in each MF iteration,
∑

j 6=iK(fi, fj)Q
(t)
j , can be viewed as high-dimensional

Gaussian filtering. Previous work [24, 25] relies on

permutohedral lattice convolution [1] to achieve efficient

implementation.

5.1. Efficient, learnable CRF with PAC

Existing work [51, 21] back-propagates through the

above MF steps to combine CRF inference with CNNs re-

sulting in end-to-end training of CNN-CRF models. While

there exists optimized CPU implementations, permutohe-

dral lattice convolution cannot easily utilize GPUs because

it “does not follow the SIMD paradigm of efficient GPU

dilation=16

dilation=64

PAC-CRF

PAC
dilation=16

PAC
dilation=64

So
ftm

ax

𝑀𝐹

So
ftm

ax

U
na

rie
s

Pr
ed

ic
tio

n

In
pu

t …

𝑡 steps

Figure 4: PAC-CRF. Illustration of inputs, outputs and the oper-

ations in each mean-field (MF) step of PAC-CRF inference. Also

shown is the coverage of two 5×5 PAC filters, with dilation factors

16 and 64 respectively.

computation” [40]. Another drawback of relying on per-

mutohedral lattice convolution is the approximation error

incurred during both inference and gradient computation.

We propose PAC-CRF, which alleviates these computa-

tion issues by relying on PAC for efficient inference, and is

easy to integrate with existing CNN backbones. PAC-CRF

also has additional learning capacity, which leads to better

performance compared with Full-CRF in our experiments.

PAC-CRF. In PAC-CRF, we define pairwise connections

over fixed windows Ωk around each pixel instead of dense

connections:
∑

k

∑

i

∑

j∈Ωk(i) ψ
k
p(li, lj |I), where the k-th

pairwise potential is defined as

ψk
p(li, lj |I) = Kk(fi, fj)W

k
lj li [pj − pi] (6)

Here Ωk(·) specifies the pairwise connection pattern of the

k-th pairwise potential originated from each pixel, and Kk

is a fixed Gaussian kernel. Intuitively, this formulation al-

lows the label compatibility transform µ in Full-CRF to be

modeled by W, and to vary across different spatial offsets.

Similar derivation as in Full-CRF yields the following iter-

ative MF update rule (see supp. mat. for more details):

Q
(t+1)
i (l)←

1

Zi
exp

{

− ψu(l)−

∑

k

∑

l′∈L

∑

j∈Ωk(i)

Kk(fi, fj)W
k
l′l[pj − pi]Q

(t)
j (l′)

︸ ︷︷ ︸

PAC

}

(7)

MF update now consists of PAC instead of sparse high-

dimensional filtering as in Full-CRF (Eq. 5). As outlined

in Sec. 2, there are several advantages of PAC over high-

dimensional filtering. With PAC-CRF, we can freely pa-

rameterize and learn the pairwise potentials in Eq. 6 that

also use a richer form of compatibility transform W. PAC-

CRF can also make use of learnable features f for pairwise

potentials instead of pre-defined ones in Full-CRF. Fig. 4

(left) illustrates the computation steps in each MF step with

two pairwise PAC kernels.

Long-range connections with dilated PAC. The major

source of heavy computation in Full-CRF is the dense pair-

11171

wise pixel connections. In PAC-CRF, the pairwise con-

nections are defined by the local convolution windows Ωk.

To have long-range pairwise connections while keeping the

number of PAC parameters managable, we make use of

dilated filters [10, 48]. Even with a relatively small ker-

nel size (5 × 5), with a large dilation, e.g., 64, the CRF

can effectively reach a neighborhood of 257 × 257. A

concurrent work [40] also propose a convolutional version

of CRF (Conv-CRF) to reduce the number of connections

in Full-CRF. However, [40] uses connections only within

small local windows. We argue that long-range connections

can provide valuable information, and our CRF formulation

uses a wider range of connections while still being efficient.

Our formulation allows using multiple PAC filters in par-

allel, each with different dilation factors. In Fig. 4 (right),

we show an illustration of the coverage of two 5 × 5 PAC

filters, with dilation factors 16 and 64 respectively. This

allows PAC-CRF to achieve a good trade-off between com-

putational efficiency and long-range pairwise connectivity.

5.2. Semantic segmentation with PAC­CRF

The task of semantic segmentation is to assign a seman-

tic label to each pixel in an image. Full-CRF is proven to

be a valuable post-processing tool that can considerably im-

prove CNN segmentation performance [10, 51, 21]. Here,

we experiment with PAC-CRF on top of the FCN semantic

segmentation network [31]. We choose FCN for simplicity

and ease of comparisons, as FCN only uses standard convo-

lution layers and does not have many bells and whistles.

In the experiments, we use scaled RGB color,

[R
σR
, G
σG
, B
σB

]⊺, as the guiding features for the PAC layers

in PAC-CRF . The scaling vector [σR, σG, σB]
⊺ is learned

jointly with the PAC weights W. We try two internal con-

figurations of PAC-CRF: a single 5×5 PAC kernel with di-

lation of 32, and two parallel 5×5 PAC kernels with dilation

factors of 16 and 64. 5 MF steps are used for a good balance

between speed and accuracy (more details in supp. mat.).

We first freeze the backbone FCN network and train only

the PAC-CRF part for 40 epochs, and then train the whole

network for another 40 epochs with reduced learning rates.

Dataset. We follow the training and validation settings of

FCN [31] which is trained on PascalVOC images and vali-

dated on a reduced validation set of 736 images. We also

submit our final trained models to the official evaluation

server to get test scores on 1456 test images.

Baselines. We compare PAC-CRF with three baselines:

Full-CRF [24], BCL-CRF [21], and Conv-CRF [40]. For

Full-CRF, we use the publicly available C++ code, and find

the optimal CRF parameters through grid search. For BCL-

CRF, we use 1-neighborhood filters to keep the runtime

manageable and use other settings as suggested by the au-

thors. For Conv-CRF, the same training procedure is used

as in PAC-CRF. We use the more powerful variant of Conv-

Table 3: Semantic segmentation with PAC-CRF. Validation and

test mIoU scores along with the runtimes of different techniques.

PAC-CRF results in better improvements than Full-CRF [24]

while being faster. PAC-CRF also outperforms Conv-CRF [40]

and BCL [21]. Runtimes are averaged over all validation images.

Method mIoU (val / test) CRF Runtime

Unaries only (FCN) 65.51 / 67.20 -

Full-CRF [24] +2.11 / +2.45 629 ms

BCL-CRF [21] +2.28 / +2.33 2.6 s

Conv-CRF [40] +2.13 / +1.57 38 ms

PAC-CRF, 32 +3.01 / +2.21 39 ms

PAC-CRF, 16-64 +3.39 / +2.62 78 ms

CRF with learnable compatibility transform (referred to as

“Conv+C” in [40]), and we learn the RGB scales for Conv-

CRF in the same way as for PAC-CRF. We follow the sug-

gested default settings for Conv-CRF and use a filter size of

11×11 and a blurring factor of 4. Note that like Full-CRF

(Eq. 4), the other baselines also use two pairwise kernels.

Results. Tab. 3 reports validation and test mean Intersection

over Union (mIoU) scores along with average runtimes of

different techniques. Our two-filter variant (“PAC-CRF, 16-

64”) achieves better mIoU compared with all baselines, and

also compares favorably in terms of runtime. The one-filter

variant (“PAC-CRF, 32”) performs slightly worse than Full-

CRF and BCL-CRF, but has even larger speed advantage,

offering a strong option where efficiency is needed. Sam-

ple visual results are shown in Fig. 5. While being quan-

titatively better and retaining more visual details overall,

PAC-CRF produces some amount of noise around bound-

aries. This is likely due to a known “gridding” effect of

dilation [49], which we hope to mitigate in future work.

6. Layer hot-swapping with PAC
So far, we design specific architectures around PAC for

different use cases. In this section, we offer a strategy to

use PAC for simply upgrading existing CNNs with minimal

modifications through what we call layer hot-swapping.

Layer hot-swapping. Network fine-tuning has become

a common practice when training networks on new data

or with additional layers. Typically, in fine-tuning, newly

added layers are initialized randomly. Since PAC general-

izes standard convolution layers, it can directly replace con-

volution layers in existing networks while retaining the pre-

trained weights. We refer to this modification of existing

pre-trained networks as layer hot-swapping.

We continue to use semantic segmentation as an exam-

ple, and demonstrate how layer hot-swapping can be a sim-

ple yet effective modification to existing CNNs. Fig. 6 illus-

trates a FCN [31] before and after the hot-swapping modi-

fications. We swap out the last CONV layer of the last three

convolution groups, CONV3 3, CONV4 3, CONV5 3,

11172

Input GT Unary Full-CRF BCL-CRF Conv-CRF PAC-CRF,32 PAC-CRF,16-64 PAC-FCN PAC-FCN-CRF

Figure 5: Semantic segmentation with PAC-CRF and PAC-FCN. We show three examples from the validation set. Compared to Full-

CRF [24], BCL-CRF [21], and Conv-CRF [40], PAC-CRF can recover finer details faithful to the boundaries in the RGB inputs.

with PAC layers with the same configuration (filter size,

input and output channels, etc.), and use the output of

CONV2 2 as the guiding feature for the PAC layers. By

this example, we also demonstrate that one could use ear-

lier layer features (CONV2 2 here) as adapting features for

PAC. Using this strategy, the network parameters do not

increase when replacing CONV layers with PAC layers.

All the layer weights are initialized with trained FCN pa-

rameters. To ensure a better starting condition for further

training, we scale the guiding features by a small constant

(0.0001) so that the PAC layers initially behave very closely

to their original CONV counterparts. We use 8825 images

for training, including the Pascal VOC 2011 training images

and the additional training samples from [16]. Validation

and testing are performed in the same fashion as in Sec. 5.

Results are reported in Tab. 4. We show that our simple

modification (PAC-FCN) provides about 2 mIoU improve-

ment on test (67.20 → 69.18) for the semantic segmenta-

tion task, while incurring virtually no runtime penalty at in-

ference time. Note that PAC-FCN has the same number of

In
pu

t

C
O

N
V2

_2

C
O

N
V3

_3

C
O

N
V4

_3

C
O

N
V5

_3

………

Pr
ed

ic
tio

n

… …

In
pu

t

C
O

N
V2

_2

PA
C

3_
3

PA
C

4_
3

PA
C

5_
3

………

Pr
ed

ic
tio

n

… …

hot swapping

Figure 6: Layer hot-swapping with PAC. A few layers of a net-

work before (top) and after (bottom) hot-swapping. Three CONV

layers are replaced with PAC layers, with adapting features com-

ing from an earlier convolution layer. All the original network

weights are retained after the modification.

parameters as the original FCN model. The improvement

brought by PAC-FCN is also complementary to any addi-

tional CRF post-processing that can still be applied. After

combined with a PAC-CRF (the 16-64 variant) and trained

jointly, we observe another 2 mIoU improvement. Sample

visual results are shown in Fig. 5.

Table 4: FCN hot-swapping CONV with PAC. Validation and

test mIoU scores along with runtimes of different techniques. Our

simple hot-swapping strategy provides 2 IoU gain on test. Com-

bining with PAC-CRF offers additional improvements.

Method PAC-CRF mIoU (val / test) Runtime

FCN-8s - 65.51 / 67.20 39 ms

FCN-8s 16-64 68.90 / 69.82 117 ms

PAC-FCN - 67.44 / 69.18 41 ms

PAC-FCN 16-64 69.87 / 71.34 118 ms

7. Conclusion
In this work we propose PAC, a new type of filtering op-

eration that can effectively learn to leverage guidance infor-

mation. We show that PAC generalizes several popular fil-

tering operations and demonstrate its applicability on differ-

ent uses ranging from joint upsampling, semantic segmenta-

tion networks, to efficient CRF inference. PAC generalizes

standard spatial convolution, and can be used to directly re-

place standard convolution layers in pre-trained networks

for performance gain with minimal computation overhead.

Acknowledgements H. Su and E. Learned-Miller ac-

knowledge support from AFRL and DARPA (#FA8750-18-

2-0126)2 and the MassTech Collaborative grant for funding

the UMass GPU cluster.

2The U.S. Gov. is authorized to reproduce and distribute reprints for Gov.

purposes notwithstanding any copyright notation thereon. The views and

conclusions contained herein are those of the authors and should not be in-

terpreted as necessarily representing the official policies or endorsements,

either expressed or implied, of the AFRL and DARPA or the U.S. Gov.

11173

References

[1] A. Adams, J. Baek, and M. A. Davis. Fast high-dimensional

filtering using the permutohedral lattice. Computer Graphics

Forum, 29(2):753–762, 2010. 3, 6

[2] V. Aurich and J. Weule. Non-linear Gaussian filters perform-

ing edge preserving diffusion. In DAGM, pages 538–545.

Springer, 1995. 2

[3] S. P. Awate and R. T. Whitaker. Higher-order image statistics

for unsupervised, information-theoretic, adaptive, image fil-

tering. In Proc. CVPR, volume 2, pages 44–51. IEEE, 2005.

2

[4] S. Bako, T. Vogels, B. McWilliams, M. Meyer, J. Novák,

A. Harvill, P. Sen, T. Derose, and F. Rousselle. Kernel-

predicting convolutional networks for denoising monte carlo

renderings. ACM Trans. Graph., 36(4):97, 2017. 2

[5] J. T. Barron and B. Poole. The fast bilateral solver. In Proc.

ECCV, pages 617–632. Springer, 2016. 5

[6] A. Buades, B. Coll, and J.-M. Morel. A non-local algorithm

for image denoising. In Proc. CVPR, volume 2, pages 60–65.

IEEE, 2005. 2

[7] D. J. Butler, J. Wulff, G. B. Stanley, and M. J. Black. A

naturalistic open source movie for optical flow evaluation.

In A. Fitzgibbon et al. (Eds.), editor, Proc. ECCV, Part IV,

LNCS 7577, pages 611–625. Springer-Verlag, Oct. 2012. 5

[8] S. Chandra and I. Kokkinos. Fast, exact and multi-scale in-

ference for semantic image segmentation with deep Gaussian

CRFs. In Proc. ECCV, pages 402–418. Springer, 2016. 2

[9] L.-C. Chen, J. T. Barron, G. Papandreou, K. Murphy, and

A. L. Yuille. Semantic image segmentation with task-specific

edge detection using CNNs and a discriminatively trained

domain transform. In Proc. CVPR, pages 4545–4554, 2016.

2

[10] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and

A. L. Yuille. Deeplab: Semantic image segmentation with

deep convolutional nets, atrous convolution, and fully con-

nected CRFs. PAMI, 40(4):834–848, 2018. 7

[11] L.-C. Chen, A. Schwing, A. Yuille, and R. Urtasun. Learning

deep structured models. In Proc. ICML, pages 1785–1794,

2015. 2

[12] J. Dai, H. Qi, Y. Xiong, Y. Li, G. Zhang, H. Hu, and Y. Wei.

Deformable convolutional networks. arXiv:1703.06211,

1(2):3, 2017. 2, 3

[13] R. Gadde, V. Jampani, M. Kiefel, D. Kappler, and P. V.

Gehler. Superpixel convolutional networks using bilateral

inceptions. In Proc. ECCV, pages 597–613. Springer, 2016.

2

[14] E. S. Gastal and M. M. Oliveira. Domain transform for edge-

aware image and video processing. ACM Trans. Graph.,

30(4):69, 2011. 2

[15] B. Ham, M. Cho, and J. Ponce. Robust image filtering using

joint static and dynamic guidance. In Proc. CVPR, pages

4823–4831, 2015. 5

[16] B. Hariharan, P. Arbelaez, L. Bourdev, S. Maji, and J. Malik.

Semantic contours from inverse detectors. In Proc. ICCV,

2011. 8

[17] A. W. Harley, K. G. Derpanis, and I. Kokkinos.

Segmentation-aware convolutional networks using local at-

tention masks. In Proc. ICCV, volume 2, page 7, 2017. 2

[18] K. He, J. Sun, and X. Tang. Guided image filtering. PAMI,

35(6):1397–1409, 2013. 2, 5

[19] T.-W. Hui, C. C. Loy, and X. Tang. Depth map super-

resolution by deep multi-scale guidance. In Proc. ECCV,

pages 353–369. Springer, 2016. 5

[20] V. Jampani, R. Gadde, and P. V. Gehler. Video propagation

networks. In Proc. CVPR, 2017. 3

[21] V. Jampani, M. Kiefel, and P. V. Gehler. Learning sparse high

dimensional filters: Image filtering, dense CRFs and bilateral

neural networks. In Proc. CVPR, pages 4452–4461, 2016. 2,

3, 4, 6, 7, 8

[22] X. Jia, B. De Brabandere, T. Tuytelaars, and L. V. Gool. Dy-

namic filter networks. In Proc. NIPS, pages 667–675, 2016.

2, 4

[23] J. Kopf, M. F. Cohen, D. Lischinski, and M. Uyttendaele.

Joint bilateral upsampling. ACM Trans. Graph., 26(3):96,

2007. 5

[24] P. Krähenbühl and V. Koltun. Efficient inference in fully con-

nected CRFs with Gaussian edge potentials. In Proc. NIPS,

pages 109–117, 2011. 2, 6, 7, 8

[25] P. Krähenbühl and V. Koltun. Parameter learning and con-

vergent inference for dense random fields. In Proc. ICML,

pages 513–521, 2013. 6

[26] Y. Li, J.-B. Huang, N. Ahuja, and M.-H. Yang. Deep joint

image filtering. In Proc. ECCV, pages 154–169. Springer,

2016. 4, 5

[27] Y. Li, J.-B. Huang, N. Ahuja, and M.-H. Yang. Joint image

filtering with deep convolutional networks. PAMI, 2018. 5

[28] Y. Li and R. Zemel. Mean field networks. arXiv:1410.5884,

2014. 2

[29] G. Lin, C. Shen, A. Van Den Hengel, and I. Reid. Efficient

piecewise training of deep structured models for semantic

segmentation. In Proc. CVPR, pages 3194–3203, 2016. 2

[30] S. Liu, S. D. Mello, J. Gu, G. Zhong, M.-H. Yang, and

J. Kautz. Learning affinity via spatial propagation networks.

In Proc. NIPS, 2017. 2

[31] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional

networks for semantic segmentation. In Proc. CVPR, pages

3431–3440, 2015. 7

[32] S. Paris, P. Kornprobst, J. Tumblin, F. Durand, et al. Bi-

lateral filtering: Theory and applications. Foundations

and Trends R© in Computer Graphics and Vision, 4(1):1–73,

2009. 3

[33] N. Parmar, A. Vaswani, J. Uszkoreit, Ł. Kaiser, N. Shazeer,

and A. Ku. Image transformer. arXiv:1802.05751, 2018. 3

[34] J.-H. Rick Chang and Y.-C. Frank Wang. Propagated image

filtering. In Proc. CVPR, pages 10–18, 2015. 2

[35] F. Saeedan, N. Weber, M. Goesele, and S. Roth. Detail-

preserving pooling in deep networks. In cvpr, pages 9108–

9116, 2018. 2, 4

[36] J. Shotton, J. Winn, C. Rother, and A. Criminisi. Texton-

boost: Joint appearance, shape and context modeling for

multi-class object recognition and segmentation. In Proc.

ECCV, 2006. 6

11174

[37] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor

segmentation and support inference from rgbd images. In

Proc. ECCV, pages 746–760. Springer, 2012. 5

[38] H. Su, V. Jampani, D. Sun, S. Maji, E. Kalogerakis, M.-H.

Yang, and J. Kautz. Splatnet: Sparse lattice networks for

point cloud processing. In Proc. CVPR, 2018. 3

[39] D. Sun, X. Yang, M.-Y. Liu, and J. Kautz. PWC-Net: CNNs

for optical flow using pyramid, warping, and cost volume. In

Proc. CVPR, pages 8934–8943, 2018. 5

[40] M. T. T. Teichmann and R. Cipolla. Convolutional CRFs for

semantic segmentation. arXiv:1805.04777, 2018. 6, 7, 8

[41] C. Tomasi and R. Manduchi. Bilateral filtering for gray and

color images. In Proc. ICCV, 1998. 2, 3

[42] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones,

A. N. Gomez, Ł. Kaiser, and I. Polosukhin. Attention is all

you need. In Proc. NIPS, pages 5998–6008, 2017. 3

[43] X. Wang, R. Girshick, A. Gupta, and K. He. Non-local neural

networks. In Proc. CVPR, 2018. 2, 3

[44] N. Weber, M. Waechter, S. C. Amend, S. Guthe, and M. Goe-

sele. Rapid, detail-preserving image downscaling. ACM

Trans. Graph., 35(6):205, 2016. 4

[45] H. Wu, S. Zheng, J. Zhang, and K. Huang. Fast end-to-end

trainable guided filter. In Proc. CVPR, pages 1838–1847,

2018. 2

[46] J. Wu, D. Li, Y. Yang, C. Bajaj, and X. Ji. Dynamic sampling

convolutional neural networks. arXiv:1803.07624, 2018. 2

[47] T. Xue, J. Wu, K. Bouman, and B. Freeman. Visual dynam-

ics: Probabilistic future frame synthesis via cross convolu-

tional networks. In Proc. NIPS, pages 91–99, 2016. 2

[48] F. Yu and V. Koltun. Multi-scale context aggregation by di-

lated convolutions. arXiv:1511.07122, 2015. 7

[49] F. Yu, V. Koltun, and T. Funkhouser. Dilated residual net-

works. In Proc. CVPR, pages 472–480, 2017. 7

[50] H. Zhang, I. Goodfellow, D. Metaxas, and A. Odena.

Self-attention generative adversarial networks.

arXiv:1805.08318, 2018. 3

[51] S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet,

Z. Su, D. Du, C. Huang, and P. H. Torr. Conditional random

fields as recurrent neural networks. In Proc. ICCV, pages

1529–1537, 2015. 2, 6, 7

11175

