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Abstract

Variations in visual factors such as viewpoint, pose, il-

lumination and background, are usually viewed as impor-

tant challenges in person re-identification (re-ID). In spite

of acknowledging these factors to be influential, quantita-

tive studies on how they affect a re-ID system are still lack-

ing. To derive insights in this scientific campaign, this paper

makes an early attempt in studying a particular factor, view-

point. We narrow the viewpoint problem down to the pedes-

trian rotation angle to obtain focused conclusions. In this

regard, this paper makes two contributions to the commu-

nity. First, we introduce a large-scale synthetic data engine,

PersonX. Composed of hand-crafted 3D person models, the

salient characteristic of this engine is “controllable”. That

is, we are able to synthesize pedestrians by setting the vi-

sual variables to arbitrary values. Second, on the 3D data

engine, we quantitatively analyze the influence of pedes-

trian rotation angle on re-ID accuracy. Comprehensively,

the person rotation angles are precisely customized from 0◦

to 360◦, allowing us to investigate its effect on the train-

ing, query, and gallery sets. Extensive experiment helps us

have a deeper understanding of the fundamental problems

in person re-ID. Our research also provides useful insights

for dataset building and future practical usage, e.g., a per-

son of a side view makes a better query.

1. Introduction

Viewpoint, pose of person, illumination, background and

resolution are a few visual factors that are generally con-

sidered as influential problems in person re-identification

(re-ID). Currently, major endeavor is devoted to algorithm

design to mitigate their impact on the recognition system.

Therefore, despite qualitatively acknowledging the factors

as influential, it remains largely unknown how these factors

affect the performance quantitatively.

In this paper, we study one of the most important factors,

i.e., viewpoint. Here, we denote viewpoint as the pedestrian

rotation angle (Fig. 1). In what follows, we use viewpoint to

replace pedestrian rotation angle unless specified. Since dif-
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Figure 1. (A) Illustration of viewpoint of the birdview. Viewpoint

is defined as the rotation angle of a person relative to a manu-

ally defined degree of 0◦. The field of view (FoV) of a camera is

shown. (B) Examples of persons under different viewpoints.

ferent views of a person contain different details, the view-

point of a person influences the underlying visual data of

an image, and thus the learning algorithm. Therefore, we

aim to investigate the exact influence of viewpoint on the

system. This study will benefit the community from two

aspects. (1) The conclusions of this research can guide for

building the training set effectively. For example, finding

that certain angles are more important for learning models

of identifying pedestrians. (2) It will advise for designing

of query and gallery sets. By discovering viewpoints that

are effective for re-ID accuracy, our research can potentially

benefit the practical usage of re-ID systems.

In our attempt to reveal the influence of viewpoint, a

notable obstacle is the lack of data. Existing datasets

might have a biased and fixed distribution of environmen-

tal factors. In pedestrian viewpoint, for example, some an-

gles might only have a few or even zero samples. In an-

other example, when studying illumination on a real-world

dataset, conclusions are less convincing because the dataset

might only has a specific illumination condition. Further, a

fixed/static data distribution forbids us from exploring how

the impact of viewpoint relates to other visual factors. For

example, the impact of viewpoint could be conditioned on

the background, because background also affects feature
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learning. To fully understand the role of viewpoint, we need

to test its influence by changing the environment to either

hard or easy modes. As such, without comprehensive and

flexible data streams, we cannot make quantitative and sci-

entific judgment of a visual factor’s significance.

This paper makes two contributions to the community.

First, we build a large-scale data synthesis engine named

PersonX. PersonX contains 1,266 manually designed iden-

tities and editable visual variables. It can simulate persons

under various conditions. First of all, we demonstrate that

existing re-ID models has consistent accuracy trend on

both PersonX and real-world datasets [29, 30]. This ob-

servation suggests that PersonX is indicative of the real

world. Moreover, as the name implies, the feature of Per-

sonX is “controllable”. Persons take controllable poses and

viewpoints, and the environment is controlled w.r.t the illu-

mination, background, etc. Persons move by running, walk-

ing etc., under the controlled camera view and scene. We

can obtain the exact person bounding boxes without exter-

nal detection tools and thus avoid the influence of detection

errors on the system. Therefore, PersonX is indicative, flex-

ible and extendable. It supports future research in not only

algorithm design, but also scientific discoveries how envi-

ronmental factors affect the system.

Second, we dissect a person re-ID system by quantita-

tively understanding the role of person viewpoint. Three

questions are considered. (1) How does the viewpoint of

the training set influence the system? (2) How does the

query viewpoint influence the retrieval? (3) How does the

re-ID accuracy change under different viewpoint distribu-

tions of the testing set? To answer these questions, we per-

form rigorous quantification on pedestrian images regard-

ing viewpoints. We customize the viewpoints of persons

in the PersonX engine from 0◦ to 360◦. Both the control

group and the experimental group are designed, so as to ob-

tain convincing scientific conclusions. We also empirically

study the real-world Market-1203 dataset where viewpoints

of person are manually labeled. The empirical results are

consistent with our findings on the synthetic data.

2. Related Work

We first review re-ID methods that improve the robust-

ness against variations in pose, illumination, and back-

ground. We then review methods based on synthetic data.

Against pose variance. Some works [7, 28, 6, 20, 18]

learn pose invariant representations for persons. For exam-

ple, Farenza et al. [7] utilizes body symmetry on the x-axis

and asymmetry on the y-axis two axes to design a descriptor

with pose invariance. Cho et al. [6] quantize person poses

into one of four canonical directions (front, right, back, left)

to facilitate feature learning. Zheng et al. [28] design the

PoseBox to align different persons along the body parts.

Against background variance. Some works reduce the

influence of background [4, 25, 5, 19, 22, 32, 34]. For in-

stance, Chen et al. [5] fuse the descriptors from the fore-

ground person and the original image, such that the fore-

ground is paid more attention to by the network. In [19],

Song et al. use binary segmentation masks to separate fore-

ground from the background. They then learn representa-

tions from the foreground and background regions, respec-

tively. Zheng et al. [31] apply STN to align pedestrian im-

ages, which reduces background noise and scale variances.

Against resolution variance. Resolution denotes the

level of information granularity of an image. High resolu-

tion is typically preferred. But usually, the resolution level

differs significantly across images. It thus affects the ef-

fectiveness of the learned features. To solve this problem,

Jing et al. [11] design a mapping function that converts the

features of low-resolution images into discriminative high-

resolution features. alignment In [23], features from the

bottom and top layers are concatenated during training and

testing. Supervision signals are incorporated at each layer

to train the multi-resolution features.

Against viewpoint variance. Learning viewpoint in-

variance is another focus [9, 24, 2, 12, 26]. For example,

Both [9][12] regard viewpoint variations as the most promi-

nent problem. In this area, Gray et al. [9] investigate the

properties of localized features, while Karanam et al. [12]

propose to learn dictionaries that can match person images

captured under different viewpoints.

Learning from synthetic data. Leveraging synthetic

data is a useful idea to alleviate the reliance on large-scale

datasets. This strategy has been applied in problems like se-

mantic segmentation [17], object tracking [8], traffic vision

research [14] etc. In the person re-ID domain, SOMAset [3]

is a synthetic dataset with 50 person models and 11 types

of outfits. Barbosa et al. use SOMAset for training and test

on real-world datasets. The accuracy was competitive. Bak

et al. [1] also introduce a synthetic dataset SyRI including

100 characters. This dataset is featured by rich lighting con-

ditions. A domain adaptation method is designed based on

this dataset to fit real-world illumination distributions. De-

parting significantly from previous objectives of using syn-

thetic dataset, this paper lays emphasis on quantitatively an-

alyzing how visual factors influence the re-ID system. We

derive useful insights by precisely controlling the simulator.

This is a very early attempt of this kind in the community.

3. A Controllable Person Generation Engine

3.1. Description

Software. The PersonX engine1 is built on Unity [15].

We create a 3D controllable world containing 1,266 person

models. As a controllable system, it can satisfy various data

1The PersonX data engine, including pedestrian models, scene assets,

project and script files etc., are released at link.
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Figure 2. The PersonX dataset. A: Background. In each background, a person can face toward a manually denoted direction, thus generating

a controlled viewpoint. (1) - (3) represent backgrounds with uniform colors and (4) - (6) use street scenes as the background. B: Sample

pedestrians bounding boxes in background (4). Various persons wearing various clothes are shown.

requirements. In PersonX, the characters and objects look

realistic, because the texture and materials of these mod-

els are mapped from the real world by scanning real people

and objects. The values of visual variables, e.g., illumina-

tion, scenery and background, are designed to be editable.

Therefore, PersonX is highly flexible and extendable.

Identities. PersonX has 1,266 hand-crafted identities in-

cluding 547 females and 719 males. To ensure diversity,

we hand-crafted the human models with different skin col-

ors, ages, body forms (height and weight), hair styles, etc.

The clothes of these identities include jeans, pants, shorts,

slacks, skirts, T-shirts, dress shirts, maxiskirt, etc., and some

of these identities have a backpack, shoulder bag, glasses

or hat. The materials of the clothes (color and texture) are

mapped from images of real-world clothes. The motion of

these characters can be walking, running, idling (standing),

having a dialogue etc. Therefore, the 3D models in PersonX

look realistic. Figure 2 (B) presents examples of identities

of various ages, clothes, body shapes and poses.

3.2. Visual Factors in PersonX

PersonX is featured by editable environmental factors

such as illumination, cameras, backgrounds and viewpoints.

Details of these factors are described below.

Illumination. Illumination can be directional light (sun-

light), point light, spotlight, area light, etc. Parameters like

color and intensity can be modified for each illumination

type. By editing the values of these terms, various kinds of

illumination environment can be created.

Camera. The configuration of cameras in PersonX is

subject to different values of image resolution, projection,

focal length, and height.

Background. Currently PersonX has six different back-

grounds (Fig. 2). In each experiment, we set 2-3 different

backgrounds/cameras views. In each background/camera

view, a person moves freely in arbitrary directions, exhibit-

ing arbitrary viewpoints relative to the camera. In Fig. 2,

backgrounds (4), (5) and (6) depict different street scenes.

Among the three scenes, backgrounds (4) and (5) share the
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Figure 3. Definition of different viewpoints. Viewpoints of one

identity are sampled at an interval of 10 degrees. Left represents

the set of the viewpoints that contains more information on the

left side of the person, i.e., 320◦ - 40◦. Similarly, other sides of

the pedestrian are represented by front (50◦ - 130◦), right (140◦

- 220◦) and back (230◦ - 310◦). The blue tags of viewpoint rep-

resents the due left, front, right and back of person, e.g., 0◦ is the

due left viewpoint of person.

same illumination and ground color, while background (6)

is a shadowed region and the ground color is gray. Mean-

while, backgrounds (1), (2) and (3) are pure colors and are

used when background influence needs to be eliminated.

Because we simplify our system into two cameras, we use

various combinations of these six cameras to create differ-

ent re-ID environments. When not specified, all the cameras

have a high resolution of 1024 × 768.

Viewpoint. Figure 3 presents some image examples un-

der specified viewpoints. Those images are sampled during

normal walking. Specifically, a person image is sampled ev-

ery 10◦ from 0◦ to 350◦ (36 different angles in total). Each
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dataset #identity #box #cam. view

re
al

d
at

a

Market-1501 [29] 1,501 32,668 6 N

Market-1203 [29] 1,203 8,569 2 Y

MARS [27] 1,261 1,191,003 6 N

CUHK03 [13] 1,467 14,096 2 N

Duke [16] 1,404 36,411 8 N

sy
n

th
et

ic
d

at
a SOMAset [3] 50 100,000 250 N

SyRI [1] 100 1,680,000 – N

PersonX 1,266 273,456 6 Y

PersonX123,456 1,266 136,728 3 Y

PersonX12,13 1,266 91,152 2 Y

PersonX45,46 1,266 91,152 2 Y

Table 1. Comparison of real-world and synthetic re-ID datasets.

“View” denotes whether the dataset has viewpoint labels.

angle has 1 image, so each person has 36 images. The entire

PersonX engine thus has 36 (angles) × 1,266 (identities) ×

6 (cameras) = 273,456 images. For each person, the 36

images are divided into 4 groups, representing four orien-

tations: left, front, right and back. We use “left” and “due

left” to represent images from 320◦ to 40◦, the image of 0◦,

respectively. This convention applies for other orientations.

Comparisons of PersonX and some existing re-ID

datasets are presented in Table 1. There are two existing

synthetic datasets, SyRI [1] and SOMAset [3]. SyRI is

used as an alternative data source for domain adaptation

and does not have the concept of cameras. SOMAset con-

tains 250 cameras, which are uniformly distributed along a

hemisphere around each person. Neither datasets are freely

editable by the public. In comparison, PersonX has config-

urable backgrounds and much more identities. Importantly,

it can be edited/extended not only for this study, but also for

future research in this area.

4. Benchmarking and Dataset Validation

In this section, we aim to validate that PersonX is indica-

tive of the real world, such that conclusions derived from

this dataset can be of value to practice.

4.1. Methods and Subsets

We use IDE+ [33], triplet feature [10] and PCB [21] for

our purpose. IDE+ is implemented on ResNet50. During

training, the batch size is set to 64 and the model is trained

for 50 epochs. The learning rate is initialized to 0.1 and de-

cays to 0.01 after 40 epochs. The model parameters are ini-

tialized with the model pre-trained on ImageNet. For triplet

feature, the number of identities per batch is set to 32 and

number of images per identity is set to 4. So the batch size

is 32 × 4 = 128. The learning rate is initialized to 2×10−4

and decays after 150 epochs (300 epochs in total). Training

of PCB follows the standard setup described in [21].

Through combinations of the six backgrounds described

in Section 3.2, PersonX has the following subsets.

• PersonX12. It has backgrounds (1) and (2). Both are

pure color backgrounds; the colors are similar.

• PersonX13. The two cameras face backgrounds (1) and

(3). The color difference between the two backgrounds

is significant than that in PersonX12.

• PersonX123. This is a three-camera system, compris-

ing backgrounds (1), (2) and (3).

• PersonX45. It contains backgrounds (4) and (5) of

street scenes. The two backgrounds are close in scene

and illumination.

• PersonX46. It consists of backgrounds (4) and (6). The

two backgrounds have larger disparity than PersonX45.

• PersonX456. It is a three-camera system consisting of

backgrounds (4), (5) and (6).

Overall, PersonX12, PersonX13 and PersonX123 are sim-

ple subsets, while PersonX45, PersonX46 and PersonX456

are more complex ones. Moreover, we introduce low-

resolution subsets to create more challenging settings. We

edit the image resolution of PersonX45, PersonX46 and

PersonX456 from 1024 × 768 to 512 × 242 (for images

of FoV). We use “-lr” to represent low-resolution subsets.

For benchmarking, we randomly sample 410 identities

for training and the rest 856 identities for testing. In each

camera, an identity has 36 images, i.e., 36 viewpoints, from

which one image is selected as the query during testing.

Therefore, the three-camera subsets, i.e., PersonX456 and

PersonX123, contain 44,280 (410 × 36 × 3) training and

92,448 (856 × 36 × 3) testing images. The two-camera

subsets have 29,520 (410 × 36 × 2) training and 61,632

(856 × 36 × 2) testing images.

4.2. System Validation

We evaluate the three algorithms on both real-world and

synthetic datasets. We use the standard evaluation protocols

[29, 30]. Results are reported in Fig 4. We observe three

characteristics of PersonX.

First, eligibility. We find the performance trend of the

three algorithms is similar between PersonX and real-world

datasets. On Market-1501 and DukeMTMC, for example,

PCB has the best accuracy, and the performance of IDE+

and triplet feature is close. That is, PCB ≻ triplet ≈ IDE+.

This is consistent with findings in [21]. On the synthetic

PersonX subsets, the performance trend is similar: IDE+

and triplet feature have similar accuracy; PCB is usually

2%-3% higher than them. These observations suggest that

PersonX is indicative of the real-world and that future con-

clusions derived from PersonX can be of real-world value.

Second, purity. The re-ID accuracy on PersonX sub-

sets (Fig. 4 (B)) are relatively high compared to the real-

world datasets (Fig. 4 (A)). It does not mean these subsets

are “easy”. In fact, the high accuracy is what we design

for, as it excludes the influence of the environmental fac-

tors. In other words, these subsets are oracle: images are
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Figure 4. Re-ID mean average accuracy (mAP, %) of IDE+, triplet feature, and PCB on (A) real-world datasets and (B) the PersonX

subsets. “lr” means the frames are low resolution of 512 × 242 instead of the original resolution 1024 × 768.

high-resolution, and the scenes have normal sunlight and

relatively consistent backgrounds. These subsets are thus

ideal ones for studying the impact of viewpoints.

Third, sensitivity. We show that these subsets are sen-

sitive to the changes in the environment. For example,

background variation in PersonX46 is much larger than

PersonX45. As such, we observe that mAP in PersonX46

is lower by 1% - 3% for different algorithms. Similarly, the

background in PersonX12 is much simpler than PersonX46,

which causes mAP on PersonX46 to be lower than on

PersonX12. Further, when these subsets are manually edited

to be low resolution, we observe a significant mAP drop.

For example, the mAP drop from PersonX46 to PersonX46-

lr is about 6%. The above comparisons demonstrate that

PersonX subsets are sensitive to background complexity,

variation between cameras, and image resolution. This is

consistent with our intuition and indicates that PersonX is

useful in studying the influence of visual factors.

The above discussions indicate that PersonX is indica-

tive of the real-world trend, has strictly controlled environ-

ment variables, and is reasonably sensitive to environmental

changes. We believe PersonX will be a useful tool for the

community and encourage the development of robust algo-

rithms and scientific analysis.

5. Evaluation of Viewpoint

We evaluate the impact of viewpoint on person re-ID.

The experiment is based on PCB [21]. We note that other

standard re-ID methods (e.g., IDE+) can draw similar con-

clusions. Three questions will be investigated in the follow-

ing subsections: how does the viewpoint in (1) the training

set, (2) the query set, and (3) the gallery set affect the re-ID

accuracy? For clearer understanding, we mainly show fig-

ures in this section. Detailed numbers are provided in the

supplementary material.

5.1. How Do Viewpoint Distributions in the Train­
ing Set Affect Model Learning?

Experiment design. Initially, the subsets contain all the

viewpoints for the training and testing IDs. That is, a person

has 36 images under each camera. In this section, to study

the influence of missing viewpoints in the training set, we

remove specific orientations from the training set. The ori-

entations refer to left, front, right and back shown in Fig. 3.

We design the following training sets.

• Control group 1. We randomly select half (18 out of

36) or a quarter (9 out of 36) images of each identity

for training.

• Control group 2. The training set is constituted by ran-

domly selecting half (18 out of 36) or a quarter (9 out

of 36) viewpoints for each identity.

• Experimental group 1. Train with two orientations.

The training images exhibit two orientations, left+right

or front+back. The training set is thus half of the orig-

inal training set.

• Experimental group 2. Train with one orientation. The

training set has one orientation, i.e., left, right, front,

or back. The training set becomes a quarter of the size

of the original training set.

Discussions. The experimental groups are used to as-

sess the impact of missing viewpoints in the training set. To

cancel out the result influence of reduced training images

and the non-uniform viewpoint distributions of the experi-

mental groups, we further design two control groups, where

the number of images used for training is the same with

the above two experimental groups. The first control group

removes images randomly, and the second control group re-

moves viewpoints randomly. For control group 1 and 2, we

repeat our experiment 5 times and report the average re-ID

accuracy. Using the two control groups, we highlight the

impact of the missing viewpoints in the training set.

Result analysis. Using the experimental groups and

control groups designed above, we summarize the key ex-

perimental results in Fig. 5. These results are reported on

two synthetic datasets, PersonX12 and PersonX46, and a

real-world dataset, Market-1203. We mainly use the mean

average precision (mAP) for evaluation, as it provides a

comprehensive assessment of the system’s ability to retrieve

all the relevant images. From these results, we have several

observations as follows.
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Figure 5. Re-ID accuracy (mAP, %) when the training set has missing orientations/viewpoints. A and B: we use two orientations for

training. For example, we can train with left and right orientations only (see Fig. 3 for the definition of left, right, front and back). C: we

train with one orientation only, i.e., left, right, front, or back. For each dataset, we have two control groups. D: Impact of missing continuous

viewpoints on PersonX46. The horizontal axis is the remaining number of viewpoints and vertical axis is the mAP. In the experimental

group, continuous viewpoints are removed. The number on this curve denotes the remaining number of viewpoints. “n.s.” represents

that the difference between results is not statistically significant (i.e., p − value > 0.05). ⋆ corresponds to statistically significant

(i.e., 0.01 < p− value < 0.05). ⋆⋆ means the difference between results is statistically very significant (i.e., 0.001 < p− value < 0.01).

First, the two control training sets have similar accuracy,

and control group 2 is slightly inferior. Control groups 2

has some specific viewpoint missing, while control group 1

has images randomly missing. This indicates that viewpoint

comprehensiveness is important for a training set.

Second, removing continuous viewpoints in the training

set causes more accuracy drop than removing random view-

points or random images. In control group 2, the viewpoints

are randomly removed. In the two experimental groups,

continuous viewpoints are removed. The inferior accuracy

of the experimental groups (see Fig. 5 (A), (B), (C) and

(D)) indicate that continuous viewpoints are more impor-

tant. Further, Fig. 5 (D) demonstrates an increasing perfor-

mance gap as more viewpoints are removed. This observa-

tion is intuitive because continuous viewpoints encode ap-

pearance cues that cannot be recovered by other viewpoints

and once lost, will cause system degradation.

Third, from Fig. 5 (A) and (B), when the training set only

has two orientations (left+right or front+back), we observe a

significant accuracy drop compared with the control groups.

Similarly, Fig. 5 (C) indicates that a training set with only

one orientation also deteriorates the re-ID accuracy when

compared with the control groups.

Fourth and importantly, left/right orientations make a

better training set than front/back orientations. From Fig.

5 (A), (B) and (C), when the training set is composed of

left/right orientations, the re-ID accuracy is higher than

training sets with front/back orientations. For example,

when using a training set composed of “front+back” ori-

entations, the mAP score in Fig. 5 (A) is 0.8%-1.1% lower

than a model trained with “left+right” orientations. On the

real-world dataset, Market-1203 in Fig. 5 (B), the mAP of a

model trained with left and right orientations is 2.2% higher

than learning from the viewpoint from front and back. It

indicates that data synthesis is indicative of the real world

to some extent. Similarly, when the training set only has

one orientation (Fig. 5 (C)), the left or right orientations are

significantly more beneficial than the front or back orien-

tations. The mAP gap can be as large as 6%. Note that

for evaluating training sets with only one orientation, we do

not use Market-1203. This is because Market-1203 does not

have sufficient training samples under each orientation.

Regarding the observation that left/right orientations are

more useful than front/back orientations, we provide a plau-

sible reason below. For pedestrians, the left or right orien-

tations reflect important general information, such as color,

outfit (e.g., long or short sleeve, pants, shorts) etc. In com-

parison, the front and back views capture more detailed ap-

pearance cues such as prints of clothes, face, etc. As such, a

model trained with left/right viewpoints encodes the general

appearance knowledge about pedestrians; a model trained

with front/back viewpoints somehow has abilities that are

useful in recognizing specifically the front/back views but

might be abundant for the side views. In other words, if a

true match is of the left of right orientation that does not

present as much texture details, a model trained with front

or back orientations may not work well. On the other hand,

a model trained with left or right viewpoints is good at rec-

ognizing the clothes appearance, so its performance will not

deteriorate much when identifying pedestrians under front

or back orientations.

A further study. To further understand the superiority

of left/right orientations in training, we quantify the query

viewpoint and the true match viewpoint into four orienta-

tions, too. Results are shown in Fig. 6. Here, training sets

are constructed with only one orientation. First, when the

query images exhibit only one orientation, and when the

true match viewpoint distributes uniformly in the gallery, a

training set with left or right orientations is superior to that

with front or back orientations. Second, we assume a single
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Figure 6. Evaluation of models trained on one orientation only.

A: query viewpoint change vs. mAP. Query viewpoint changes

from left, front, right to back. True matches in the gallery are

uniformly distributed. Since a query has multiple true matches,

we use mAP to measure accuracy. B: true match viewpoint vs.

rank-1. The true match viewpoint changes from left, front, right

to back. Query viewpoints are uniformly distributed. Each query

has only one true match in the gallery, so the rank-1 accuracy

is used for evaluation. ⋆ ⋆ ⋆ means that the difference between

results of models trained on left/right and front/back orientations

is statistically extremely significant (i.e., p− value < 0.001).

viewpoint for all the true matches in the gallery. We also

assume a single true match for each query. Four models

are trained with images solely from one of the four orien-

tations. We show the rank-1 accuracy of the four models

in Fig. 6 (B). Note that the viewpoint distribution in query

set is uniform. In our observation, for a true match to be

retrieved, using models trained on the left or right orienta-

tions yields higher accuracy than models trained on front

or back orientations. Therefore, regardless of the viewpoint

distribution in the gallery or query set, a person re-ID model

trained with left or right orientations performs favorably

than trained with front or back orientations.

Subsection conclusions

• Missing viewpoint compromises training.

• Missing continuous viewpoints are more detrimental

than missing randomly viewpoints.

• When limited training viewpoints are available,

left/right orientations allow models to be better

trained than front/back orientations.

5.2. How Does Query Viewpoint Affect Retrieval?

We study how query viewpoint influences re-ID results.

Experiment design. We train a model on the original

training set comprised of every viewpoint. We modify the

query viewpoints to see its effect during testing. Specif-

ically, the viewpoint of a probe image can be set to the

due left (0◦), due front (90◦), due right (180◦) or due back

(270◦) to represent different sides of person. During re-

trieval, we assume only one true match in gallery; the true

match contains the same person as the query, and its view-

query viewpoint
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Figure 7. Impact of query viewpoint on system performance on

PersonX45. Four viewpoints are evaluated, i.e., due left (0◦), right

(180◦), front (90◦) and back (270◦). In the gallery, there is only

one true match for each query. The true match viewpoint varies

from 0◦ to 350◦ (deep axis). Under each query viewpoint, we

report 36 rank-1 scores obtained by the query to retrieve 36 types

of true match viewpoints. ⋆ ⋆ ⋆ means the difference between

retrieval results of due left/right and due front/back is statistically

extremely significant (i.e., p − value < 0.001). On the top, we

show the average rank-1 accuracy for each query viewpoint.

point is between 0◦ and 350◦. Viewpoints of the distractor

gallery images are images of all other persons.

Result analysis. Figure 7 presents the results obtained

by the above query and gallery images. We use PersonX45

for training and testing. We have several observations.

First, when the viewpoint of the true match is similar to

the query, the highest re-ID accuracy can be achieved. For

example, the maximum rank-1 values of due left queries

correspond exactly to the due left true match in the gallery.

Under the same viewpoint, the query and true match are dif-

ferent only in illumination and background. This indicates

that viewpoint differences between two to-be-matched im-

ages cause performance drop.

Meanwhile, queries of the due left and the due right

viewpoint lead to a higher average rank-1 accuracy than

queries of due front and due back viewpoints. For exam-

ple, the accuracy of the due left queries and the due front

queries is 93.8% and 91.7%, respectively. It is noteworthy

that in Section 5.1 and Fig. 6, we can have a similar obser-

vation regarding the superiority of left/right viewpoints in

the training and query sets.

Subsection conclusions

• The query viewpoint of left/right generally leads to

higher re-ID accuracy than front/back viewpoints.

5.3. How Do True Match Viewpoints in the Gallery
Affect Retrieval?

Finally, we study how the gallery viewpoint distribution

affects re-ID accuracy. Specifically, we study the viewpoint

disparity between the query and its true matches.
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Figure 8. The impact of viewpoint disparity between a query and

its true matches. For training, we use the original training sets

(balanced viewpoints). Results are reported on A PersonX subsets

and B Market-1203. From PersonX45, PersonX46, PersonX46-lr

to Market-1203, the environmental difficulty is in increasing order.

Experiment design. We denote the viewpoint of a query

and its true match as θq and θt, respectively. The experi-

mental groups for PersonX subsets are designed as below.

• Experimental group 1. The three true matches whose

θt ∈ [θq ± 10◦] are removed (set as “junk”).

• Control group 1. Three true matches are randomly re-

moved from the gallery.

• Experimental group 2. The nine true matches whose

θt ∈ [θq ± 40◦] are removed (set as “junk”).

Since Market-1203 only contains eight viewpoint types,

the two experimental groups remove three or five true

matches that have the most similar viewpoints to the query.

The corresponding control groups randomly remove the

same number of true match images.

Result analysis. From Fig. 8, we have two observations.

The major observation is that if true matches with sim-

ilar viewpoints are not present, there will be a non-trivial

performance drop. In other words, if true matches in the

gallery have large viewpoint disparity with the query, the

retrieval accuracy will be negatively affected. For instance,

the mAP of removing 9 true matches (experimental group)

on PersonX45 is 96.6%, and there is a decrease of 1.0% on

mAP compared to the control group. Consistent observation

can be made on Market-1203. For example, compared with

the control group, there is a 3% - 4% mAP decrease when

3 or 5 true matches with similar viewpoints to the query are

removed from the gallery.

Figure 9 shows some re-ID results on the Market-1203

dataset. For the first query images in Fig. 9, the true match

is ranked to the highest position. This is because the first

true match is similar to the query in both appearance and

viewpoint. After removing it, the highly ranked images are

mostly false matches that have a similar viewpoint with the

query. Similarly, for other example query images that do

not have true matches of similar viewpoints in gallery, the

Query Rank-1 Rank-10 

Figure 9. Sample re-ID results on Market-1203. Images in the first

column are queries. The retrieved images are sorted according

to their similarity to the query (high to low) from left to right.

The similarity is calculated by using feature extracted from the

PCB model. True matches and false matches are in green and red

rectangles, respectively.

false matches of distinctive appearance (e.g., different styles

and colors of clothes and bags) but similar viewpoints to the

query will be ranked higher than the true matches.

Moreover, the accuracy decrease caused by viewpoint

disparity between a query and its true match becomes more

obvious when the environment becomes more challenging.

For example, the mAP drop of the experimental groups on

the PersonX46-lr dataset is almost twice as large as the per-

formance decline on the PersonX46 dataset.

Subsection conclusions

• True matches whose viewpoints are dissimilar to

the query can be harder to be retrieved than false

matches with a similar viewpoint to the query.

• The above problem becomes more severe when

the environment is challenging, e.g., complex back-

ground, extreme illumination, and low resolution.

6. Conclusion

This paper makes a step from engineering new technolo-

gies to science new discoveries. We make two contributions

to the community. First, we build a synthetic data engine

PersonX that can generate images under controllable cam-

eras and environments. Subsets of PersonX are shown to be

indicative of the real world. Second, based on PersonX, we

conduct comprehensive experiments to quantitatively assess

the influence of pedestrian viewpoint on person re-ID ac-

curacy. Interesting and constructive insights are derived,

e.g., it is better to use a query image capturing the side view

of a person. In the future, visual factors such as illumination

and background will be studied with this new engine.
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