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Figure 1: Some examples of 3D reconstructed room layouts by our HorizonNet.

Abstract

We present a new approach to the problem of estimating

the 3D room layout from a single panoramic image. We rep-

resent room layout as three 1D vectors that encode, at each

image column, the boundary positions of floor-wall and

ceiling-wall, and the existence of wall-wall boundary. The

proposed network, HorizonNet, trained for predicting 1D

layout, outperforms previous state-of-the-art approaches.

The designed post-processing procedure for recovering 3D

room layouts from 1D predictions can automatically infer

the room shape with low computation cost—it takes less

than 20ms for a panorama image while prior works might

need dozens of seconds. We also propose Pano Stretch Data

Augmentation, which can diversify panorama data and be

applied to other panorama-related learning tasks. Due to

the limited data available for non-cuboid layout, we re-

label 65 general layout from the current dataset for fine-

tuning. Our approach shows good performance on general

layouts by qualitative results and cross-validation.

1. Introduction

The goal of this work is to predict the room layout from

a panoramic image. Most of the state-of-the-art methods

solve this problem by adopting more effective deep net-

work architectures for their models to learn from different

cues in the image. Assumptions about the room structures

are often made to constrain the solution space so that the

predictions of the deep model would not deviate from the

common cases too much. Post-processing steps can fur-

ther be performed to refine the predictions. Given a num-

ber of images with annotated layouts for training, state-of-

the-art methods are able to achieve good results on the test

data. However, acquiring high-quality room-layout annota-

tions for panoramic images is labor-demanding. The anno-

tations done by different people might be inconsistent due

to ambiguities about the locations of wall boundaries, espe-

cially for well-decorated rooms. Moreover, currently avail-

able datasets do not include more images of complex room

layouts. The annotation for a complex layout would just be

approximated as a cuboid-shaped or L-shaped layout, intro-

ducing even more ambiguities for training and testing.

Two important and correlated issues may be further ad-

dressed for improving state-of-the-art methods. The first

issue is the lack of more training and validation data with

precise annotations. The second issue is that, without more

annotated data for training, the deep networks cannot be too

large, otherwise the test accuracy might be low due to over-

fitting. Collecting more data to train a more sophisticated
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model is indeed beneficial and doable, but a more efficient

way to improve the performance should also be welcome.

We argue that, if we have some better understanding of the

problem and make good use of domain knowledge, we may

improve the performance without acquiring a lot more an-

notated data or using a larger deep network. Data augmen-

tation is a common procedure in deep learning to generate

more data for training. Standard data augmentation heuris-

tics such as random cropping or luminance change for im-

age classification or object detection might not be effective

for layout prediction. Our idea is to take account of the

underlying geometric constraints and design a better data

augmentation mechanism specifically for training layout-

predicting deep networks. On the other hand, instead of

increasing the model complexity, we aim to enhance the

model by devising a compact representation with respect

to the geometric constraints. We can, therefore, remove re-

dundant degrees of freedom and force the model to focus

more on learning critical properties for layout prediction.

We characterize our contributions as follows:

• We introduce a 1D O(W ) representation that encodes

the whole-room layout for a panoramic scene. Train-

ing with such a representation allows our method to

outperform previous state-of-the-art results, yet re-

quires fewer parameters and less computation time.

• We propose a data augmentation mechanism called

Pano Stretch Data Augmentation, which generates

panorama images on the fly during training and im-

proves the accuracy under all settings in our experi-

ments. This data augmentation mechanism also has

the potential for boosting other tasks (e.g., semantic

segmentation, object detection) that directly work on a

panorama.

• We show that leveraging RNNs in a layout predic-

tion task is helpful for improving the accuracy. RNNs

are able to capture the long-range geometric pattern of

room layouts.

• Owing to the 1D representation and our efficient post-

processing procedure, the computation cost of our

model is very low, and the model can be easily ex-

tended to handle complex scenes with layouts other

than cuboid-shaped or L-shaped.

Code and data are available at: https://sunset1995.

github.io/HorizonNet/.

2. Related Work

Room layout estimation from a single-view RGB image

is an active research topic over the past decade. Many ap-

proaches have been developed in this field. Most of them

exploit the Manhattan world assumption that the room lay-

outs, and even the furniture, are aligned with the three prin-

cipal axes [3]. The Manhattan world assumption imposes

constraints on the layout estimation problem, and, based

on the assumption, the Manhattan aligned vanishing points

could also be used to rectify the image and extract features

for inferring the layout.

Delage et al. [6] train a dynamic Bayesian network to

recognize the floor-wall boundary in each column of the

perspective image. Many approaches search the Manhat-

tan aligned layout based on extracted geometric cues. Lee

et al. [18] test the hypothesis using Orientation Map (OM)

while Hedau et al. [12] using Geometric Context (GC) [14].

Hedau et al. [10] further jointly inference the room layout

with 3D objects, e.g. beds. Similar strategies have also been

used by later methods, such as introducing an improved

scoring function [26, 27], generating layout hypothesis with

Manhattan junction [22], and modeling the interaction be-

tween objects and layout [5, 10, 34].

The aforementioned methods only deal with perspective

images. Zhang et al. [32] propose to estimate the layout

from a 360◦ H-FOV panoramic image. They extend the

previous methods of vanishing point detection, hypothesis

generation, and scoring hypotheses based on OM, GC and

object interaction, and apply all of them to panoramas. Xu

et al. [28] also use the OM, GC, object detection, and ob-

ject orientation to reconstruct 3D layout. Yang et al. [29]

use superpixels and Manhattan aligned line segments as fea-

tures, and formulate the problem by constraint graphs. The

method of [31] follows a similar approach using more geo-

metric and semantic features. Other approaches attempt to

recover the floor plan from a panorama using image gradi-

ent cues [21] or from multiple panorama images [2].

Recent methods rely more on deep networks to improve

layout estimation. Most of them leverage dense predic-

tion models to classify geometric or semantic label for each

pixel. For perspective images, common ways are to predict

the boundary probability map [19, 23], classes of bound-

aries [33, 23], classes of layout surface [4, 15], and corner

keypoints heatmaps [17]. The predicted dense maps can

be post-processed to generate layouts. A few deep learn-

ing methods have been developed for panorama-based lay-

out estimation. Zou et al. [35] predict the corner proba-

bility map and boundary map directly from a panorama.

They also extend Stanford 2D-3D dataset [1] with annotated

layouts for training and evaluation. Fernandez-Labrador et

al. [9] train the deep network on perspective images. During

testing, they stitch the predicted perspective boundary maps

into a panorama and combine them with geometric cues to

infer the layout. Two concurrent works DuLa-Net [30] and

CFL [8] show improved quantitative results with the ability

to produce general room shape not limited to cuboid shape.

DuLa-Net [30] combines the surface semantic mask from
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conventional equirectangular view and the projected floor

and ceiling view. CFL [8] proposes convolution kernel spe-

cialized for equirectangular image.

Unlike all the existing methods that use neural networks

to perform dense prediction for layout estimation, we lever-

age the property of aligned panorama image to predict the

positions of floor-wall and ceiling-wall boundaries, as well

as the existence of wall-wall boundary for each column of

an equirectangular image. Our model only produces three

values for each column of an image, and thus the output size

of the model is reduced from O(HW ) to O(W ). The pro-

posed output representation is similar to [6] but they only

predict floor-wall boundary for each column of a perspec-

tive image using a Dynamic Bayesian Network. In contrast,

our work can handle panoramas and recognize floor-wall,

ceiling-wall and wall-wall boundaries using a deep neural

network. Existing works [35, 9, 30, 8] on the same task

learn to make dense O(HW ) predictions over the entire im-

age while our model predicts only three values for each im-

age column. RoomNet [17] imitates RNN’s recurrent struc-

ture with “time steps” equal to refinement steps. We use

RNN where each “time step” is responsible for estimating

the result across a few image columns.

3. Approach

The goal of our approach is to estimate Manhattan

room layout from a panoramic image that covers 360◦ H-

FOV. Unlike conventional dense prediction (target output

size = O(HW )) for layout estimation using deep learn-

ing [4, 9, 7, 15, 19, 23, 33], we formulate the problem as re-

gressing the boundaries and classifying the corner for each

column of image (target output size = O(W )). The pro-

posed HorizonNet trained for predicting the O(W ) target is

presented in Sec. 3.1. In Sec. 3.2, we introduce a simple

yet fast and effective post-processing procedure to derive

the layout from output of HorizonNet. Finally in Sec. 3.3,

we introduce Pano Stretch Data Augmentation which effec-

tively augments the training data on-the-fly by stretching

the image and ground-truth layout along x or z axis (Fig. 5).

All training and test images are pre-processed by the

panoramic image alignment algorithm mentioned in [35].

Our approach exploits the properties of the aligned panora-

mas that the wall-wall boundaries are vertical lines under

equirectangular projection. Therefore, we can use only one

value to indicate the column position of wall-wall boundary

instead of two (each for a boundary endpoint).

3.1. HorizonNet

Fig. 2 shows an overview of our network, which com-

prises a feature extractor and a recurrent neural network.

The network takes a single panorama image with the dimen-

sion of 3× 512× 1024 (channel, height, width) as input.

1D Layout Representation: The size of network output

is 3 × 1 × 1024. As illustrated in Fig. 3, two of the three

output channels represent the ceiling-wall (yc) and the floor-

wall (yf ) boundary position of each image column, and the

other one (yw) represents the existence of wall-wall bound-

ary (i.e. corner). The values of yc and yf are normalized to

[−π/2, π/2]. Since defining yw as a binary-valued vector

with 0/1 labels would make it too sparse to detect (only 4

out of 1024 non-zero values for simple cuboid layout), we

set yw(i) = cdx where i indicates the ith column, dx is the

distance from the ith column to the nearest column where

wall-wall boundary exists, and c is a constant. To check the

robustness of our method against the choice of c, we have

tried 0.6, 0.8, 0.9, 0.96, 0.99 and get similar results. There-

fore, we stick to c = 0.96 for all the experiments. One

benefit of using 1D representation is that it is less affected

by zero dominant backgrounds. 2D whole-image represen-

tations of boundaries and corners would result in 95% zero

values even after smoothing [35]. Our 1D boundaries repre-

sentation introduces no zero backgrounds because the pre-

diction for each component of yc or yf is simply a real-

valued regression to the ground truth. The 1D wall-wall

(corners) representation also changes the peak-background

ratio of ground truth from 2N
512·1024

to N
1024

where N is the

number of wall-wall corners. Therefore, the 1D wall-wall

representation is also less affected by zero-dominated back-

ground. In addition, computation of 1D compact output is

more efficient compared to 2D whole-image output. As de-

picted in Sec. 3.2, recovering the layout from our three 1D

representations is simple, fast, and effective.

Feature Extractor: We adopt ResNet-50 [11] as our fea-

ture extractor. The output of each block of ResNet-50

has half spatial resolution compared to that of the previous

block. To capture both low-level and high-level features,

each block of the ResNet-50 contains a sequence of convo-

lution layers in which the number of channels and the height

is reduced by a factor of 8 (= 2×2×2) and 16 (= 4×2×2),

respectively. More specifically, each block contains three

convolution layers with 4 × 1, 2 × 1, 2 × 1 kernel size and

stride, and the number of channels after each Conv is re-

duced by a factor of 2. All the extracted features from each

layer are upsampled to the same width 256 (a quarter of in-

put image width) and reshaped to the same height. The final

concatenated feature map is of size 1024 × 1 × 256. The

activation function after each Conv is ReLU except the final

layer in which we use Sigmoid for yw and an identity func-

tion for yc, yf . We have tried various settings for the feature

extractor, including deeper ResNet-101, different designs of

the convolution layers after each ResNet block, and upsam-

pling to the image width 1024, and find that the results are

similar. Therefore, we stick to the simpler and computa-

tionally efficient setting.
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Figure 2: An illustration of the HorizonNet architecture.

Figure 3: Visualization of our 1D ground truth represen-

tations. yw denotes the existence probability of wall-wall

boundary. yc, yf (plotted in green and blue) denote the po-

sitions of the ceiling-wall boundary and floor-wall bound-

ary respectively. For better visualization, we plot yw, yc, yf
with line width greater than one pixel.

Recurrent Neural Network for Capturing Global Infor-

mation: Recurrent neural networks (RNNs) are capable

of learning patterns and long-term dependencies from se-

quential data. Geometrically speaking, any corner of a room

can be roughly inferred from the positions of other corners;

therefore, we use the capability of RNN to capture global

information and long-term dependencies. Intuitively, be-

cause LSTM [13], a type of RNN architecture, stores in-

formation about its prediction for other regions in the cell

state, it has the ability to predict for occluded area accu-

rately based on the geometric patterns of the entire room. In

our model, RNN is used to predict y′c, y
′

f , y
′

w column by col-

umn. That is, the sequence length of RNN is proportional

to the image width. In our experiment, RNN predicts for

four columns instead of one column per time step, which re-

quires less computational time without loss of accuracy. As

the yc, yf , yw of a column is related to both its left and right

neighbors, we adopt the bidirectional RNN [25] to capture

the information from both sides. Fig. 7 and Table 1 demon-

strate the difference between models with or without RNN.

3.2. Post­processing

We recover general room layouts that are not limited to

cuboid under following assumptions: i) intersecting walls

are perpendicular to each other (Manhattan world assump-

tion); ii) all rooms have the one-floor-one-ceiling layout

where floor and ceiling are parallel to each other; iii) camera

height is 1.6 meters following [32]; iv) the pre-processing

step correctly align the floor orthogonal to y-axis.

As described in Sec. 3.1, raw outputs of our deep model

y′f , y
′

c, y
′

w ∈ R1024 contain the layout information for each

image column. Each value in y′f and y′c is the position of

floor-wall boundary and ceiling-wall boundary at the corre-

sponding image column. y′w represents the probability of

wall-wall existence of each image column.

Recovering the Floor and Ceiling Planes: For each col-

umn of the image, we can use the corresponding values in

y′f , y
′

c to vote for the ceiling-floor distance. Based on the as-

sumed camera height, we can project the floor-wall bound-

ary y′f from image to 3D XY Z position (they all shared the

same Y ). The ceiling-wall boundary y′c shares the same 3D

X,Z position with the y′f on the same image column, and

therefore the distance between floor and ceiling can be cal-

culated. We take the average of results calculated from all

image columns as the final floor-ceiling distance.

Recovering Wall Planes: We first find the prominent

peaks on the estimated wall-wall probability y′w with two

criteria: i) the signal should be larger than any other sig-

nal within 5°H-FOV, and ii) the signal should be larger than

0.05.

Fig. 4a shows the projected y′c (red points) on ceiling

plane. The green lines are the detected prominent peaks

which split the ceiling-wall boundary (red points) into mul-

tiple parts. To handle possibly failed horizontal alignment

in the pre-processing step, we calculate the first principal

component of each part, then rotate the scene by the aver-
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age angle of all first principal components (top right figure

in Fig. 4a). So now we have two types of walls: i) X-

axis orthogonal walls and ii) Z-axis orthogonal walls. We

construct the walls from low to high variance suggested by

the first principal component. Adjacency walls are forced

to be orthogonal to each other, thus only walls whose two

adjacent walls are not yet constructed have the freedom to

decide the orthogonal type. We use a simple voting strat-

egy: each projected red point votes for all planes within

0.16 meters (bottom right figure in Fig. 4a). The most voted

plane is selected. Two special cases are depicted in Fig 4b

which occur when the two adjacency walls are already con-

structed and they are orthogonal to each other. Finally, the

XY Z positions of all corners are decided according to the

intersection of three adjacent Manhattan junction planes.

The time complexity of our post-processing procedure

is O(W ), where W is the image width. Thus the post-

processing can be efficiently done; in average, it takes less

than 20ms to finish.

Prominent peak

Camera Center

First PCA vector

Voting for Walls

Recover in 3D
with the Floor and Ceiling Planes

Projected boundary

(a) Depicting how we recover the wall planes from our model

output.

Occluded Corner

Camera Center Camera Center

False Negative

(b) Two special cases: Instead of voting for a wall, we add a

corner according to the two prominent peaks and the positions

of two walls.

Figure 4: Visualization of wall planes recovering. Fig. 4a

is an example that the pre-processing algorithm fails to cor-

rectly align the horizontal rotation of panorama.

kx = 1.0, kz = 1.0 (original) kx = 2.0, kz = 1.0

kx = 1.0, kz = 2.0 kx = 2.0, kz = 2.0

Figure 5: Visualization of the proposed Pano Stretch Data

Augmentation. The image and ground-truth layout (green

lines) are stretched along x or z axis (the effect of scaling y
can be covered by x and z). This can augment the data by

changing the room’s length and width. This augmentation

strategy improves our quantitative results under all experi-

ment settings (Table 3).

3.3. Pano Stretch Data Augmentation

For a 360◦ H-FOV panoramic image, we propose to

stretch along axes in 3D space to augment training data.

To achieve this goal, we first represent each pixel under UV

space as (u, v) where u ∈ [−π, π], v ∈ [−π/2, π/2]. The

coordinate (u, v) can be easily computed as the column and

row of an equirectangular image, subject to a rotation angle

of the camera. Here we introduce an additional variable d,

which denotes the depth of a pixel. We will show that d can

be eliminated later so our final equation does not depend on

it.

We project the pixels to 3D space and multiply their

x, y, z by kx, ky, kz . The equation of stretched x′, y′, z′ are

shown in Eq. 1.






x′ = kx · x = kx · d · cos(v) · cos(u) ;
y′ = ky · y = ky · d · sin(v) ;
z′ = kz · z = kz · d · cos(v) · sin(u) .

(1)

We can then project the stretched points back to the

sphere by Eq. 2 for further equirectangular projection.

atan2 in the equation is 2-argument arctangent. The depth

d is eliminated since it exists in both terms of atan2. We

fix ky = 1 because setting ky to a value other than one is

equivalent to multiplying kx, kz by the same value.











u′ = atan2(kz · sin(u), kx · cos(u)) ;
v′ = atan2(ky · sin(v),

√

k2x cos
2(u) + k2z sin

2(u) · cos(v) ) .

(2)

In our implementation, we do the inverse mapping by

Eq. 3. For each pixel in the target image, we compute
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the corresponding coordinate and sample its value from the

source image via bilinear interpolation. Fig. 5 shows a vi-

sualization sample.

{

u = atan2(kx · sin(u′), kz · cos(u
′)) ;

v = arctan(kz · tan(v
′) · csc(u′) · sin(u)) .

(3)

Note that our Pano Stretch Data Augmentation procedure

could also be used on other tasks (e.g., ground-truth map

of semantic segmentation, bounding box for object detec-

tion) that directly work on panoramas. The augmentation

procedure has the potential to boost the accuracy of those

tasks.

4. Experiments

4.1. Datasets

We train and evaluate our model using the same dataset

as LayoutNet [35]. The dataset consists of PanoContext

dataset [32] and the extended Stanford 2D-3D dataset [1]

annotated by [35]. To train our model, we generate 3× 1×
1024 ground truth from the annotation. We follow the same

training/validation/test split of LayoutNet.

4.2. Training Details

The Adam optimizer [16] is employed to train the net-

work for 300 epochs with batch size 24 and learning rate

0.0003. The L1 Loss is used for the ceiling-wall bound-

ary (yc) and floor-wall boundary (yf ). The Binary Cross-

Entropy Loss is used for the wall-wall corner (yw). The

network is implemented in PyTorch [20]. It takes four hours

to finish the training on three NVIDIA GTX 1080 Ti GPUs.

The data augmentation techniques we adopt include

standard left-right flipping, panoramic horizontal rotation,

and luminance change. Moreover, we exploit the proposed

Pano Stretch Data Augmentation (Sec. 3.3) during train-

ing. The stretching factors kx, kz are sampled from uni-

form distribution U [1, 2], and then take the reciprocals of

sampled values with probability 0.5. The process time

of Pano Stretch Data Augmentation is roughly 130ms per

512 × 1024 RGB image. Therefore, it is feasible to be ap-

plied on-the-fly during training.

4.3. Cuboid Room Results

We generate cuboid room by only selecting the four most

prominent peaks in the post-processing step (Sec. 3.2).

Quantitative Results: Our approach is evaluated on three

standard metrics: i) 3D IoU: intersection over union be-

tween 3D layout constructed from our prediction and the

ground truth; ii) Corner Error: average Euclidean distance

between predicted corners and ground-truth corners (nor-

malized by image diagonal length); iii) Pixel Error: pixel-

wise error between predicted surface classes and ground-

truth surface classes.

Method 3D IoU(%)
Corner

error(%)

Pixel

error(%)

Train on PanoContext dataset

PanoContext [32] 67.23 1.60 4.55

LayoutNet [35] 74.48 1.06 3.34

DuLa-Net [30] 77.42 - -

CFL [8] 78.79 0.79 2.49

ours 82.17 0.76 2.20

Train on PanoContext + Stnfd.2D3D datasets

LayoutNet [35] 75.12 1.02 3.18

ours 84.23 0.69 1.90

Table 1. Quantitative results of cuboid layout estimation

evaluated on the PaonContext [32] dataset. Our method out-

performs all existing methods under all settings.

The quantitative results of different training and testing

settings are summarized in Table 1 and Table 2. To clarify

the difference, the input resolution of DuLa-Net [30] and

CFL [8] are 256 × 512 while LayoutNet [35] and ours are

512 × 1024. Other than conventional augmentation tech-

nique, CFL [8] is trained with Random Erasing while ours

is trained with the proposed Pano Stretch. DuLa-Net [30]

did not report corner errors and pixel errors. Our approach

achieves state-of-the-art performance and outperforms ex-

isting methods under all settings.

Qualitative Results: The qualitative results are shown in

Fig. 6. We present the results from the best to the worst

based on their corner errors. Please see more results in the

supplemental materials.

Computation time: The 1D layout representation is easy

to compute. Forward passing a single 512 x 1024 RGB im-

age takes 8ms and 50ms for our HorizonNet with and with-

out RNN respectively. The post-processing step for extract-

ing layout from our 1D representation takes only 12ms. We

evaluate the result on a single NVIDIA Titan X GPU and an

Intel i7-5820K 3.30GHz CPU. The reported execution time

is averaged across all the testing data.

4.4. Ablation Study

Ablation experiments are presented in Table 3. We report

the result averaged across all the testing instances. For a fair

comparison, we also experiment with dense O(HW ) pre-

diction following LayoutNet [35] but replace the U-Net [24]

with the same backbone as our architecture. 1 The results of

this setting are presented in the first two rows. We do not try

dense O(HW ) output with RNN since it would consume

1To output dense (full-image) probability map, we change the Conv

layer after each ResNet block from reducing both height and channels to

reducing only channels, and then upsample to the same spatial dimension

as the input image. Finally, the processed features of four blocks are con-

catenated and passed through a Conv layer to generate the final result.

1052



Figure 6: Qualitative results of cuboid layout estimation. The results are separately sampled from four groups that comprise

results with the best 0–25%, 25–50%, 50–75% and 75–100% corner errors (displayed from the first to the fourth columns).

The green lines are ground truth layout while the orange lines are estimated. The images in the first row are from PanoContext

dataset [32] while second row are from Stanford 2D-3D dataset [1].

Method 3D IoU(%)
Corner

error(%)

Pixel

error(%)

Train on PanoContext dataset

CFL [8] 65.13 1.44 4.75

ours 75.57 0.94 3.18

Train on Stnfd.2D3D dataset

LayoutNet [35] 76.33 1.04 2.70

DuLa-Net [30] 79.36 - -

ours 79.79 0.71 2.39

Train on PanoContext + Stnfd.2D3D datasets

LayoutNet [35] 77.51 0.92 2.42

ours 83.51 0.62 1.97

Table 2. Quantitative results of cuboid layout estimation

evaluated on the Stanford-2D3D [1] dataset. Our method

outperforms all existing methods under all settings.

too many computing resources. We can see that learning on

our 1D O(W ) layout representation is better than conven-

tional dense O(HW ) layout representation.

We observe that training with the proposed Pano Stretch

Data Augmentation can always boost the performance.

Note that the proposed data augmentation method can also

be adopted in other tasks on panoramas and has the poten-

tial to increase their accuracy as well. See supplemental

material for the experiment using Pano Stretch Data Aug-

mentation on semantic segmentation task.

For the rows where RNN columns are unchecked, the

RNN components shown in Fig 2 are replaced by fully con-

nected layers. Our experiments show that using RNN in net-

work architecture also improves performance. Fig. 7 shows

some representative results with and without RNN. The raw

output of the model with RNN is highly consistent with

the Manhattan world even without post-processing, which

Figure 7: Visualization of model outputs with and with-

out RNN. We plot the ground truth (green), outputs of the

model with RNN (yellow), and outputs of the model with-

out RNN (magenta). Both predictions are raw network out-

puts without post-processing. The model with RNN per-

forms better than the model without RNN in images contain

ceiling beam, black missing polar region caused by smaller

camera V-FOV, and occluded area.

demonstrates the ability of RNN to capture the geometric

pattern of the entire room.

4.5. Non­cuboid Room Results

Since the non-cuboid rooms in PanoContext and Stan-

ford 2D-3D dataset are labeled as cuboids, our model is

never trained to recognize non-cuboid layouts and con-

cave corners. This bias makes our model tend to predict

complex-shaped rooms as cuboids. To estimate general

room layouts, we re-label 65 rooms from the training split

to fine-tune our trained model. We fine-tune our model for

300 epochs with learning rate 5e−5 and batch size 2.

To quantitatively evaluate the fine-tuning result on

general-shaped rooms, we use 13-fold cross validation on

the 65 re-annotated non-cuboid data. The results are sum-
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Output Shape Stretch Aug. RNN 3D IoU(%) Corner error(%) Pixel error(%) #params FPS

dense O(HW ) 77.87 1.02 2.73 67M 98

dense O(HW ) V 79.64 0.74 2.39 67M 98

our O(W ) 80.65 0.80 2.43 25M 119

our O(W ) V 81.22 0.71 2.28 25M 119

our O(W ) V 81.23 0.72 2.20 57M 20

our O(W ) V V 83.74 0.65 1.95 57M 20

Table 3. Ablation study demonstrates the effectiveness of each component in our approach. We show that all of our proposed

designs can improve the quantitative result. Besides, our proposed 1D layout representation significantly reduces the number

of parameters. FPS is measured for forward-pass of a 3× 512× 1024 image on an NVIDIA TITAN X GPU.

Figure 8: Qualitative results of non-cuboid layout estimation. The occluded walls are filled with black. The blue lines in the

equirectangular images are the estimated room layout boundary.

marized in Table 4. We depict some examples of recon-

structed non-cuboid layouts from the testing and valida-

tion splits in Fig.1 and Fig.8. See supplemental material

for more reconstructed layouts. The results show that our

approach can work well on general room layout even with

corners occluded by other walls.

Method Finetuning 3D IoU(%)

LayoutNet 74.1

LayoutNet V 75.1

ours 77.4

ours V 82.5

Table 4. Quantitative results on the 65 re-annotated non-

cuboid datas. The result of fine-tuning is evaluated by 13-

fold validation.

5. Conclusion

We have presented a new 1D representation for the task

of estimating room layout from a panorama. The proposed

HorizonNet trained with such 1D representation outper-

forms previous state-of-the-art methods and requires fewer

computation resources. Our post-processing method which

recovers 3D layout from the model output is fast and effec-

tive, and it also works for complex room layouts even with

occluded corners. The proposed Pano Stretch Data Aug-

mentation further improves our results, and can also be ap-

plied to the training procedure of other panorama tasks for

potential improvement.
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