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Abstract

Deep learning is revolutionizing the mapping indus-

try. Under lightweight human curation, computer has

generated almost half of the roads in Thailand on Open-

StreetMap (OSM) using high resolution aerial imagery.

Bing maps are displaying 125 million computer generated

building polygons in the U.S. While tremendously more ef-

ficient than manual mapping, one cannot map out every-

thing from the air. Especially for roads, a small prediction

gap by image occlusion renders the entire road useless for

routing. Misconnections can be more dangerous. Therefore

computer based mapping often requires local verifications,

which is still labor intensive. In this paper, we propose

to leverage crowd sourced GPS data to improve and sup-

port road extraction from aerial imagery. Through novel

data augmentation, GPS rendering, and 1D transpose con-

volution techniques, we show almost 5% improvements over

previous competition winning models, and much better ro-

bustness when predicting new areas without any new train-

ing data or domain adaptation.

1. Introduction

Segmentation of aerial imagery has been an active re-

search area for more than two decades [4, 17]. It is also

one of the earliest applications of deep convolutional neural

nets (CNN) [19]. Today, using deep convolutional neural

nets over high resolution satellite imagery, Facebook has

added 370 thousand km of computer generated roads to

OpenStreetMap (OSM) [3] Thailand, accounting for 46 %

of the total roads in the country, which is on display for all

Facebook users [1, 22]. Microsoft used similar techniques

to add 125 million building polygons to Bing maps U.S.,

five times more than those on OSM [29].

Despite real-world applications, mapping by aerial im-

agery has its limitations. The top challenge is overfitting.

The deep neural net models often deteriorate miserably with

new terrain, new building styles, new image styles, or new

resolutions. Other than the model limitation, occlusions by

vegetation, buildings, and shadows can be excessive. Many

(a) Occlusions by trees, buildings, and shadows are challenging without GPS

(b) Roads susceptible to over connection in post-processing without GPS

Figure 1: Crowdsourced GPS data helps road extraction

when aerial imagery alone is insufficient or challenging.

Here each red dot represents a taxi GPS sample.

features are indistinguishable from the air, e.g., dirt roads

and bare fields, cement pavements and building tops, alleys

in slum areas. Bad weather, low satellite angle, and low

light angle further complicate the issue. Even if the feature

is perfectly clear, mapping often needs local knowledge.

Trails and roads may have same appearances. Houses and

storage sheds may have similar sizes and roofs. To make

things worse, mapping has low tolerance for errors. Espe-

cially for roads, incorrect routes cause longer travel time,

lead people to restricted areas, and even cause fatal acci-

dents [34]. Because of these reasons, OSM prefers local

mappers for each area, and even requires local verification

for large-scale edits [1].

With a smart phone or any other GPS device, one
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can easily travel a street and verify its existence with the

recorded trace. Going through all streets systematically

and regularly for updates, however, is a labor intensive job

that is costly and error prone. On the other hand, crowd-

sourced GPS data are much cheaper and increasingly abun-

dant [6, 12, 15, 26, 34]. Figure 1 illustrates how crowd-

sourced GPS data, albeit noisy, can help discover roads,

confirm road continuity, and avoid misconnection.

In this paper, we propose to fuse crowdsourced GPS data

with aerial imagery for road extraction. Through large taxi

and bus GPS datasets from Beijing and Shanghai, we show

that crowdsourced GPS data has excessive noise in both

variation and bias, and high degrees of disparity in density,

resolution, and distribution. By rendering the GPS data as

new input layers along with RGB channels in the segmen-

tation network, together with our novel GPS data augmen-

tation techniques and 1D transpose convolution, our model

significantly outperforms existing models using images or

GPS data alone. Our data augmentation is especially effec-

tive against overfitting. When predicting a new area, the

performance drop is much less than the model with image

input only, despite completely different GPS data quantity

and resolution. We have published our code1 and our data

is available upon request.

2. Related Work

Aerial imagery segmentation has been a very active re-

search area for a long time. We refer readers to some

performance studies and references therein for early algo-

rithms [4,17]. Like many other image processing problems,

these early solutions are often limited in accuracy and diffi-

cult to generalize to real-world datasets.

Mnih first used a deep convolutional neural net similar to

LeNet [13] to extract roads and buildings from a 1.2 m/pixel

dataset in the U.S. [18, 19]. Moving to developing coun-

tries with more diversified roads and buildings, Facebook

showed that deeper neural nets perform much better on a

50 cm/pixel dataset [33]. Both of these early approaches

convert the semantic segmentation problem into a classifi-

cation problem by classifying each pixel of a center square,

e.g., 32 x 32, as road or building from a larger image patch,

e.g., 128 x 128. Stitching these center squares together is

the final output for a large input image. Performance issues

aside, this classification approach cannot learn complicated

structures such as street blocks and building blocks due to

limited input size.

With the commercial availability of 30 cm/pixel satel-

lite imagery and low-cost aerial photography drones, more

public high-resolution datasets become available [10,11,32,

35, 36]. These new datasets and industrial interests lead to

a proliferation of research activities recently [5, 16, 31, 40].

1https://github.com/suniique/

Semantic segmentation models based on the fully convolu-

tional neural net architecture become main stream [27]. In

a recent challenge [10], all top solutions used variants of U-

net [24] or Deeplab [8] to segment an entire image at once,

up to 1024 x 1024 pixels. A larger input size gives more

context, which often leads to more structured and accurate

prediction results.

With new models and multi-country scale datasets, many

real-world applications emerge. Most notably, Facebook

has recently added 370 thousand km of roads extracted from

satellite imagery to OSM [3] Thailand, or 46 % of the to-

tal roads in the country [1, 22]. Microsoft is displaying 125

million computer generated building polygons on Bing US

maps, in contrast to the 23 million polygons from OSM

also on display that are mostly manually created or im-

ported [29].

Comparing to other computer vision applications, road

mapping has little margin for error. Prediction gaps make

the entire road useless for routing, and therefore have at-

tracted lots of attention. Mnih noticed the problem early on

and used Conditional Random Fields in post-processing to

link broken roads [18]. Another popular technique to link

roads is shortest path search [16, 33]. Line Integral Con-

volution can smooth out broken roads in post-processing

too [14]. More recent works try to address the problem

in prediction instead of post-processing, e.g., through a

topology-aware loss function [20] or through an iterative

search process guided by CNNs [5]. We must be careful

to link roads because incorrect connections are more dan-

gerous than missing connections in routing. Our approach

complements the above mentioned methods because GPS

data can confirm the connectivity or the absence of it re-

gardless of image occlusion or other issues.

Road inferencing from GPS traces has been studied for

a long time too [9, 23, 25]. Most early works use dense

GPS samples from controlled experiments. Recent works

explored crowdsourced GPS data under various sampling

interval and noise levels [6, 12, 15, 26, 34]. Kernel Density

Estimation is a popular method robust against GPS noise

and disparity [6, 9, 15].

There is limited research work using both GPS data and

aerial imagery. One idea filters out GPS noise by road seg-

mentation before road inferencing [37]. Our preliminary

work explored the idea of rendering GPS data as a new

CNN input layer, but the segmentation model used was a

bit outdated and the GPS data was from a controlled exper-

iment [28]. This paper experiments with many state-of-the-

art segmentation models and crowdsourced GPS datasets

several orders of magnitude bigger and noisier.

3. Crowdsourced GPS Data

We collected two taxi and bus GPS datasets from Beijing

and Shanghai, respectively. The Beijing dataset is about one
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(a) Excessive noise (b) Waiting areas

(c) Misalignment (d) Outdated data

Figure 2: Typical issues with crowdsourced GPS data

week of data with around 28 thousand taxis and 81 million

samples. The Shanghai dataset spans about half an year

with around 16 thousand taxis and 1.5 billion samples. In

both cases, each sample includes a timestamp, latitude, lon-

gitude, speed, bearing, and taxi status flags. Although taxis

have different behaviors and trajectories than other GPS

data sources, we believe many characteristics and issues in

our datasets are quite representative. Therefore our method

applies to other datasets.

Under ideal conditions, GPS samples follow a 2D Gaus-

sian distribution [30]. Predicting roads can be straightfor-

ward if the samples are dense and evenly distributed. In

practice, multipath errors occur in urban canyons, inside

tunnels, and under elevated highways or bridges. GPS re-

ceivers vary in quality and resolution, and may integrate

Kalman filters that are not Gaussian. Some datasets pur-

posefully reduce resolution and/or add random noise for

privacy protection. Figure 2a is an example of noisy GPS

samples mainly due to urban canyon and elevated roads.

Even if the samples are perfectly Gaussian distributed,

unlike controlled experiments or surveys, crowdsourced

GPS data are not evenly distributed along each road. High-

ways and intersections can have orders of magnitude more

data than other road areas. Some residential roads are not

traveled at all. Depending on the source of data, there may

be concentrations of samples in non-road areas. Figure 2b

shows three high density clusters outside of artery roads,

likely popular taxi waiting areas. Misalignment can occur

with shifted data, e.g., Fig. 2c, or with different time periods

when the data are taken, e.g., Fig. 2d.
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Figure 3: Distributions of sampling interval and speed

Table 1: Typical measurement resolutions in our datasets

Resolution
Dataset

Beijing Shanghai

lat/lon (degree) 1/100,000 1/60,000 or 1/10,000

speed (km/h) 1 or 2 1 or 2

bearing (degree) 3 or 10 2 or 45

Different vehicles may use different GPS receivers with

different settings. Figure 3 shows the log scale distribu-

tions of sampling intervals and device-measured speed of

our datasets. It is obvious from the figure that different taxis

have different sampling interval settings, most notably at

10, 60, 180, and 300 seconds for the Beijing dataset, and 16

and 61 seconds for the Shanghai dataset. The speed distri-

bution shows two layers of outline curves because the sam-

ples have different speed resolutions, most commonly 1 and

2 km/h. Therefore the outer layer corresponds to even num-

bers and the inner layer corresponds to odd numbers. Lati-

tude, longitude, and bearing have different resolutions too,

summarized in Table 1. Most Beijing taxis are at 10−5 de-

gree, or roughly 1 m. Shanghai taxis have resolutions as low

as 10−4 degree, or roughly 10 m. Our satellite imagery has

a resolution of 50 cm/pixel that is higher than our GPS data.

Therefore, there is the mosaic effect where some pixels have

no GPS samples and some pixels may have multiple sam-

ples as the data quantity increases; see Fig. 2 zoomed in.

Crowdsourced GPS data are cheap and abundant. There can

be multiple datasets for just one area. We must develop a

model robust against different data characteristics so there

is no need to retrain the model with new datasets.
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4. Method

By rendering GPS data as new input layers like RGB

channels, our method applies to all existing CNN-based

semantic segmentation networks. GPS data augmentation

prevents overfitting and gives a robust model against dif-

ferent GPS data characteristics. Replacing the 3×3 trans-

pose convolution in the decoder by 1D transpose convolu-

tion gives better accuracy, called 1D decoder for the rest of

this paper.

4.1. Architecture
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(a) Overview
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concatenate
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(b) 1D transpose convolution block

Figure 4: Network architecture

In DeepGlobe’18 road extraction challenge [10], all top

teams used variants of fully convolutional net for pixel seg-

mentation [27], e.g., U-Net [24] and DeepLab [8]. The win-

ner team modified LinkNet [7] that is very similar to U-

net, by adding dilated convolutions to accommodate much

larger input size and to produce more structured output,

called D-LinkNet [39]. We propose to render GPS data

as images and concatenate with RGB channels as the in-

put to the segmentation net; see Fig. 4a. Therefore our

method applies to most existing segmentation networks.

More specifically, based on the input image coordinates, we

query database for the relevant GPS data in the area and get

for example n samples where each sample i has coordinates

lati, loni and other features like sampling interval and vehi-

cle speed f
(1)
i

, ...f
(k)
i

. Like image augmentation frequently

employed in image processing training, we augment GPS

data to prevent overfitting. Afterwards, we render the data

as one or multiple image layers based on the number of fea-

tures used.

Unlike natural objects, roads are thin, long, and often

straight. The square kernels that dominate most CNN archi-

tectures have square receptive fields that are more suitable

for natural objects of bulk shapes. For roads, it takes a very

large square to cover a long straight road, where many pix-

els can be irrelevant. The 1D filters are more aligned with

road shapes. We find that these 1D filters are most effec-

tive in the decoder block as replacements for 3×3 transpose

convolutions, as the lower portion of Fig. 4a depicts.

Let k ∈ R
2r+1 denotes the 1D transpose convolution

filter of size 2r + 1, and yI ∈ R
H×W be the result of 1D

transpose convolution of input x ∈ R
H×W and the filter k

at direction I = (Ih, Iw). We have

yI [i, j] = (x ∗
T k)I =

rX

t=−r

x[i+ Iht, j + Iwt] · k[r − t]
(1)

where x ∗
T k is the transpose convolution operation, and I

is the direction indicator vector of the 1D filter, which takes

four values (0, 1), (1, 0), (1, 1), (−1, 1) for horizontal, ver-

tical, forward diagonal, and backward diagonal transpose

convolution, respectively, shown in Fig. 4b.

We set r = 4 and thus each 1D filter has 9 parame-

ters, the same as the 3×3 transpose convolution filter. Our

1D decoder replaces each of the 3×3 transpose convolution

layer by four sets of 1D filters of the four directions in con-

catenation. The number of 1D filters in each set is 1/4 of

the total number of 3×3 filters. Therefore, the total number

of network parameters and the computation cost remain the

same. Our 1D decoder is especially effective against roads

with sparse GPS samples, e.g., residential roads, by reduc-

ing gaps in the prediction.

4.2. Data Augmentation

Deep CNNs are very complex models prone to overfit-

ting, especially for GPS data that is relatively simple and

well structured. In our experiments, adding a GPS layer

without any data augmentation leads to a superficial model

which enhances RGB-based predictions wherever GPS data

is dense, and suppresses the prediction wherever there is no
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(d) Random omission

Figure 5: GPS data augmentation

GPS data. In addition, the model is very sensitive to GPS

quantity and quality. For example, if we remove the GPS in-

put altogether, the prediction is a lot worse than the model

trained with RGB image input only. We develop the follow-

ing augmentation methods to prevent overfitting.

• Randomly subsample the input GPS data

• Reduce the resolution of the input GPS data by a ran-

dom factor, called sub-resolution hereafter

• Random perturbation of the GPS data

• Omitting a random area of GPS data

Figure 5 illustrates some of these augmentation techniques.

Figure 5a shows the GPS samples on a 64 x 64 image patch.

The height of the bars indicates the number of samples pro-

jected to the same pixel, between zero to three in this case.

Figure 5b takes a random 60% of samples from Fig. 5a. Fig-

ure 5c reduces all samples to 1/8 of their original resolution

such that the samples are aggregated to a small set of pixels.

Many GPS data have low resolution either because of infe-

rior GPS receivers used or because of privacy protection. In

addition, sub-resolution leads to much higher values for the

remaining pixels than the original data, which is similar to

the case of larger GPS quantities. The model trained with

sub-resolution handles unseen larger amount of GPS data

better in our experiments. Figure 5d omits samples on the

left 32 x 32 square.

4.3. Rendering

After augmentation, we must render the GPS data as

an image layer to concatenate with the RGB image input.

(a) Linear scale (b) Log scale

Figure 6: Gaussian kernel rendering of Fig. 2a

There are many different ways to render the image. For ex-

ample in Fig. 2, we render a pixel white if and only if there

is at least one GPS sample projected to it. This method

works with small datasets only. As the GPS quantity in-

creases, noise spreads and too many pixels will be white,

like Fig. 2a.

Instead of a binary image, we can use a greyscale im-

age where the number at each pixel indicates the number

of samples projected to it, therefore road pixels will have

higher values than noise pixels as the quantity increases. In-

spired by Kernel Density Estimation (KDE) frequently used

in road inferencing from GPS data [9], we can also render

the GPS data with Gaussian kernel smoothing. Figure 6a

is the Gaussian kernel rendering of Fig. 2a. Because of

data disparity between highways and residential roads, log

scale could make infrequently traveled roads more promi-

nent. For example in Fig. 6b, the horizontal road at the

bottom becomes much more visible than in the linear scale.

When there is a limited quantity of GPS data but the sam-

pling frequency is high, adding a line segment between con-

secutive samples helps [15], which is another way to render

GPS data. In our case, these line segments often shortcut in-

tersections and curves because of low sampling frequency,

and therefore do not improve results in our experiments.

Our 1D decoder has similar effect at roads with sparse sam-

ples, and they are not affected by sampling intervals.

Other GPS measurements can be useful for road ex-

traction. We render these measurements as separate input

layers. More specifically, the pixel values of the interval,

speed, and bearing layers are the average sampling interval,

average speed, and average sinusoid of the bearing for all

the samples projected to the pixel, respectively.

5. Experiments

We experiment with the satellite imagery and our GPS

datasets from two cities, and report our results here.

Datasets For satellite imagery, we crawled 350 images

in Beijing and 50 images in Shanghai from Gaode map [2].

All these images are 1024 x 1024 in size and 50 cm/pixel

in resolution, a total area of about 100 km2. Like the Deep-
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Table 2: Different input and model combinations

input method
IoU (%) on test set

plain 1D decoder

GPS

KDE [9] 34.06 -

DeepLab (v3+) [8] 47.65 -

U-Net [24] 43.63 48.10

Res U-Net [38] 45.33 48.52

LinkNet [7] 49.98 51.06

D-LinkNet [39] 48.46 49.95

image

DeepLab (v3+) 43.40 -

U-Net 51.85 52.10

Res U-Net 50.26 51.77

LinkNet 53.96 54.84

D-LinkNet 54.42 55.15

image + GPS

DeepLab (v3+) 50.81 -

U-Net 53.22 54.88

Res U-Net 52.29 54.24

LinkNet 57.48 57.89

D-LinkNet 56.96 57.96

Globe dataset, we manually created the training labels by

masking out road pixels in the images. We choose the same

input image size as the DeepGlobe data set for the conve-

nience of comparison. It is also an appropriate size because

a smaller one would lose the context and a larger size may

not fit in GPU memory. The DeepGlobe dataset is for much

larger areas but we do not have GPS data in the areas for

experiments. Some other research work used large datasets

by rendering OSM road vectors with fixed width, typically

for developed countries [5, 18]. Roads in developing coun-

tries vary in width more significantly, and misalignments

are prevalent on OSM. Therefore we have to label road pix-

els manually. Nevertheless, our dataset is among the largest

in research work that do not use DeepGlobe datasets or

OSM labels [16, 40].

Our GPS datasets are taxi and bus samples that include

timestamp, latitude, longitude, speed, bearing, and vehicle

status flags. As discussed in Section 3, our GPS datasets

are from different devices with varying sampling rates and

different resolutions for the measurements.

Similar to the competition and the other research work,

we use the intersection over union (IoU) as the main eval-

uation criteria, and report the average IoU among all test

image patches. We randomly split our dataset into three

partitions, 70% for training, 10% for validation, and the rest

20% for testing. Other than the last experiment that evalu-

ates the ability for our model to predict new areas, we use

only the Beijing satellite images and GPS dataset for train-

ing and testing.

Models Our GPS rendering method applies to all ex-

isting segmentation models. Here we choose DeepLab, two

variants of U-Net, and two variants of LinkNet to evaluate.

The two variants of U-Net are the original one and the one

with ResNet style encoder and decoder, denoted as Res U-

Net. The two variants of LinkNet are the original one and

D-LinkNet that achieved top performance in the DeepGlobe

challenge. For road extraction using GPS input only, we

also add KDE method for comparison since it was among

the best using traditional machine learning techniques [15].

Baseline Our first experiment takes the GPS input

alone; see the top section of Table 2. For the KDE method,

since we measure IoU only and do not extract road center-

lines, we simply pick the best kernel size and the threshold

to binarize the Gaussian smoothed image. The results show

that deep neural nets perform much better than the KDE

method to extract roads from GPS data only. Our 1D de-

coder is very useful against relatively shallow neural nets,

and give about 1 % increase against more complex models.

LinkNet shows the best result here. Although D-LinkNet

performed better in the DeepGlobe challenge, its additional

complexity over LinkNet leads to more severe overfitting of

the relatively simple GPS data. We do not apply 1D decoder

to DeepLab since it uses a bi-linear interpolation decoder

without any transpose convolution.

Next we examine the performance of the different seg-

mentation models with the satellite image input only; see

the second section of Table 2. The result is consistent with

the numbers reported in the DeepGlobe challenge, where D-

LinkNet is slightly better than the other models [39]. The

best IoU in our test is lower than the number in the chal-

lenge because the Beijing area is more challenging than the

rural areas and towns used in the challenge. Many roads

are completely blocked by tree canopy in the old city center

area, and the road boundaries are not easy to define with the

prevalent express/local/bike way systems. DeepLab has the

worst performance among the models we use. Visually ex-

amining the output reveals much coarser borders than in the

other model output, likely due to the bi-linear interpolation

decoder instead of transpose convolution used.

Finally, with both the image and the GPS input, D-

LinkNet remains the top performer. Here the largest perfor-

mance gain for the additional GPS input is DeepLab. For

the other models that already perform relatively well on the

image input, the performance gain is about 2 %, and the 1D

decoder adds about another 1 %.

Augmentation Figure 7 shows the effectiveness of our

GPS data augmentation. Figure 7a and Figure 7b are the

performance of different augmentation techniques with a

subset of input data and a reduced resolution of input data,

respectively. With our data augmentation, our model not

only performs much better with degraded GPS data input,

but also gains about 0.5% over the top-of-the-line perfor-

mance.

Rendering As described in Section 4.3, Fig. 8 shows

the performance of Gaussian kernel rendering with differ-

ent kernel sizes and different rendering scale. We also
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Figure 7: GPS data augmentation results (D-LinkNet with

image+GPS input)

experimented with various combination of GPS measure-

ments, sampling interval, vehicle speed, and vehicle bear-

ing. Adding another input layer of sampling interval alone

gives the best performance gain. Based on these results, we

use two input layers for the GPS data for the rest of the ex-

periments, Gaussian kernel rendering of the GPS samples

with kernel size three and the sampling interval channel.

Table 3 is the overall performance gain with various im-

provements over the baseline using the image input only.

Altogether we achieved 4.76% performance gain.

1 3 5 9 21 54 99

52

54

56

58

Io
U
(%

)

log scale

linear scale

Figure 8: Rendering with different Gaussian kernel sizes

GPS as verification As discussed in Section 1, local

verification is often required for mapping. Figure 9 shows

how the crowdsourced GPS data can serve the verification

purpose without local survey. Here the green pixels are high

confidence predictions by both the image-only input and the

image + GPS input, while red pixels are high confidence

predictions by image-only input but low confidence predic-

Table 3: Using GPS features and data augmentation

settings (all using D-LinkNet) IoU (%)

image 54.42

image + GPS 56.96

image + GPS + 1D decoder 57.96

image + GPS + 1D decoder + augment. 58.55

image + GPS + interval + 1D decoder 58.55

image + GPS + interval + 1D decoder + augment. 59.18

tions when GPS input is added. Map matching could give

additional confidence by matching GPS traces to roads by

topology [21], which is beyond the scope of this paper.

(a) GPS samples over satellite image (b) Roads confirmed by GPS

Figure 9: Road verification using GPS data

New testing area Table 4 is the testing results with our

Shanghai dataset using different training data and methods.

Despite the different GPS data characteristics, it is evident

that prediction with additional GPS input is more resilient

in the new domain, 18.9% IoU drop for the model trained

with both datasets instead of 31.6% for the model trained

with image input only. The performance gain is enhanced

when employing the GPS data augmentation, confirming its

effect against overfitting.

Table 4: Shanghai testing dataset results

train method IoU(%) relative

Beijing

+

Shanghai

GPS 44.88 –

image 55.76 –

image + GPS (w/o augment) 59.30 –

image + GPS (w/ augment) 60.00 –

Beijing

GPS 42.82 -4.6%

image 38.16 -31.6%

image + GPS (w/o augment) 44.57 -24.9%

image + GPS (w/ augment) 48.69 -18.9%

Qualitative results Figure 10 visualizes the road ex-

traction results of different methods in different testing ar-

eas of Beijing and Shanghai, trained using Beijing dataset

only. Overall, prediction using GPS data only largely

matches the sample distribution. With the image input only,

7515



(a)

BJ

Satellite + GT GPS Points GPS only Image only Image+GPS (plain) Image+GPS (ours)

(b)

BJ

(c)

BJ

(d)

SH

(e)

SH

Figure 10: Prediction results using different methods on Beijing and Shanghai testing datasets trained on Beijing dataset only

occlusion and other image issues can cause poor perfor-

mance. Both image and GPS input give the best results, and

our enhancement techniques give a bit cleaner output. As

examples, the areas pointed by red arrows show false posi-

tives removed with our model using GPS data. The one in

the first row is a railway and the one in the third row is from

GPS noise. The red square shows an area with dense tree

canopy and relatively sparse GPS samples. Only the combi-

nation of image and GPS data extracts a relatively complete

road network.

6. Conclusion

With large-scale crowdsourced GPS datasets, fusing

GPS data with aerial image input gives much better road

segmentation results than using images or GPS data alone

with deep neural net models. Inspired by image augmen-

tation techniques, our GPS data augmentation is very ef-

fective against overfitting, and thus our method performs

much better in new testings areas than other models. In

our experiences, aerial imagery works best for residential

roads detection because they are relatively simple, numer-

ous, and infrequently traveled. In contrast, GPS data can

recover arterial roads with ease even for complicated high-

way systems and under severe image occlusion. Therefore,

the two data sources well complement each other for road

extraction tasks.
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