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Abstract

The success of deep neural networks for semantic seg-

mentation heavily relies on large-scale and well-labeled

datasets, which are hard to collect in practice. Synthetic

data offers an alternative to obtain ground-truth labels for

free. However, models directly trained on synthetic data

often struggle to generalize to real images. In this paper,

we consider transfer learning for semantic segmentation

that aims to mitigate the gap between abundant synthetic

data (source domain) and limited real data (target domain).

Unlike previous approaches that either learn mappings to

target domain or finetune on target images, our proposed

method jointly learn from real images and selectively from

realistic pixels in synthetic images to adapt to the target

domain. Our key idea is to have weighting networks to

score how similar the synthetic pixels are to real ones, and

learn such weighting at pixel-, region- and image-levels. We

jointly learn these hierarchical weighting networks and seg-

mentation network in an end-to-end manner. Extensive ex-

periments demonstrate that our proposed approach signifi-

cantly outperforms other existing baselines, and is applica-

ble to scenarios with extremely limited real images.

1. Introduction

The advances in deep learning have led to many break-

throughs in artificial intelligence. Various tasks in computer

vision [13, 14, 32] have been revisited and have achieved

the state-of-the-art performance. However, these improve-

ments often require vast labeled data, which is prohibitively

expensive for many vision tasks. Semantic segmentation

is such an example, in which annotating an image pixel-

wisely may take more than 90 minutes [7], resulting in a

failure to scale. Alternatively, researchers [24, 25] switched

to use Computer Graphics techniques to render synthetic

∗The first two authors contributed equally to this paper.

Figure 1. (a): Although two images are from different domains,

some regions still hold similar structures, like the car and road

region. Our design philosophy is to focus on these similar regions

for improving the effectiveness. (b): Results of joint training on

different numbers of synthetic images (from GTAV) and insufficient

real images. Blue bar indicates the result of using real images only.

images where pixel-wise labels are generated automatically

at a much faster speed. In this paper, we consider utilizing

abundant labeled synthetic data (source domain) and in-

sufficient labeled real data (target domain) together to

make a better performance on real data. It is noted that our

problem setting is different from the unsupervised domain

adaptation (i.e., labeled synthetic data and unlabeled real

data) and semi-supervised domain adaptation (i.e., small

amount of labeled real data and abundant unlabeled real

data in one domain). Due to the labor-free annotations and

superior performance, the learning scheme we focus on has

much practical significance in real-world applications.

Given abundant labeled synthetic images and insufficient

labeled real-world images, it is natural to expect better seg-

mentation performance from such ”augmentation” in pixel

space. However, this is usually not the case and perfor-
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mance may even degrade as shown in Fig 1(b). The main

reason lies in the domain gap between synthetic and real-

world data, in terms of differences in textures (rendering re-

alism), lighting conditions and so on. This domain gap can

easily bias model learning towards the synthetic data distri-

bution, causing a failure to generalize to real images [3, 23].

To alleviate this problem, data resampling methods are

used to reduce the impact of data bias. Options include

randomly resampling source domain images [2] or select-

ing those similar to target domain images based on low-

level features [12]. Another family of methods uses transfer

learning to apply the knowledge learned in one domain to

another [1, 8, 15]. The idea is to learn the transformation

to target domain in feature or output space. One common

drawback of these methods is that they learn or un-learn

from holistic images. However, for the pixel-wise segmen-

tation task, it is likely to find domain knowledge or sim-

ilarity in pixel regions, where transfer learning can lever-

age useful information locally. We show an example in

Fig 1(a), in which a realistic image scene from synthetic

image (source domain) contains the road region and a car

that have similar structure to the counterpart in a real im-

age (target domain). In other words, domain knowledge can

be distributed at a fine-grained pixel level rather than only

image level, and similar regions from source image make

higher contributions for the joint learning.

Motivated by these findings, we propose a hierarchical

transfer learning framework to learn the real image seg-

mentation by combining information in synthetic images at

three levels: pixel-, region- and image-levels. Three weight-

ing networks are learned together to assign higher weights

to such synthetic image granularities that are similar to real

ones(target domain). We are hence able to learn from both

real images and selected synthetic pixels for domain adap-

tation purposes, which follows the nature of pixel-wise task

and is much more flexible than training image selection.

Note that our weighting networks are jointly trained with

segmentation network in an end-to-end manner. The en-

tire training framework takes any combination of real and

synthetic datasets as input, with no assumptions about their

distributions — the common domain knowledge is automat-

ically mined locally.

The main contributions of this paper can be summarized

as follows:

• Our studies reveal a practical and cost-free learning

scheme to improve the performance of real image seg-

mentation with abundant synthetic images. It is also a

step towards the generic learning setting with multiple

datasets (sources).

• We develop a hierarchical transfer learning method

for semantic segmentation, with the ability of learning

from insufficient real images and auto-mined similar

synthetic pixels.

• Extensive experiments are conducted on various

datasets. The proposed method achieves state-of-the-

art performance, while still stays strong with extremely

insufficient (about only 50%) real images for training.

2. Related Work

Semantic Segmentation Semantic segmentation is an

important task in a large variety of fields, like autonomous

vehicles, remote sensing, etc. Recently, the revolution

of deep neural network has pushed this task to a new

stage [5, 31, 32, 21]. Unfortunately, training such deep

models usually requires a large amount of well-labeled im-

ages, which is expensive and time-consuming. To save

time and cost for annotation, researchers attempted to ob-

tain data and corresponding free labels from the video game

GTAV [24] or their own simulation environment [9]. Al-

though collecting them is much faster and cheaper, the use

of synthetic images does not necessarily generalize to real

images due to the domain gap.

Transfer Learning Transfer learning aims to apply the

knowledge learned from one domain to improve the learn-

ing in another. It is a popular approach to address issues

caused by insufficient data in one of domains or the data

gap between different domains [4, 11].

There are two main folds of transfer learning methods:

data selection and domain transformation. 1). For the data

selection methods, the random selection strategy [1, 8] can

be seen as a simplest option, then [12] improved by scor-

ing the source data according to the low-level feature-based

similarity. 2). For the domain transformation methods,

Sarafianos et al. [27] applied the Adaptive-SVM+ algorithm

to extract useful information from source domain.

Many recent works have been trying to apply GANs for

domain alignment. For example, [10, 11, 30, 34, 33] use

adversarial training to obtain domain-invariant representa-

tions and reduce the domain gap. Volpi et al. [29] trained

the encoder of the source domain to augment features via

auxiliary training. Chen et al. [6] exploited spatial structure

to transfer region-level knowledge from source to target do-

main. [16] enhanced the semi-supervised learning by com-

bining the discriminator with the weighting map prediction

on the pixel-level only, in which all data from same domain

is used.

The common drawback of methods mentioned above is

that they are applied at single level, neglecting the fact that

domain knowledge/similarity can be distributed at multi-

ple levels (i.e., pixel, region and image-level) across dif-

ferent images. In this paper, we propose a transfer learning

method to transfer knowledge from hierarchical levels in

source domain, jointly training with semantic segmentation.

Note that our problem setting is different from other trans-

fer learning settings. Unlike the unsupervised [4, 6, 34] and
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Figure 2. An overview of our model architecture. A pair of source and target domain images go through the encoder E and a segmentation

classifier S (only consists of upsample operation) to predict segmentation maps under loss Ls
Seg and L

t
Seg. For source image predictions,

they are re-weighted by 3 weighting networks Wp, Wr and Wi at pixel-, region- and image levels before computing the loss Ls
Seg. We also

improve encoder E’s expressiveness by attaching a generator G and a discriminator D to assess the reconstructed image quality (LRec) and

fidelity (LAdv). For each pair of source and target images, we alternatively optimize encoder E, networks G+D, and weighting networks

(by LWp , LWr , LWi
) via back-propagation.

semi-supervised domain adaptation work [16], our method

takes the labeled source and labeled target images together

to automatically mine the similarity between them to do

segmentation adaptation.

3. Methodology

Our goal is to perform transfer learning from insuffi-

cient real data (target domain) and abundant synthetic data

(source domain) to improve the performance of seman-

tic segmentation. Concretely, we have the dataset Xs =
{(xs, ys)} and Xt = {(xt, yt)} drawn from a labeled

source domain s and a labeled target domain t, sharing the

set of categories for segmentation. During training, we take

both source and target data as the inputs, while we only test

on target images. Note that there is no overlap between the

training and testing images, and our setting is different from

the semi-supervised learning which has some labeled data

and more unlabeled data but both are in one domain.

Under our problem setting, the learning difficulty lies in

the data gap between source and target domains. To address

such gap adaptively, we propose weighting networks to fa-

vor regions from source images that are highly similar to the

target ones, and leverage them to benefit joint learning from

both source and target domains. In order to take both local

and global information into account, we learn hierarchical

weighting networks to score similarity at pixel level, region

level and the entire image level. The weighting networks

are learned together with the segmentation network in an

end-to-end manner. Motivated by the effectiveness of ad-

versarial adaptation methods [11, 26], we also incorporate

the GAN into our model, whose discriminator drives the

source distribution towards the target one, to further help

domain adaptation. Fig 2 illustrates our model architecture,

which will be detailed in the following sections.

3.1. Hierarchical Weighting Networks

We aim to address the data gap by learning with target

real images and only similar synthetic image regions. We

propose weighting networks for such fine-grained region

selection rather than image-level selection. The weighting

networks should assign higher weights to synthetic image

regions that are similar to real image regions from target

domain. Due to significant variations in both texture and ap-

pearance (such as color and lighting) from two domains, we

encourage the segmentation network to predict the same for

similar structured regions. Therefore, it is effective to de-

fine the similarity in segmentation label space (no textures

exist in label space), thus give more weight on those pix-

els with similar label structures. This essentially robustifies

segmentation to data variance across domains in a transfer

learning framework. We also see the link to data augmen-

tation, but in a much more flexible way to augment with

arbitrary image regions from source domain.

To enrich the transfer learning process, we propose hier-

archical weighting networks to find between-domain simi-

larity at pixel (network Wp), region (network Wr) and im-

age (network Wi) levels. Their objective functions are:

LWk
= ‖Mk(x)− dk‖1, k ∈ {p, r, i}, (1)
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Figure 3. The workflow of the weighing map generation.

where Mk(x) denotes the outputs of weighting network

Wk. Here dk denotes the ground-truth domain labels at dif-

ferent levels. Specifically, dk is an all-zero map for source

label, and all-one map for target. It has sizes of 512×1024,

64× 128 at pixel- and region- level respectively, while it is

a scalar at image level.

Semantic Segmentation Losses. As mentioned above,

we aim to give more weights on source regions with similar

label structures. We thus set different segmentation losses

for target and source domain, respectively. For the target

domain, we apply the normal cross-entropy as follows:

Lt
Seg = −

∑
yt logF(xt). (2)

where F is the segmentation part, including the Encoder E

and up-sampling part S. F(xt) denotes the output of the

segmentation network with the input of target image xt.

For the source domain, we perform the weighted

segmentation loss with hierarchical weighting map H.

From the equation 1, the outputs of weighting networks

(Mk(x
s), k ∈ {p, r, i}) are obtained. Since the size of

Mk(x) is not compatible with ground truth, we perform

the nearest up-sampling and soft thresholding to get corre-

sponding weighting maps (Hk, k ∈ {p, r, i}). The detailed

workflow is shown in Fig 3. Soft thresholding is defined as

follows:

Hk(x
s) = I(Mk(x

s) > mean(Mk(x
s))), k ∈ {p, r, i},

(3)

where I(·) is an indication function. The soft threshold-

ing using the adaptive mean value as the threshold works

better than hard thresholding (i.e., using a fixed value as

the threshold) since it adapts to the current score range

and guarantees to select some relatively similar regions.

Note that the image level weighting map is a scalar, we set

mean(Mi(x
s)) as 0.5.

After getting Hk(x
s), we average them to obtain the hi-

erarchical weighing mapH(xs):

H(xs) =
1

3
(Hp(x

s) +Hr(x
s) +Hi(x

s)), (4)

which actually takes into account the local and global in-

formation for similarity-based transfer learning. Hence, the

segmentation loss Ls
Seg for source domain is formulated as

a weighted cross-entropy loss:

Ls
Seg = −

∑
ys(H(xs)⊙ logF(xs)), (5)

where ys is the ground truth label and ⊙ denotes the

element-wise multiplication. The total segmentation loss

LSeg is the sum of Ls
Seg and Lt

Seg, i.e. LSeg = Lt
Seg + Ls

Seg.

Shared Weighting Map vs. Multi-channel Weighting

Map. Note that the weighting map mentioned above is

derived from the segmentation label map that has various

channels (corresponding to class categories — 19 channels

in this paper). Since the label structures vary a lot for dif-

ferent classes, their weighting mechanisms can also differ.

Thus besides learning a shared weighting map by W 1

k∈p,r,i

for all classes, we can also learn separate weighting maps by

W 19

k∈p,r,i for each class channel. We implement both types

of weighting maps and investigate the effectiveness of them

under various settings.

Improving Expressiveness across Domains In our hier-

archical transfer learning framework, we rely on a good fea-

ture encoder E(·) to generate the domain-variant features

for potential different domain images. To improve the ex-

pressiveness of E(·) for better transfer learning, we inherit

adversarial adaptation methods [4, 11, 34] to attach a gen-

erative adversarial network (GAN) to the encoded features.

The goal is to drive the representations of source image

close to the distribution of target image, which is super-

vised by a reconstruction loss and an adversarial loss shown

as follows. This part does aid the domain adaptation and

ablation study indicates its effectiveness.

3.2. Network Optimization

There are several learnable components in our model, in-

cluding encoder E(·), discriminator D(·), generator G(·)
and weighting networks W (·) (Note that S(·) has no learn-

able parameters). An alternative update is applied dur-

ing the network optimization, which is illustrated in Algo-

rithm 1. Except LSeg and LWk∈p,r,i
, reconstruction loss LRec
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and adversarial loss LAdv are also used during training and

shown as follow.

Reconstruction loss LRec We use Conv5 features from

the encoder E(·), and attach a generator G(·) to reconstruct

each input image. The reconstruction loss LRec is defined as

an L1 loss in pixel space. The detailed architecture of the

encoder and generator are shown in Section 3.3.

Adversarial loss LAdv We also follow the adversarial strat-

egy [20] to use a discriminator D(·) to promote the fidelity

of reconstructed images. The generator G(·) and discrim-

inator D(·) are alternately trained by adversarial loss LAdv

as in a min-max game. In this way, we encourage the En-

coder E(·) to generate domain-invariant feature representa-

tions which could fool the discriminator.

Algorithm 1 The proposed hierarchical transfer learning

method

Input: source domain Xs and target domain Xt; N is the

number of iterations.

Initialization: Initialize hierarchical weighting networks

W , generator G(·) and discriminator D(·) from scratch.

Encoder E(·) is initialized with ImageNet-pretrained

model.

1: repeat

2: {xs, ys}← random image pair from source domain

3: {xt, yt} ← random image pair from target domain

4: Generate predictions for both xs and xt

5: H(xs) ← generate the hierarchical weighting map

for source image by Eq. (4)

6: LSeg ← compute segmentation loss for target and

source image by Eq. (2) and Eq. (5)

7: E ← minLSeg + LAdv

8: Wk∈p,r,i ← minLWk∈p,r,i
, Eq. (1)

9: G← minLRec + LAdv

10: D← minLAdv

11: until N

3.3. Network Architecture

Hierarchical weighting networks It consists of 5 convo-

lution layers with kernel 4 × 4 and stride of 2 followed by

a Leaky-ReLU with parameter 0.2 except for the last layer.

The number of channels is 64, 128, 256, 512, for the respec-

tive convolutional layer. An up-sampling layer is attached

after the pixel-level weighting network to resize the output

to the original dimension.

Segmentation network We use FCN8s [22] as the se-

mantic segmentation model. The backbone is VGG16 [28]

which is pretrained on the ImageNet dataset. We divide the

network into encoder E(·) and segmentation classifier S(·)
(S(·) has no learnable parameters).

Generative adversarial network We apply the Patch-

GAN [18] as the discriminator, which tries to classify over-

lapping image patches as real or fake. The generator is com-

posed of 2 Residual blocks and 7 convolutional layers. The

kernel size, stride and padding of the first 6 convolutional

layers are respectively 3 × 3, 2, and 1, while the last layer

has 1 × 1, 1, and 1. The discriminator contains 7 convolu-

tional layers with kernel size, stride and padding being 3×3,

2, and 1, respectively. Leaky-ReLU layers with parameter-

ized 0.01 are adopted for the first 6 convolutional layers.

4. Experiments

In this paper, three datasets are employed in our exper-

iments, including two synthetic datasets GTAV [24]

and SYNTHIA [25], and one real-world dataset

CITYSCAPES [7].

GTAV has 24,966 urban scene images rendered by the gam-

ing engine GTAV. The semantic categories are compatible

with the CITYSCAPES dataset. We take the whole GTAV

dataset with labels as the source domain data.

SYNTHIA is a large dataset which contains different

video sequences rendered from a virtual city. We take

SYNTHIA-RAND-CITYSCAPES as the source domain

data which provides 9,400 images from all the sequences

with CITYSCAPES-compatible annotations.

CITYSCAPES is a real-world image dataset focused on

the urban scene, which consists of 2,975 images in training

set and 500 images for validation. The resolution of images

is 2048 × 1024 and 19 semantic categories are provided

with pixel-level labels. We take the whole training set as

the target domain data. The results of our transfer learning

scheme are reported on the validation set.

It can be found that both synthetic datasets consist of a

large amount of images and the real-world dataset is much

small. Thus it is well motivated that synthetic data provides

an appealing option for the issue of insufficient data.

Training Details Adam [17] optimization is applied with

β1=0.9 and β2=0.999. The initial learning rate is 1e-4 and

is decreased with polynomial decay with power of 0.9. Due

to the GPU memory limitation, images used in our experi-

ments are resized to 1024×512 and batch size is 1. Since

the discriminator is easier to converge than generator, we

slightly perturb the labels of discriminator during training.

4.1. Experimental Results

In this section, we provide a quantitative evaluation

by performing multiple joint learning experiments, i.e.,

GTAV + CITYSCAPES → CITYSCAPES, SYNTHIA +

CITYSCAPES→ CITYSCAPES and GTAV + SYNTHIA

+ CITYSCAPES→ CITYSCAPES. More experimental ex-

periments is contained in the supplementary material.
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Method Backbone Setting Mean IoU

Swami et al. [26] VGG16 Un- 37.1%

CL [34] VGG16 Un- 38.1%

ROAD [6] VGG16 Un- 35.9%

Hung et al. [16] ResNet-101 Semi- 67.7%

FCN VGG16 - 65.3%

Direct Joint Training VGG16 Joint- 64.6%

Target Finetuning VGG16 Joint- 66.0%

FCN+GAN VGG16 Joint- 64.0%

FCN+0-1 Conf. Mask VGG16 Joint- 63.7%

FCN+Focal Loss [19] VGG16 Joint- 66.2%

FCN+W 1 VGG16 Joint- 66.5%

PixelDA [4] VGG16 Joint- 66.1%

Ours with W
1 VGG16 Joint- 67.6%

Ours with W
19 VGG16 Joint- 68.1%

Table 1. Experimental results of transfer learning using GTAV and

CITYSCAPES (GTAV + CITYSCAPES → CITYSCAPES). W 1

and W
19 denote our shared and multi-channel weighting mecha-

nisms, respectively. Un-, Semi- and Joint- are the abbreviations

of unsupervised domain adaptation, semi-supervised learning and

joint learning. * means the model is trained on CITYSCAPES

dataset without source datasets.

Several baseline methods are defined in the following: 1)

Direct Joint Training: we directly combine both synthetic

and real-world data. 2) Target Finetuning: the model is

pretrained with the synthetic data and then finetuned using

the real-world data. 3) FCN+GAN: to verify the effect of

GAN, we design a model only containing FCN segmen-

tation part and GAN part. The VGG16 is adopted as the

backbone. 4) PixelDA [4]: since this work is an unsuper-

vised domain adaptation method which is not compatible

with our setting, we extend it to our problem by giving the

label of both synthetic and real-world data. The segmenta-

tion network uses FCN8s with the backbone of VGG16. 5)

FCN+W 1: to verify the effect of weighting networks, we

design a model only containing FCN segmentation part and

W 1 part. The VGG16 is adopted as the backbone.

We also compare with other methods, which focus on

the unsupervised domain adaptation [6, 26, 34] and semi-

supervised learning [16], to demonstrate the superiority of

our learning scheme.

GTAV + CITYSCAPES → CITYSCAPES. In this ex-

periment, we use the GTAV as our source dataset, and

CITYSCAPES as our target dataset. As shown in Table 1,

our model achieves better performance (mIoU = 68.1) com-

pared with baselines. Several conventional methods for

joint learning and finetuning perform comparable results

with original FCN, which indicates that direct training with

synthetic data does not benefit the model on real domain.

Compared with other transfer learning setting, including

unsupervised domain adaptation [6, 26, 34] and semi-

Method Setting Mean IoU

Swami et al. [26] Un- 34.8%

CL [34] Un- 34.2%

ROAD [6] Un- 36.2%

FCN - 65.3%

Direct Joint Training Joint- 62.9%

Target Finetuning Joint- 64.8%

FCN+GAN Joint- 62.6%

PixelDA [4] Joint- 64.0%

Ours with W 1 Joint- 66.3%

Ours with W 19 Joint- 66.8%
Table 2. Experimental results of joint learning using SYNTHIA

and CITYSCAPES.

Method Setting Mean IoU

FCN - 65.3%

Direct Joint Training Joint- 64.2%

Target Finetuning Joint- 66.5%

FCN+GAN Joint- 64.9%

PixelDA [4] Joint- 65.3%

Ours with W 1 Joint- 68.2%

Ours with W 19 Joint- 68.8%
Table 3. Experimental results of joint learning using GTAV, SYN-

THIA and CITYSCAPES.

supervised learning [16], our weighting network learning

from both domains achieves better performance without

introducing any extra cost. By comparing FCN+W 1 to

FCN+GAN, we can find that the proposed hierarchical

weighting network is more crucial than GAN, which in-

dicates the effectiveness of weighting network for trans-

fer learning. PixelDA [4] learns a pixel-space transforma-

tion, which achieves an improvement of 2.1 compared with

FCN+GAN. Comparing to two weighting baselines, includ-

ing 0-1 Confidence Mask and Focal loss [19], our method

achieves better performance. By incorporating the weight-

ing network to selectively learn from the synthetic pixel, our

proposed method is more effective to mine the knowledge

from both domains. The results demonstrate that it performs

better than existing methods, with an improvement of 4.1

over FCN+GAN and 2.0 over [4].

SYNTHIA + CITYSCAPES → CITYSCAPES. We fol-

low the experiment setting as previous and choose 19

classes as the label in both SYNTHIA and CITYSCAPES

datasets. We report the results of joint learning using SYN-

THIA and CITYSCAPES in Table 2. We find that simi-

lar conclusions could be reached from results. It is noted

that due to the large domain gap, direct joint training wors-

ens the results of original FCN. The multi-channel weight-

ing map (Ours with W 1) shows better performance than the

shared weighting maps, while both methods have a signifi-

cant improvement than the baseline method.
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Method Single Hier Mean IoU

FCN 65.3%

Ours with W 1
√

66.7%

Ours with W 1
√

67.6%

Ours with W 19
√

66.9%

Ours with W 19
√

68.1%
Table 4. Ablation experiment of single VS hierarchical weighting

network using GTAV + CITYSCAPES → CITYSCAPES.

GTAV + SYNTHIA + CITYSCAPES→ CITYSCAPES.

To verify the robustness of our model, we design this joint

learning experiments with multiple synthetic datasets and

single real-world dataset. In this experiment, the model is

trained by fist using GTAV as the source dataset and then

using GTAV + SYN as the source dataset. As shown in Ta-

ble 3, with multiple synthetic datasets, our proposed model

is able to consistently achieve the better performance, which

demonstrates its robustness and high flexibility in the com-

plicated settings. In such setting, PixelDA [4] even de-

livers a worse result (mIoU=65.3) compared with the re-

sult in Table 1 (mIoU=66.1) , which indicates that learn-

ing from synthetic data without selection might bias to the

source domain and possess limited robustness when pro-

cessing large amount of labeled synthetic data from mul-

tiple sources. Therefore, compared with PixelDA [4], our

method has a performance gain of 3.5 points, validating the

effectiveness of the proposed weighting networks. By com-

bining the GTAV and SYNTHIA datasets as the source do-

main, our model obtains 0.6 and 0.7 points improvement

respectively comparing with the performance of the model

trainined on the single dataset, which shows that the knowl-

edge mined by our method focuses on the similarity of the

target domain and they can promote each other when they

are combined together.

4.2. Ablation Studies

In this section, we perform the ablation experiment to

verify the effect of hierarchical-level weighting network.

The ablation experiment is conducted on the GTAV dataset

and CITYSCAPES dataset. We compare the hierarchi-

cal weighting networks with single-level (pixel-level only)

weighting network. In the Table 4, it can be observed

that the hierarchical mechanism performs consistently bet-

ter (0.9 and 1.2 gain for W 1 and W 19, respectively) than the

single pixel-wise mechanism, which demonstrates that the

hierarchical weighting network possessing both local and

global information enhances the semantic segmentation.

4.3. Discussion

In this section, we design several experiments to verify

the capability of our model. We first visualize the weighting

maps generated by hierarchical weighting network to dis-

play how our model measures the similar regions and then

Data Amount 1/8 1/4 1/2 Full

Mean IoU 53.4% 57.7% 64.9% 68.1%
Table 5. Experimental results of GTAV + CITYSCAPES →

CITYSCAPES using different amounts of real-world images.

Note that we use the proposed model, i.e. Ours with W
19, and

all synthetic data from GTAV are used during training.

Figure 4. Shared weighting maps generated by W
1 (i.e., shared

weighting mechanism). The first two rows are images sampled

from the GTAV dataset, while the last two rows are from the SYN-

THIA dataset. From left to right: the input image, the input image

overlaid with hierarchical weighting map, the pixel-, region- and

image-level weighting maps.

we provide the visualization of segmentation results using

different methods. Finally, we randomly sample 1/4, 1/2

target images to investigate the effectiveness of our method.

Visualization of Weighting Maps and Segmentation Re-

sults. As shown in Fig 4, we display the weighting maps

generated by the W 1 strategy. From these weighting maps,

it can be observed that weighting maps often cover the road

region and ignore the building part, in which the road is

most similar and dominant region between synthetic data

and real-world data while the building is irrelevant and in-

different in the segmentation of driving scene.

Visualization of Segmentation Results. We show seg-

mentation results obtained from different models in Fig 5

using GTAV+CITYSCAPES→ CITYSCAPES. Compared

with original FCN and FCN + GAN, our full model per-

forms much better in terms of details and boundary, such as

the lane boundary and the outline of car. The noises in the

building and the road are decreased. These improvements

demonstrate the effectiveness of weighting networks by fo-

cusing on learning from the most similar regions.

Analysis of Extremely Insufficient Data. To further

explore the capability of our model, we design the ex-

periment with extremely insufficient real-world data using

GTAV+CITYSCAPES→ CITYSCAPES. All images in the

GTAV dataset are adopted, while different numbers of real-

world images are randomly sampled for our transfer learn-
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Figure 5. We show the segmentation results of different models. From left to right, the images are extracted from Target Image, Ground

Truth, FCN, FCN+GAN, Ours with W
1. Our full model achieves the better results with more detailed boundary.

ing scheme. As shown in Table 5, our model using 1/2 real-

world images achieves comparable performance against the

FCN+GAN, and only 4% worse than the model using full

real-world images, which demonstrates that our model is

capable and applicable with the extremely insufficient data.

5. Conclusion

In this paper, we introduce a new transfer learning

method with both real and synthetic images for semantic

segmentation. We mitigate the domain gap between insuf-

ficient real data and abundant synthetic data by adaptively

selecting similar synthetic pixels for learning. Hierarchical

weighting networks are used to score how similar the syn-

thetic pixels are to real ones, at pixel-, region- and image-

levels respectively, which helps us adapt to target real im-

ages. Also, we learn weighting networks and segmentation

network jointly in an end-to-end manner. Extensive exper-

iments demonstrate that our proposed method outperforms

other important baselines by large margins, espetially, mul-

tiple source datasets achieves more improvements in both

W 1 and W 19 strategy. Our method can also learn from ex-

tremely limited real images, and show the potential to learn

from multiple data sources.
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