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Abstract

Unsupervised neural machine translation (UNMT) has

recently achieved remarkable results [20] with only large

monolingual corpora in each language. However, the un-

certainty of associating target with source sentences makes

UNMT theoretically an ill-posed problem. This work inves-

tigates the possibility of utilizing images for disambigua-

tion to improve the performance of UNMT. Our assump-

tion is intuitively based on the invariant property of image,

i.e., the description of the same visual content by different

languages should be approximately similar. We propose an

unsupervised multi-modal machine translation (UMNMT)

framework based on the language translation cycle con-

sistency loss conditional on the image, targeting to learn

the bidirectional multi-modal translation simultaneously.

Through an alternate training between multi-modal and

uni-modal, our inference model can translate with or with-

out the image. On the widely used Multi30K dataset, the

experimental results of our approach are significantly better

than those of the text-only UNMT on the 2016 test dataset.

1. Introduction

Our long-term goal is to build intelligent systems that

can perceive their visual environment and understand the

linguistic information, and further make an accurate transla-

tion inference to another language. Since image has become

an important source for humans to learn and acquire knowl-

edge (e.g. video lectures, [1, 18, 32]), the visual signal

might be able to disambiguate certain semantics. One way

to make image content easier and faster to be understood

by humans is to combine it with narrative description that

can be self-explainable. This is particularly important for
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Figure 1: Illustration of our proposed approach. We lever-

age the designed loss function to tackle a supervised task

with the unsupervised dataset only. SCE means sequential

cross-entropy.

many natural language processing (NLP) tasks as well, such

as image caption [27] and some task-specific translation–

sign language translation [6]. However, [24] demonstrates

that most multi-modal translation algorithms are not signif-

icantly better than an off-the-shelf text-only machine trans-

lation (MT) model for the Multi30K dataset [12]. There

remains an open question about how translation models

should take advantage of visual context, because from the

perspective of information theory, the mutual information

of two random variables I(X,Y ) will always be no greater

than I(X;Y, Z), due to the following fact I(X;Y, Z) −
I(X;Y ) = KL(p(X,Y, Z)‖p(X|Y )p(Z|Y )p(Y )), where

the Kullback-Leibler (KL) divergence is non-negative. This

conclusion makes us believe that the visual content will

hopefully help the translation systems.
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Since the standard paradigm of multi-modal translation

always considers the problem as a supervised learning task,

the parallel corpus is usually sufficient to train a good trans-

lation model, and the gain from the extra image input is very

limited. Moreover, the scarcity of the well formed dataset

including both images and the corresponding multilingual

text descriptions is also another constraint to prevent the de-

velopment of more scaled models. In order to address this

issue, we propose to formulate the multi-modal translation

problem as an unsupervised learning task, which is closer

to real applications. This is particularly important given the

massive amounts of paired image and text data being pro-

duced everyday (e.g., news title and its illustrating picture).

Our idea is originally inspired by the text-only unsuper-

vised MT (UMT) [8, 19, 20], investigating whether it is

possible to train a general MT system without any form of

supervision. As [20] discussed, the text-only UMT is fun-

damentally an ill-posed problem, since there are potentially

many ways to associate target with source sentences. In-

tuitively, since the visual content and language are closely

related, the image can play the role of a pivot “language” to

bridge the two languages without paralleled corpus, making

the problem “more well-defined” by reducing the problem

to supervised learning. However, unlike the text translation

involving word generation (usually a discrete distribution),

the task to generate a dense image from a sentence descrip-

tion itself is a challenging problem [21]. High quality image

generation usually depends on a complicated or large scale

neural network architecture [23, 13, 30]. Thus, it is not rec-

ommended to utilize the image dataset as a pivot “language”

[7]. Motivated by the cycle-consistency [31], we tackle

the unsupervised translation with a multi-modal framework

which includes two sequence-to-sequence encoder-decoder

models and one shared image feature extractor. We don’t

introduce the adversarial learning via a discriminator be-

cause of the non-differentiable argmax operation during

word generation. With five modules in our framework, there

are multiple data streaming paths in the computation graph,

inducing the auto-encoding loss and cycle-consistency loss,

in order to achieve the unsupervised translation.

Another challenge of unsupervised multi-modal trans-

lation, and more broadly for general multi-modal transla-

tion tasks, is the need to develop a reasonable multi-source

encoder-decoder model that is capable of handling multi-

modal documents. Moreover, during training and inference

stages, it is better to process the mixed data format includ-

ing both uni-modal and multi-modal corpora.

First, this challenge highly depends on the attention

mechanism across different domains. Recurrent Neu-

ral Networks (RNN) and Convolutional Neural Networks

(CNN) are naturally suitable to encode the language text

and visual image respectively; however, encoded features

of RNN has autoregressive property which is different from

the local dependency of CNN. The multi-head self-attention

transformer [26] can mimic the convolution operation, and

allow each head to use different linear transformations,

where in turn different heads can learn different relation-

ships. Unlike RNN, it reduces the length of the paths of

states from the higher layer to all states in the lower layer

to one, and thus facilitates more effective learning. For ex-

ample, the BERT model [9], that is completely built upon

self-attention, has achieved remarkable performance in 11

natural language tasks. Therefore, we employ transformer

in both the text encoder and decoder of our model, and de-

sign a novel joint attention mechanism to simulate the rela-

tionships among the three domains. Besides, the mixed data

format requires the desired attention to support the flexi-

ble data stream. In other words, the batch fetched at each

iteration can be either uni-modal text data or multi-modal

text-image paired data, allowing the model to be adaptive to

various data during inference as well.

Succinctly, our contributions are three-fold: (1) We for-

muate the multi-modal MT problem as unsupervised set-

ting that fits the real scenario better and propose an end-

to-end transformer based multi-modal model. (2) We

present two technical contributions: successfully train the

proposed model with auto-encoding and cycle-consistency

losses, and design a controllable attention module to deal

with both uni-modal and multi-modal data. (3) We ap-

ply our approach to the Multilingual Multi30K dataset in

English↔French and English↔German translation tasks,

and the translation output and the attention visualization

show the gain from the extra image is significant in the un-

supervised setting.

2. Related Work

We place our work in context by arranging several prior

popular topics, along the the axes of UMT, image caption

and multi-modal MT.

Unsupervised Machine Translation Existing methods

in this area [2, 19, 20] are mainly modifications of encoder-

decoder schema. Their key ideas are to build a common

latent space between the two languages (or domains) and to

learn to translate by reconstructing in both domains. The

difficulty in multi-modal translation is the involvement of

another visual domain, which is quite different from the lan-

guage domain. The interaction between image and text are

usually not symmetric as two text domains. This is the rea-

son why we take care of the attention module cautiously.

Image Caption Most standard image caption models

are built on CNN-RNN based encoder-decoder framework

[17, 27], where the visual features are extracted from CNN

and then fed into RNN to output word sequences as cap-

tions. Since our corpora contain image-text paired data, our

method also draws inspiration from image caption model-

ing. Thus, we also embed the image-caption model within
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our computational graph, whereas the transformer architec-

ture is adopted as a substitution for RNN.

Multi-modal Machine Translation This problem is first

proposed by [24] on the WMT16 shared task at the intersec-

tion of natural language processing and computer vision. It

can be considered as building a multi-source encoder on top

of either MT or image caption model, depending on the def-

inition of extra source. Most Multi-modal MT research still

focuses on the supervised setting like [5], while [7, 22], to

our best knowledge, are the two pioneering works that con-

sider generalizing the Multi-modal MT to an unsupervised

setting. However, their setup puts restrictions on the input

data format. For example, [7] requires the training data to

be image text pair but the inference data is text-only input,

and [22] requires image text pair format for both training

and testing. These limit the model scale and generalization

ability, since large amount of monolingual corpora is more

available and less expensive. Thus, in our model, we specif-

ically address this issue with controllable attention and al-

ternative training scheme.

3. Methodology

In this section we first briefly describe the main MT sys-

tems that our method is built upon and then elaborate on our

approach.

3.1. Neural Machine Translation

If a bilingual corpus is available, given a source sentence

x = (x1, ..., xn) of n tokens, and a translated target sen-

tence y = (y1, ..., ym) of m tokens, where (x,y) ∈ X ×Y ,

the NMT model aims at maximizing the likelihood,

p(y|x) =
m
∑

t=1

p(yt|y<t,x). (1)

The attention based sequence-to-sequence encoder-decoder

architecture [3, 29, 14, 26] is usually employed to parame-

terize the above conditional probability.

The encoder reads the source sentence and out-

puts the hidden representation vectors for each token,

{he
1, ...,h

e
n} = Encx(x). The attention based decoder

is defined in a recurrent way. Given the decoder has the

summarized representation vector hd
t = Decy(y<t,x) at

time stamp t, the model produces a context vector ct =
∑n

j=1 αih
e
j based on an alignment model, {α1, ..., αn} =

Align(hd
t , {he

1, ...,h
e
n}), such that

∑n

j=1 αj = 1. There-

fore, the conditional probability to predict the next token

can be written as,

p(yt|y<t,x) = softmax(g(ct, yt−1,h
d
t−1)). (2)

in which g(·) denotes a non-linear function extracting fea-

tures to predict the target. The encoder and decoder model

described here is in a general formulation, not constrained

to be RNN [3] or transformer architecture [26].

3.2. Multi­modal Neural Machine Translation

In this task, an image z and the description of the im-

age in two different languages form a triplet (x,y, z) ∈
X ×Y×I. The problem naturally becomes maximizing the

new likelihood p(y|x, z). Though the overall framework

of such a translation task is still the encoder-decoder archi-

tecture, the detailed feature extractor and attention module

can vary greatly, due to the extra source image. The tradi-

tional approach [24, 10] is to encode the source text and the

image separately and combine them at the high level fea-

tures, where the image feature map can be represented as

{hi
1, ...,h

i
k} = Encz(z) and Encz is usually a truncated im-

age classification model, such as Resnet [16]. Unlike the

number of the text features which is exactly the number of

tokens in the source, the number of the image features de-

pends on the last layer in the truncated network. We propose

to compute the context vector via an attention module,

ct = Attention(hd
t , {he

1, ...,h
e
n}, {hi

1, ...,h
i
k}) (3)

Since three sets of features appear in Eq (3), there are more

options of the attention mechanism than text-only NMT.

The decoder can remain the same in the recurrent fashion.

3.3. Unsupervised Learning

The unsupervised problem requires a new problem defi-

nition. On both the source and the target sides, only mono-

lingual documents are presented in the training data, i.e.,

the data comes in the paired form of (x, z) ∈ X × I
and (y, z) ∈ Y × I. The triplet data format is no longer

available. The purpose is to learn a multi-modal translation

model X ×I → Y or a text-only one X → Y . Note there is

no explicit paired information cross two languages, making

it impossible to straightforwardly optimize the supervised

likelihood. Fortunately, motivated by the CycleGAN [31]

and the dual learning in [15], we can actually learn the trans-

lation model for both directions between the source and the

target in an unsupervised way. Additionally, we can even

make the multi-modal and uni-modal inference compatible

with deliberate fine-tuning strategy.

3.4. Auto­Encoding Loss

As Figure 2 illustrates, there are five main modules in the

overall architecture, two encoders and two decoders for the

source and target languages, and one extra image encoder.

Since the lack of triplet data, we can only build the first two

following denoised auto-encoding losses without involving

the paired x and y,

Lauto(x, z) = SCE(Decx(Encx(x),Encz(z)),x) (4)

Lauto(y, z) = SCE(Decy(Ency(y),Encz(z)),x) (5)

where SCE(·, ·) represents sequential cross-entropy loss.

We use “denoised” loss here, because the exact auto-

encoding structure will likely force the language model
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Figure 2: Model overview. Left Panel: The detailed unsupervised multi-modal neural machine translation model includes
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framework consists of four training paths: the gray arrows in the paths for cycle-consistency loss indicate the model is under

inference mode. E.g., the time step decoding for token “hat” is illustrated.

learning a word-to-word copy network. The image is seem-

ingly redundant since the text input contains the entire in-

formation for recovery. However, it is not guaranteed that

our encoder is lossless, so the image is provided as an addi-

tional supplement to reduce the information loss.

3.5. Cycle­Consistency Loss

The auto-encoding loss can, in theory, learn two func-

tional mappings X × I → X and Y × I → Y via the sup-

plied training dataset. However, the two mappings are es-

sentially not our desiderata, even though we can switch the

two decoders to build our expected mappings, e.g., X×I →
Y . The crucial problem is that the transferred mappings

achieved after switching decoders lack supervised training,

since no regularization pushes the latent encoding spaces

aligned between the source and target.

We argue that this issue can be tackled by another two

cycle-consistency properties (note that we use the square

brackets [] below to denote the inference mode, meaning no

gradient back-propagation through such operations),

Decx(Ency(Decy[Encx(x),Encz(z)]),Encz(z)) ≈ x (6)

Decy(Encx(Decx[Ency(y),Encz(z)]),Encz(z)) ≈ y (7)

The above two properties seem complicated, but we will

decompose them step-by-step to see its intuition, which are

also the key to make the auto-encoders translation models

across different languages. Without loss of generality, we

use Property (6) as our illustration, where the same idea is

applied to (7). After encoding the information from source

and image as the high level features, the encoded features

are fed into the decoder of another language (i.e. target lan-

guage), thus obtaining an inferred target sentence,

ỹ = Fxz→y(x, z) , Decy[Encx(x),Encz(z)]. (8)

Unfortunately, the ground truth y corresponding to the in-

put x or z is unknown, so we cannot train Fxz→y at this

time. However, since x is the golden reference, we can

construct the pseudo supervised triplet (x, ỹ, z) as the aug-

mented data to train the following model,

Fyz→x(ỹ, z) , Decx(Ency(ỹ),Encz(z)). (9)

Note that the pseudo input ỹ can be considered as the cor-

rupted version of the unknown y. The noisy training step

makes sense because injecting noise to the input data is a

common trick to improve the robustness of model even for

traditional supervised learning [25, 28]. Therefore, we in-

centivize this behavior using the cycle-consistency loss,

Lcyc(x, z) = SCE(Fyz→x(Fxz→y(x, z), z),x). (10)

This loss indicates the cycle-consistency (6), and the map-

ping Y × I → X can be successfully refined.
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3.6. Controllable Attention

In additional to the loss function, another important in-

teraction between the text and image domain should focus

on the decoder attention module. In general, we proposal to

extend the traditional encoder-decoder attention to a multi-

domain attention.

ct = Att(hd
t ,h

e) + λ1Att(hd
t ,h

i) + λ2Att(hd
t ,h

e,hi)
(11)

where λ1 and λ2 can be either 1 or 0 during training, de-

pending on whether the fetched batch includes image data

or not. For example, we can easily set up a flexible training

scheme by alternatively feeding the monolingual language

data and text-image multimodal data to the model. A nice

byproduct of this setup allows us to successfully make a

versatile inference with or without image, being more ap-

plicable to real scenarios.

In practice, we utilize the recent developed self-attention

mechanism [26] as our basic block, the hidden states con-

tain three sets of vectors Q,K, V , representing queries,

keys and values. Therefore, our proposed context vector

can be rewritten as,

ct = softmax

(

Qd
t (K

e)⊤√
d

)

V e + λ1softmax

(

Qd
t (K

i)⊤√
d

)

V i

+ λ2softmax

(

Qd
t (K

ei)⊤√
d

)

V ei

+ λ2softmax

(

Qd
t (K

ie)⊤√
d

)

V ie (12)

where d is the dimensionality of keys, and [Kei, V ei] =

FFN
(

softmax
(

Qe(Ki)⊤√
d

)

V i
)

means the attention from

text input to image input, and [Kie, V ie] represents the sym-

metric attention in the reverse direction. Note the notation

Qe has no subscript and denotes as a matrix, indicating the

softmax is row-wise operation. In practice, especially for

Multi30K dataset, we found λ2 is less important and λ2 = 0
brings no harm to the performance. Thus, we always set it

as 0 in our experiments, but non-zero λ2 may be helpful in

other cases.

4. Experiments

4.1. Training and Testing on Multi30K

We evaluate our model on Multi30K [12] 2016 test

set of English↔French (En↔Fr) and English↔German

(En↔De) language pairs. This dataset is a multilingual im-

age caption dataset with 29000 training samples of images

and their annotations in English, German, French [11] and

Czech [4]. The validation set and test set have 1014 and

1000 samples respectively. To ensure the model never sees

any paired sentences information (which is an unlikely sce-

nario in practice), we randomly split half of the training and

validation sets for one language and use the complemen-

tary half for the other. The resulting corpora is denoted as

M30k-half with 14500 and 507 training and validation sam-

ples respectively.

To find whether the image as additional information used

in the training and/or testing stage can bring consistent per-

formance improvement, we train our model in two different

ways, each one has train with text only (-txt) and train with

text+image (-txt-img) modes. We would compare the best

performing training method to the state-of-the-art, and then

do side-by-side comparison between them:

Pre-large (P): To leverage the controllable attention

mechanism for exploring the linguistic information in the

large monolingual corpora, we create text only pre-training

set by combining the first 10 million sentences of the WMT

News Crawl datasets from 2007 to 2017 with 10 times

M30k-half. This ends up in a large text only dataset of

10145000 unparalleled sentences in each language. P-txt:

We would then pre-train our model without the image en-

coder on this dataset and use the M30k-half validation set

for validation. P-txt-img: Once the text-only model is pre-

trained, we then use it for the following fine-tuning stage on

M30k-half. Except for the image encoder, we initialize our

model with the pre-trained model parameters. The image

encoder uses pre-trained ResNet-152 [16]. The error gradi-

ent does not back-propagate to the original ResNet network.

Scratch (S): We are also curious about the role of image

can play when no pre-training is involved. We train from

scratch using text only (S-txt) and text with corresponding

image (S-txt-img) on M30k-half.

4.2. Implementation Details and Baseline Models

The text encoder and decoder are both 4 layers trans-

formers with dimensionality 512, and for the related lan-

guage pair, we share the first 3 layers of transformer for

both encoder and decoder. The image encoder is the trun-

cated ResNet-152 with output layer res4b35 relu, and the

parameters of ResNet are freezing during model optimiza-

tion. Particularly, the feature map 14 × 14 × 1024 of layer

res4b35 relu is flattened to 196×1024 so that its dimension

is consistent with the sequential text encoder output. The

actual losses (4) and (5) favor a standard denoising auto-

encoders: the text input is perturbed with deletion and local

permutation; the image input is corrupted via dropout. We

use the same word preprocessing techniques (Moses tok-

enization, BPE, binarization, fasttext word embedding on

training corpora, etc.) as reported in [20], please refer to the

relevant readings for further details.

We would like to compare the proposed UMNMT model

to the following UMT models.

• MUSE [8]: It is an unsupervised word-to-word transla-
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Models En→ Fr Fr→ En En→ De De→ En

MUSE 8.54 16.77 15.72 5.39

Game-NMT - - 16.6 19.6

UNMT-text 32.76 32.07 22.74 26.26

S-txt 6.01 6.75 6.27 6.81

S-txt-img 9.40 10.04 8.85 9.97

P-txt 37.20 38.51 20.97 25.00

P-txt-img 39.79 40.53 23.52 26.39

Table 1: BLEU benchmarking. The numbers of baseline

models are extracted from the corresponding references.

Figure 3: Validation BLEU comparison between text-only

and text+image.

tion model. The embedding matrix is trained on large

scale wiki corpora.

• Game-NMT [7]: It is a multi-modal zero-source UMT

method trained using reinforcement learning.

• UNMT-text [19]: It is a mono-modal UMT model

which only utilize text data and it is pretrained on syn-

thetic paired data generated by MUSE.

4.3. Benchmarking with state­of­the­art

In this section, we report the widely used BLEU score

of test dataset in Table 1 for different MT models. Our

best model has achieved the state-of-the-art performance

by leading more than 6 points in En→Fr task to the sec-

ond best. Some translation examples are shown in Figure 4.

There is also close to 1 point improvement in the En→De

task. Although pre-training plays a significant role to the

final performance, the image also contributes more than 3

points in case of training from scratch (S-txt vs. S-txt-img),

and around 2 points in case of fine tuning (P-txt vs. P-txt-

img). Interestingly, it is observed that the image contributes

GT
un homme avec un chapeau orange regardant quelque chose

(a man in an orange hat starring at something)

P-txt
un homme en orange maettant quelque chose au loin

(a man in orange putting something off)

P-txt-img
un homme en chapeau orange en train de filmer quelque chose

(a man in an orange hat filming something)

GT
une femme en t-shirt bleu et short blanc jouant au tennis
(a woman in a blue shirt and white shorts playing tennis)

P-txt
une femme en t-shirt bleu et short blanc jouant au tennis
(a woman in blue t-shirt and white shorts playing tennis)

P-txt-img
une femme en t-shirt bleu et short blanc jouant au tennis
(a woman in blue t-shirt and white shorts playing tennis)

GT
un chien brun ramasse une brindille sur un revêtement en pierre

(a brown dog picks up a twig from stone surface)

P-txt
un chien marron retrouve un twig de pierre de la surface
(a brown dog finds a twig of stone from the surface)

P-txt-img
un chien brun accède à la surface d’ un étang
(a brown dog reaches the surface of a pond)

GT
un garçon saisit sa jambe tandis il saute en air
(a boy grabs his leg as he jumps in the air)

P-txt
un garçon se met à sa jambe devant lui
(a boy puts his leg in front of him)

P-txt-img
un garçon installe sa jambe tandis il saute en air
(a boy installs his leg while he jumps in the air)

Figure 4: Translation results from different models (GT:

ground truth)

less performance improvement for pre-training than train-

ing from scratch. This suggests that there is certain informa-

tion overlap between the large monolingual corpus and the

M30k-half images. We also compare the Meteor, Rouge,

CIDEr score in Table 2 and validation BLEU in Figure 3 to

show the consistent improvement brought by using images.

4.4. Analysis

In this section, we would shed more light on how and

why images can help for unsupervised MT. We would first

visualize which part of the input image helps the translation

by showing the heat map of the transformer attention. We

then show that image not only helps the translation by pro-

viding more information in the testing stage, it can also act

as a training regularizer by guiding the model to converge

to a better local optimal point in the training stage.

4.4.1 Attention

To visualize the transformer’s attention from regions in the

input image to each word in the translated sentences, we

use the scaled dot-production attention of the transformer

decoder’s multi-head attention block as shown in Figure 2,

more specifically, it is the softmax
(Qd

t
(Ki)T

√
d

)

. This is a ma-

trix of shape lT × lS , where lT is the translated sentence

length and lS is the source length. Since we flatten the

14×14 matrix from the ResNet152, the lS = 196. A heat

map for the jth word in the translation is then generated by

mapping the value of kth entry in {ci[j, k]}196k=1 to their re-

ceptive field in the original image, averaging the value in the

overlapping area and then low pass filtering. Given this heat

map, we would visualize it in two ways: (1) We overlay the

contour of the heat-map with the original image as shown
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En→Fr Fr→En En→De De→En

Models Meteor Rouge CIDEr Meteor Rouge CIDEr Meteor Rouge CIDEr Meteor Rouge CIDEr

S-txt 0.137 0.325 0.46 0.131 0.358 0.48 0.116 0.306 0.35 0.128 0.347 0.47

S-txt-img 0.149 0.351 0.65 0.155 0.401 0.75 0.138 0.342 0.59 0.156 0.391 0.70

P-txt 0.337 0.652 3.36 0.364 0.689 3.41 0.254 0.539 1.99 0.284 0.585 2.20

P-txt-img 0.355 0.673 3.65 0.372 0.699 3.61 0.261 0.551 2.13 0.297 0.597 2.36

Table 2: UMNMT shows consistent improvement over text-only model across normalized Meteor, Rouge and CIDEr metrics.

Figure 5: Correct attention for {“humme”, “chapeau”, “orange”, “chose”} and {“bleu”, “t-shirt”, “blanc”, “short”}.

in the second, and fifth rows of Figure 5 and the second row

of Figure 6; (2) We normalize the heat map between 0 and

1, and then multiply it with each color channel of the input

image pixel-wise as shown in the third and sixth rows of

Figure 5 and in the third row of Figure 6.

We visualize the text attention by simply plotting the text

attention matrix softmax
(Qd

t
(Ke)T

√
d

)

in each transformer de-

coder layer as shown in “Text decoder attention by layers”

in these two figures.

Figure 5 shows two positive examples that when trans-

former attends to the right regions of the image like “or-

ange”, “chapeau”, or “humme” (interestingly, the nose) in

the upper image or “bleu”, “t-shirt”, “blanc” or “short” in

the lower image. Whereas in Figure 6, transformer attends

to the whole image and treat it as a pond instead of focus-

ing on the region where a twig exists. As a result, the twig

was mistook as pond. More visualization results can see the

detailed version1. For the text attention, we can see the text

heat map becomes more and more diagonal as the decoder

layer goes deeper in both figures. This indicates the text at-

tention gets more and more focused since the English and

French have similar grammatical rules.

1https://arxiv.org/pdf/1811.11365.pdf
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Figure 6: Correct attention for {“chien”, “brun”, “accède” and “surface”}, but missed “twig” for “étang”.

Models En→ Fr Fr→ En En→ De De→ En

S-txt 6.01 6.75 6.27 6.81

S-txt-img 7.55 7.66 7.70 7.53

P-txt 37.20 38.51 20.97 25.00

P-txt-img 39.44 40.30 23.18 25.47

Table 3: BLEU for testing with TEXT ONLY input

Models En→ Fr Fr→ En En→ De De→ En

S-txt 13.26 ↑ 11.37 ↑ 4.15 ↑ 6.14 ↑

S-txt-img 16.10 ↑ 13.30 ↑ 6.40 ↑ 7.91 ↑

P-txt 1.19 ↑ 1.70 ↑ 1.39 ↑ 2.00 ↑

P-txt-img 5.52 ↑ 2.46 ↑ 1.72 ↑ 3.12 ↑

Table 4: BLEU INCREASE (↑) UMNMT model trained

on full Multi30k over UMNMT model trained on M30k-

half (Table 1 Row 5-8).

4.4.2 Generalizability

As mentioned in the introduction, the model would cer-

tainly get more information when image is present in the

inferencing stage, but can images be helpful if they are used

in the training stage but not readily available during infer-

encing (which is a very likely scenario in practice)? Table

3 shows that even when images are not used, the perfor-

mance degradation are not that significant (refer to Row 6-8

in Table 1 for comparison) and the trained with image model

still outperforms the trained with text only model by quite

a margin. This suggests that images can serve as additional

information in the training process, thus guiding the model

to converge to a better local optimal point. Such findings

also verify the proposed controllable attention mechanism.

This indicates the requirement of paired image and mono-

lingual text in the testing stage can be relaxed to feeding the

text-only data if paired image or images are not available.

4.4.3 Uncertainty Reduction

To show that images help MT by aligning different lan-

guages with similar meanings, we also train the UMNMT

model on the whole Multi30K dataset where the source

and target sentences are pretended unparalleled (i.e., still

feed the image text pairs to model). By doing this, we

greatly increase the sentences in different languages of sim-

ilar meanings, if images can help align those sentences, then

the model should be able to learn better than the model

trained with text only. We can see from Table 4 that the per-

formance increase by using images far outstrip the model

trained on text only data, in the case of En→ Fr, the P-txt-

img has more than 4 points gain than the P-txt.

5. Conclusion

In this work, we proposed a new unsupervised NMT

model with multi-modal attention (one for text and one for

image) which is trained under an auto-encoding and cycle-

consistency paradigm. Our experiments showed that images

as additional information can significantly and consistently

improve the UMT performance. This justifies our hypothe-

sis that the utilization of the multi-modal data can increase

the mutual information between the source sentences and

the translated target sentences. We have also showed that

UMNMT model trained with images can still achieve better

performance than trained with text-only model even if im-

ages are not available in the testing stage. Overall, our work

pushes unsupervised machine translation more applicable

to the real scenario.
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