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Abstract

The ROI (region-of-interest) based pooling method per-

forms pooling operations on the cropped ROI regions for

various samples and has shown great success in the ob-

ject detection methods. It compresses the model size while

preserving the localization accuracy, thus it is useful in

the visual tracking field. Though being effective, the ROI-

based pooling operation is not yet considered in the cor-

relation filter formula. In this paper, we propose a novel

ROI pooled correlation filter (RPCF) algorithm for ro-

bust visual tracking. Through mathematical derivations,

we show that the ROI-based pooling can be equivalently

achieved by enforcing additional constraints on the learned

filter weights, which makes the ROI-based pooling feasi-

ble on the virtual circular samples. Besides, we develop

an efficient joint training formula for the proposed corre-

lation filter algorithm, and derive the Fourier solvers for

efficient model training. Finally, we evaluate our RPCF

tracker on OTB-2013, OTB-2015 and VOT-2017 benchmark

datasets. Experimental results show that our tracker per-

forms favourably against other state-of-the-art trackers.

1. Introduction

Visual tracking aims to localize the manually specified

target object in the successive frames, and it has been

densely studied in the past decades for its broad applica-

tions in the automatic drive, human-machine interaction,

behavior recognition, etc. Till now, visual tracking is still

a very challenging task due to the limited training data and

plenty of real-world challenges, such as occlusion, defor-

mation and illumination variations.

In recent years, the correlation filter (CF) has become

one of the most widely used formulas in visual tracking

for its computation efficiency. The success of the corre-
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Figure 1. Visualized tracking results of our method and other four

competing algorithms. Our tracker performs favourably against

the state-of-the-art.

lation filter mainly comes from two aspects: first, by ex-

ploiting the property of circulant matrix, the CF-based al-

gorithms do not need to construct the training and testing

samples explicitly, and can be efficiently optimized in the

Fourier domain, enabling it to handle more features; sec-

ond, optimizing a correlation filter can be equivalently con-

verted to solving a system of linear functions, thus the fil-

ter weights can either be obtained with the analytic solu-

tion (e.g., [9, 8]) or be solved via the optimization algo-

rithms with quadratic convergence [9, 7]. As is well rec-

ognized, the primal correlation filter algorithms have lim-

ited tracking performance due to the boundary effects and

the over-fitting problem. The phenomenon of boundary ef-

fects is caused by the periodic assumptions of the training

samples, while the over-fitting problem is caused by the un-

balance between the numbers of model parameters and the
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training samples. Though the boundary effects have been

well addressed in several recent papers (e.g., SRDCF [9],

DRT [29], BACF [12] and ASRCF [5]), the over-fitting

problem is still not paid much attention to and remains to

be a challenging research hotspot.

The average/max-pooling operation has been widely

used in the deep learning methods via the pooling layer,

which is shown to be effective in handling the over-fitting

problem and deformations. Currently, two kinds of pooling

operations are widely used in deep learning methods. The

first one performs average/max-pooling on the entire input

feature map and obtains a feature map with reduced spatial

resolutions. In the CF formula, the pooling operation on the

input feature map can lead to fewer available synthetic train-

ing samples, which limits the discriminative ability of the

learned filter. Also, the smaller size of the feature map will

significantly influence the localization accuracy. However,

the ROI (Region of Interest)-based pooling operation is an

alternative, which has been successfully embedded into sev-

eral object detection networks (e.g., [14, 26]). Instead of

directly performing the average/max-pooling on the entire

feature map, the ROI-based pooling method first crops large

numbers of ROI regions, each of which corresponds to a tar-

get candidate, and then performs average/max-pooling for

each candidate ROI region independently. The ROI-based

pooling operation has the merits of a pooling operation as

mentioned above, and at the same time retains the number

of training samples and the spatial information for localiza-

tion, thus it is meaningful to introduce the ROI-based pool-

ing into the CF formula. Since the CF algorithm has no

access to real-world samples, it remains to be investigated

on how to exploit the ROI-based pooling in a correlation

filter formula.

In this paper, we study the influence of the pooling op-

eration in visual tracking, and propose a novel ROI pooled

correlation filters algorithm. Even though the ROI-based

pooling algorithm has been successfully applied in many

deep learning-based applications, it is seldom considered in

the visual tracking field, especially in the correlation filter-

based methods. Since the correlation filter formula does not

really extract positive and negative samples, it is infeasible

to perform the ROI-based pooling like Fast R-CNN [14].

Through mathematical derivation, we provide an alterna-

tive solution to implement the ROI-based pooling. We pro-

pose a correlation filter algorithm with equality constraints,

through which the ROI-based pooling can be equivalently

achieved. We propose an Alternating Direction Method Of

Multipliers (ADMM) algorithm to solve the optimization

problem, and provide an efficient solver in the Fourier do-

main. Large number of experiments on the OTB-2013 [31],

OTB-2015 [32] and VOT-2017 [20] datasets validate the ef-

fectiveness of the proposed method (see Figure 1 and Sec-

tion 5). The contributions of this paper are three-fold:

• This paper is the first attempt to introduce the idea

of ROI-based pooling in the correlation filter formula.

It proposes a correlation filter algorithm with equality

constraints, through which the ROI-based pooling op-

eration can be equivalently achieved without the need

for real-world ROI sample extraction. The learned fil-

ter weights are insusceptible to the over-fitting prob-

lem and are more robust to deformations.

• This paper proposes a robust ADMM method to op-

timize the proposed correlation filter formula in the

Fourier domain. With the computed Lagrangian mul-

tipliers, the paper aims to use the conjugate gradient

method for filter learning, and develops efficient opti-

mization strategy for each step.

• This paper conducts large amounts of experiments on

three available public datasets. The experimental re-

sults validate the effectiveness of the proposed method.

2. Related Work

The recent papers on visual tracking are mainly based

on the correlation filters and deep networks [21], many of

which have impressive performance. In this section, we pri-

marily focus on the algorithms based on the correlation fil-

ters and briefly introduce related issues of the pooling oper-

ations.

Discriminative Correlation Filters. Trackers based on

correlation filters have been the focus of researchers in re-

cent years, which have achieved the top performance in

various datasets. The correlation filter algorithm in visual

tracking can be dated back to the MOSSE tracker [2], which

takes the single-channel gray-scale image as input. Even

though the tracking speed is impressive, the accuracy is not

satisfactory. Based on the MOSSE tracker, Henriques et

al. advance the state-of-the-art by introducing the kernel

functions [18] and higher dimensional features [19]. Ma et

al. [24] exploit the rich representation information of deep

features in the correlation filter formula, and fuse the re-

sponses of various convolutional features via a coarse-to-

fine searching strategy. Qi et al. [25] extend the work

of [24] by exploiting the Hedge method to learn the im-

portance for each kind of feature adaptively. Apart from

the MOSSE tracker, the aforementioned algorithms learn

the filter weights in the dual space, which have been at-

tested to be less effective than the primal space-based al-

gorithms [8, 9, 19]. However, correlation filters learned in

the primal space are severely influenced by the boundary ef-

fects and the over-fitting problem. Because of this, Danell-

jan et al. [9] introduce a weighted regularization constraint

on the learned filter weights, encouraging the algorithm to

learn more weights on the central region of the target ob-

ject. The SRDCF tracker [9] has become a baseline algo-

rithm for many latter trackers, e.g., CCOT [11] and SRD-
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CFDecon [10]. The BACF tracker [12] provides another

feasible way to address the boundary effects, which gener-

ates real-world training samples and greatly improves the

discriminant power of the learned filter. Though the above

methods have well addressed the boundary effects, the over-

fitting problem is rarely considered. The ECO tracker [7]

jointly learns a projection matrix and the filter weights,

through which the model size is greatly compressed. Differ-

ent from the ECO tracker, our method introduces the ROI-

based pooling operation into a correlation filter formula,

which does not only address the over-fitting problem but

also makes the learned filter weights more robust to defor-

mations.

Pooling Operations. The idea of the pooling opera-

tion has been used in various fields in computer vision,

e.g., feature extraction [6, 22], convolutional neural net-

works [27, 16], to name a few. Most of the pooling op-

erations are performed on the entire feature map to either

obtain more stable feature representations or rapidly com-

press the model size. In [6], Dalal et al. divide the image

window into dozens of cells, and compute the histogram of

gradient directions in each divided cell. The computed fea-

ture representations are more robust than the ones based on

individual pixels. In most deep learning-based algorithms

(e.g., [6, 22]), the pooling operations are performed via

a pooling layer, which accumulates the multiple response

activations over a small neighbourhood region. The lo-

calization accuracy of the network usually decreases after

the pooling operation. Instead of the primal max/average-

pooling layer, the faster R-CNN method [14] exploits the

ROI pooling layer to ensure the localization accuracy and at

the same time compress the model size. The method firstly

extracts the ROI region for each candidate target object via

a region of proposal network (RPN), and then performs the

max-pooling operation on the ROI region to obtain more

robust feature representations. Our method is inspired by

the ROI pooling proposed in [14], and is the first attempt to

introduce the ROI-based pooling operation into the correla-

tion filter formula.

3. Correlation Filter and Pooling

In this section, we briefly revisit the two key technolo-

gies closely related to our approach (i.e., the correlation fil-

ter and pooling operation).

3.1. Revisit of Correlation Filter

To help better understand our method, we first introduce

the primal correlation filter algorithm. Given an input fea-

ture map, a correlation filter algorithm aims at learning a set

of filter weights to regress the Gaussian-shaped response.

We use yd ∈ R
N to denote the desired Gaussian-shaped

response, and x to denote the input feature map with D
feature channels x1, x2, ..., xD. For each feature channel
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Figure 2. Illustration showing that ROI pooled features are more

robust to target deformations than the original ones. For both fea-

tures, we compute the ℓ2 loss between features extracted from

Frames 2-20 and Frame 1, and visualize the distances via red and

blue dots respectively.

xd ∈ R
N , a correlation filter algorithm computes the re-

sponse by convolving xd with the filter weight wd ∈ R
N .

Based on the above-mentioned definitions and descriptions,

the optimal filter weights can be obtained by optimizing the

following objective function:

E(w) =
1

2

∥

∥

∥

∥

∥

y −
D
∑

d=1

wd ∗ xd

∥

∥

∥

∥

∥

2

2

+
λ

2

D
∑

d=1

‖wd‖22 , (1)

where ∗ denotes the circular convolution operator, w =
[w1, w2, ..., wD] is concatenated filter vector, λ is a trade-off

parameter to balance the importance between the regression

and the regularization losses. According to the Parseval’s

theorem, Eq. 1 can be equivalently written in the Fourier

domain as

E(ŵ) =
1

2

∥

∥

∥

∥

∥

ŷ −
D
∑

d=1

ŵd ⊙ x̂d

∥

∥

∥

∥

∥

2

2

+
λ

2

D
∑

d=1

‖ŵd‖22 , (2)

where ⊙ is the Hadamard product. We use ŷ, ŵd, x̂d to

denote the Fourier domain of vector y, wd and xd.

3.2. Pooling Operation in Visual Tracking

As is described by many deep learning methods [27, 13],

the pooling layer plays a crucial rule in addressing the over-

fitting problem. Generally speaking, a pooling operation

tries to fuse the neighbourhood response activations into

one, through which the model parameters can be effectively

compressed. In addition to addressing the over-fitting prob-

lem, the pooled feature map becomes more robust to defor-

mations (Figure 2). Currently, two kinds of pooling opera-

tions are widely used, i.e., the pooling operation based on

the entire feature map (e.g., [27, 16]) and the pooling op-

eration based on the candidate ROI region (e.g. [26]). The
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Feature map based pooling operation

Pooling Crop
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extracted samples

ROI-based pooling operation

PoolingCrop
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Figure 3. Illustration showing the difference between the feature

map based and the ROI-based pooling operations. For clarity, we

use 8 as the stride for sample extraction on the original image. This

corresponds to a stride = 2 feature extraction in the HOG feature

with 4 as the cell size. The pooling kernel size is set as e = 2 in

this example.

former one has been widely used in the CF trackers with

deep features, as a contrast, the ROI-based pooling oper-

ation is seldom considered. As is described in Section 1,

directly performing average/max-pooling on the input fea-

ture map will result in fewer training/testing samples and

worse localization accuracy. We use an example to show

how different pooling methods influence the sample extrac-

tion process in Figure 3, wherein the extracted samples are

visualized on the right-hand side. For simplicity, this ex-

ample is based on the dense sampling process. The conclu-

sion is also applicable to the correlation filter method, which

is essentially trained via densely sampled circular candi-

dates. In the feature map based pooling operation, the fea-

ture map size is first reduced to W/e×H/e, thus leading to

fewer samples. However, the ROI-based pooling first crop

samples from the W × H feature map and then performs

pooling operations upon them, thus does not influence the

training number. Fewer training samples will lead to infe-

rior discrimination ability of the learned filter, while fewer

testing samples will result in inaccurate target localizations.

Thus, it is meaningful to introduce the ROI-based pooling

operation into the correlation filter algorithms. Since the

max-pooling operation will introduce the non-linearity that

makes the model intractable to be optimized, the ROI-based

average-pooling operation is preferred in this paper.

4. Our Approach

4.1. ROI Pooled Correlation Filter

In this section, we propose a novel correlation tracking

method with ROI-based pooling operation. Like the previ-

ous methods [18, 11], we introduce our CF-based tracking

algorithm in the one-dimensional domain, and the conclu-

sions can be easily generalized to higher dimensions. Since

the correlation filter does not explicitly extract the training

samples, it is impossible to perform the ROI-based pooling

operation following the pipeline in Figure 3. In this paper,

we derive that the ROI-based pooling operation can be im-

plemented by adding additional constraints on the learned

filter weights.

Given a candidate feature vector v corresponding to the

target region with L elements, we perform the average-

pooling operation on it with the pooling kernel size e. For

simplicity, we set L = eM , where M is a positive integer

(the padding operation can be used if L cannot be divided

by e evenly). The pooled feature vector v′ ∈ R
M can be

computed as v′ = 1
e
Uv, where the matrix U ∈ R

M×Me is

constructed as:

U =















1
e

0
e · · · 0

e
0
e

0
e

1
e · · · 0

e
0
e

...
...

. . . 0
e

0
e

0
e

0
e · · · 1

e
0
e

0
e

0
e · · · 0

e
1
e















, (3)

where 1
e ∈ R

1×e denotes a vector with all the entries set

as 1, and 0
e ∈ R

1×e is a zero vector. Based on the pooled

vector, we compute the response as:

r = w′⊤v′ = w′⊤Uv/e =
(

U⊤w′
)⊤

v/e, (4)

wherein w′ is the weight corresponding to the pooled fea-

ture vector, U⊤w′ = [w′(1)1e, w′(2)1e, ..., w′(M)1e]⊤. It

is easy to conclude that average-pooling operation can be

equivalently achieved by constraining the filter weights in

each pooling kernel to have the same value. Based on the

discussions above, we define our ROI pooled correlation fil-

ter as follows:

E(w) = 1
2

∥

∥

∥

∥

y −
D
∑

d=1

(pd ⊙ wd) ∗ xd

∥

∥

∥

∥

2

2

+ λ
2

D
∑

d=1

‖gd ⊙ wd‖22
s.t. wd(iη) = wd(jη), (iη, jη) ∈ P, η = 1, ..,K

(5)

where we consider K equality constraints to ensure that fil-

ter weights in each pooling kernel have the same value, P
denotes the set that two filter elements belong to the same

pooling kernel, iη and jη denote the indexes of elements

in weight vector wd. In Eq. 5, pd ∈ R
N is a binary mask

which crops the filter weights corresponding to the target

region. By introducing pd, we make sure that the filter only

has the response for the target region of each circularly con-

structed sample [12]. The vector gd ∈ R
N is a regulariza-

tion weight that encourages the filter to learn more weights

in the central part of the target object. The idea to intro-

duce pd and gd has been previously proposed in [9, 12],

while our tracker is the first attempt to integrate them. In

the equality constraints, we consider the relationships be-

tween two arbitrary weight elements in a pooling kernel,
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thus K = e!
(e−2)!2! (⌊(L− e)/e⌋ + 1) for each channel d,

where L is the number of nonzero values in pd. Note that

the constraints are only performed in the filter coefficients

corresponding to the target region of each sample, and the

computed K is based on the one-dimensional case.

According to the Parseval’s formula, the optimization in

Eq. 5 can be equivalently written as:

E(ŵ) = 1
2

∥

∥

∥

∥

ŷ −
D
∑

d

P̂dŵd ⊙ x̂d

∥

∥

∥

∥

2

2

+ λ
2

D
∑

d=1

∥

∥

∥
Ĝdwd

∥

∥

∥

2

2

s.t. V 1
d F−1

d ŵd = V 2
d F−1

d ŵd

,

(6)

where Fd denotes the Fourier transform matrix, and F−1
d

denotes the inverse transform matrix. The vectors p̂d ∈
C

N×1, ŷ ∈ C
N×1, x̂d ∈ C

N×1 and ŵd ∈ C
N×1 de-

note the Fourier coefficients of the corresponding signal

vectors y, xd, pd and wd. Matrices P̂d and Ĝd are the

Toeplitz matrices, whose (i, j)-th elements are p̂d((N + i−
j)%N + 1) and ĝd((N + i − j)%N + 1), where % de-

notes the modulo operation. They are constructed based on

the convolution theorem to ensure that P̂dŵd = p̂d ∗ ŵd,

Ĝdwd = ĝd ∗ ŵd. Since the discrete Fourier coeffi-

cients of a real-valued signal are Hermitian symmetric, i.e.,

p̂d((N + i − j)%N + 1) = p̂d((N + j − i)%N + 1)∗

in our case, we can easily conclude that P̂d = P̂H
d and

Ĝd = ĜH
d , where H denotes the conjugate-transpose of

a complex matrix. In the constraint term, V 1
d ∈ R

K×N

and V 2
d ∈ R

K×N are index matrices with either 1 or

0 as the entries, V 1
d F−1

d ŵd = [wd(i1), ..., wd(iK)]⊤ and

V 2
d F−1

d ŵd = [wd(j1), ..., wd(jK)]⊤.

Eq. 6 can be rewritten in a compact formula as:

E(ŵ) = 1
2

∥

∥

∥

∥

ŷ −
D
∑

d=1

Êdŵd

∥

∥

∥

∥

2

2

+ λ
2

D
∑

d=1

∥

∥

∥
Ĝdŵd

∥

∥

∥

2

2

s.t. VdF−1
d ŵd = 0

, (7)

where Êd = X̂dP̂d, X̂d = diag(x̂d(1), ..., x̂d(N)) is a di-

agonal matrix, Vd = V 1
d − V 2

d .

4.2. Model Learning

Since Eq. 7 is a quadratic programming problem with

linear constraints, we use the Augmented Lagrangian

Method for efficient model learning. The Lagrangian func-

tion corresponding to Eq. 7 is defined as:

L(ŵ, ξ) = 1
2

∥

∥

∥

∥

ŷ −
D
∑

d=1

Êdŵd

∥

∥

∥

∥

2

2

+ λ
2

D
∑

d=1

∥

∥

∥
Ĝdŵd

∥

∥

∥

2

2

+
D
∑

d=1

ξ⊤d VdF−1
d ŵd +

1
2

D
∑

d=1

γd
∥

∥VdF−1
d ŵd

∥

∥

2

2
,

(8)

where ξd ∈ R
K denotes the Lagrangian multipliers for the

d-th channel, γd is the penalty parameter, ξ = [ξ⊤1 , ..., ξ⊤D]⊤.

The ADMM method is used to alternately optimize ŵ and ξ.

Ours

Baseline

Input 
Image

High confidenceLow confidence

Target Region

(a) (b)
Figure 4. Comparison between filter weights of the baseline

method (i.e., the correlation filter algorithm without ROI-based

pooling) and the proposed method. (a) A toy model showing that

our learned filter elements are identical in each pooling kernel. (b)

Visualizations of the filter weights learned by the baseline and our

method. Our algorithm learns more compact filter weights than

the baseline method, and thus can better address the over-fitting

problem.

Though the optimization objective function is non-convex,

it becomes a convex function when either ŵ or ξ is fixed.

When ξ is fixed, ŵ can be computed via the conjugate

gradient descent method [4]. We compute the gradient of

the objective function with respects to ŵd in Eq. 8 and ob-

tain a number of linear equations by setting the gradient to

be a zero vector:

(Â+ FV
⊤

V F−1 + λĜHĜ)ŵ = ÊHy −FV ⊤ξ, (9)

where F ∈ C
DN×DN , Ĝ ∈ C

DN×DN , V ∈ R
DK×DN

and V ∈ R
DK×DN are block diagonal matrices with the

d-th matrix block set as Fd, Ĝd, Vd and
√
γdVd, E =

[E1, E2, ..., ED], Â = EHE. In the conjugate gradi-

ent method, the computation load lies in the three terms

Âû, FV
⊤

V F−1û and λĜHĜû given the search direction

û = [u⊤
1 , ..., u

⊤

D]⊤. In the following, we present more de-

tails on how we compute these three terms efficiently. Each

of the three terms can be regarded as a vector constructed

with D sub-vectors. The d-th sub-vector of Âû is computed

as P̂H
d XH

d

D
∑

j=1

X̂j(P̂j ûj) wherein PH
d = Pd as described

above. Since the Fourier coefficients of pd (a vector with

binary values) are densely distributed, it is time consuming

to directly compute P̂dv̂ given an arbitrary complex vector

v̂. In this work, the convolution theorem is used to effi-

ciently compute P̂dv̂. The d-th sub-vector of the second

term is FdV d
⊤

V dud = γdFdVd
⊤Vdud. As the matrices

Vd and V ⊤

d only consists of 1 and −1, thus the computation

of V ⊤

d Vdud can be efficiently conducted via table lookups.

The third term corresponds to the convolution operation,

whose convolution kernel is usually smaller than 5, thus it

can also be efficiently computed.
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When ŵ is computed, ξd can be updated via:

ξi+1
d = ξid + γdVdF−1

d ŵd, (10)

where we use ξid to denote the value of ξd in the i-th itera-

tion. According to [3], the value of γd can be updated as:

γi+1
d = min(γmax, αγ

i
d), (11)

again we use i to denote the iteration index.

4.3. Model Update

To learn more robust filter weights, we update the pro-

posed RPCF tracker based on several training samples (T
samples in total) like [11, 7]. We extend the notations Â
and Ê in Eq. 9 with superscript t, and reformulate Eq. 9 as

follows:

(

T
∑

t=1

µtÂ
t + FV ⊤V F−1 + λĜHĜ)ŵ = b, (12)

where b =
T
∑

t=1
µt(Ê

t)
H
y − FV ⊤ξ, and µt denotes the

importance weight for each training sample t. Most pre-

vious correlation filter trackers update the model iteratively

via a weighted combination of the filter weights in various

frames. Different from them, we exploit the sparse update

mechanism, and update the model every Nt frames [7]. In

each updating frame, the conjugate gradient descent method

is used, and the search direction of the previous update pro-

cess is input as a warm start. Our training samples are gen-

erated following [7], and the weight (i.e., learning rate) for

the newly added sample is set as ω, while the weights of

previous samples are decayed by multiplying 1−ω. In Fig-

ure 4, we visualize the learned filter weights of different

trackers with and without ROI-based pooling, our tracker

can learn more compact filter weights and focus on the reli-

able regions of the target object.

4.4. Target Localization

In the target localization process, we first crop the can-

didate samples with different scales, i.e., xs
d, s ∈ {1, ..., S}.

Then, we compute the response r̂s for the feature in each

scale in the Fourier domain:

r̂s =
D
∑

d=1

x̂s
dŵd. (13)

The computed responses are then interpolated with

trigonometric polynomial following [9] to achieve the sub-

pixel target localization.

5. Experiments

In this section, we evaluate the proposed RPCF tracker

on the OTB-2013 [31], OTB-2015 [32] and VOT2017 [20]

datasets. We first evaluate the effectiveness of the method,

and then further compare our tracker with the recent state-

of-the-art.

5.1. Experimental Setups

Implementation Details. The proposed RPCF method is

mainly implemented in MATLAB on a PC with an i7-

4790K CPU and a Geforce 1080 GPU. Similar to the ECO

method [7], we use a combination of CNN features from

two convolution layers, HOG and color names for target

representation. For efficiency, the PCA method is used to

compress the features. We set the learning rate ω, the max-

imum number of training samples T , γmax and α as 0.02,

50, 1000 and 10 respectively, and we update the model in

every Nt frame. As to γd, we set a relative small value γ1
(e.g., 0.1) for the high-level feature (i.e., the second con-

volution layer), and a larger value γ2 = 3γ1 for the other

feature channels. The kernel size e is set as 2 in the imple-

mentation. We use the conjugate gradient descent for model

initialization and update, 200 iterations are used in the first

frame, and the following update frame uses 6 iterations. Our

tracker runs at about 5fps without optimization.

Evaluation Metric. We follow the one-pass evaluation

(OPE) rule on the OTB-2013 and OTB-2015 datasets, and

report the precision plots as well as the success plots for the

performance measure. The success plots demonstrate the

overlaps between tracked bounding boxes and ground truth

with varying thresholds, while the precision plots measure

the accuracy of the estimated target center positions. In the

precision plots, we exploit the distance precision (DP) rate

at 20 pixels for the performance report, while we exploit

the area-under-curve (AUC) score for performance report

in success plots. On the VOT-2017 dataset, we evaluate our

tracker in terms of the Expected Average Overlap (EAO),

accuracy raw value (A) and robustness raw value (R) mea-

sure the overlap, accuracy and robustness respectively.
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Figure 5. Precision and success plots of 100 sequences on the

OTB-2015 dataset. The distance precision rate at the threshold of

20 pixels and the AUC score for each tracker is presented in the

legend.
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Figure 6. Precision and success plots of 50 sequences on the OTB-

2013 dataset. The distance precision rate at the threshold of 20

pixels and the AUC score for each tracker is presented in the leg-

end.

5.2. Ablation Study

In this subsection, we conduct experiments to validate

the contributions of the proposed RPCF method. We set the

tracker that does not consider the pooling operation as the

baseline method, and use Baseline to denote it. It essentially

corresponds to Eq. 5 without equality constraints. To vali-

date the superiority of our ROI-based pooling method over

feature map based average-pooling and max-pooling, we

also implement the trackers that directly performs average-

pooling and max-pooling on the input feature map, which

are named as Baseline+AP and Baseline+MP.

We first compare the Baseline method with Baseline+AP

and Baseline+MP, which shows that the tracking perfor-

mance decreases when feature map based pooling opera-

tions are performed. Directly performing pooling opera-

tions on the input feature map will not only influence the

extraction of the training samples but also lead to worse tar-

get localization accuracy. In addition, the over-fitting prob-

lem is not well addressed in such methods since the ratio

between the numbers of model parameters and available

training samples do not change compared with the Base-

line method. We validate the effectiveness of the proposed

method by comparing our RPCF tracker with the Baseline

method. Our tracker improves the Baseline method by 4.4%

and 2.0% in precision and success plots respectively. By

exploiting the ROI-based pooling operations , our learned

filter weights are insusceptible to the over-fitting problem

and are more robust to deformations.

5.3. Stateoftheart Comparisons

OTB-2013 Dataset. The OTB-2013 dataset contains 50

videos annotated with 11 various attributes including illu-

mination variation, scale variation, occlusion, deformation

and so on. We evaluate our tracker on this dataset and com-

pare it with 8 state-of-the-art methods that are respectively

ECO [7], CCOT [11], LSART [28], ECO-HC [7], CF2 [24],

Staple [1], MEEM [33] and KCF [19]. We demonstrate the

precision and success plots for different trackers in Figure 6.
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Figure 7. Precision and success plots of 100 sequences on the

OTB-2015 dataset. The distance precision rate at the threshold of

20 pixels and the AUC score for each tracker is presented in the

legend.
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Figure 8. Expected Average Overlap (EAO) curve for 10 state-of-

the-art trackers on the VOT-2017 dataset.

Our RPCF method has a 94.3% DP rate at the threshold of

20 pixels and a 70.9% AUC score. Compared with other

correlation filter based trackers, the proposed RPCF method

has the best performance in terms of both precision and suc-

cess plots. Our method improves the second best tracker

ECO by 1.9% in terms of DP rates, and has comparable

performance according to the success plots. When the fea-

tures are not compressed via PCA, the tracker (denoted as

RPCF-NC) has a 95.4% DP rate at the threshold of 20 pix-

els and a 71.3% AUC score in success plots, and it runs at

2fps without optimization.

OTB-2015 Dataset. The OTB-2015 dataset is an exten-

sion of the OTB-2013 dataset and contains 50 more video

sequences. On this dataset, we also compare our tracker

with the above mentioned 8 state-of-the-art trackers, and

present the results in Fiugre 7(a)(b). Our RPCF tracker has

a 92.9% DP rate and a 69.0% AUC score. It improves the

second best tracker ECO by 1.9% in terms of the precision

plots. With the non-compressed features, our RPCF-NC

tracker achieves the 93.2% DP rate and 69.6% AUC score,

which again has the best performance among all the com-

pared trackers.

The OTB-2015 dataset divides the image sequences into

11 attributes, each of which corresponds to a challenging

factor. We compare our RPCF tracker against other 8 state-
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Figure 9. Precision plots of different algorithms on 8 attributes, which are respectively illumination variation, scale variation, occlusion,

motion blur, in-plane rotation, out-of-plane rotation, fast motion and deformation.

Table 1. Performance evaluation for 10 state-of-the-art algorithms on the VOT-2017 public dataset. The best three results are marked in

red, blue and green fonts, respectively.

RPCF CFWCR CFCF ECO Gnet MCCT CCOT CSR MCPF Staple

EAO 0.316 0.303 0.286 0.281 0.274 0.270 0.267 0.256 0.248 0.169

A 0.500 0.484 0.509 0.483 0.502 0.525 0.494 0.491 0.510 0.530

R 0.234 0.267 0.281 0.276 0.276 0.323 0.318 0.356 0.427 0.688

of-the-art trackers and present the precision plots for dif-

ferent trackers in Figure 9. As is illustrated in the figure,

our RPCF tracker has good tracking performance in all the

listed attributes. Especially, the RPCF tracker improves the

ECO method by 3.6%, 2.5%, 2.8%, 2.2% and 4.3% in the

attributes of scale variation, in-plane rotation, out-of-plane

rotation, fast motion and deformation. The ROI pooled fea-

tures become more consistent across different frames than

the original ones, which contributes to robust target repre-

sentation when the target appearance dramatically changes

(see Figure 2 for example). In addition, by exploiting the

ROI-based pooling operations, the model parameters are

greatly compressed, which makes the proposed tracker in-

susceptible to the over-fitting problem. In Figure 9, we also

present the results of our RPCF-NC tracker for reference.

VOT-2017 Dataset. We test the proposed tracker on the

VOT-2017 dataset for more thorough performance evalu-

ations. The VOT-2017 dataset consists of 60 sequences

with 5 challenging attributes, i.e., occlusion, illumination

change, motion change, size change, camera motion. Dif-

ferent from the OTB-2013 and OTB-2015 datasets, it fo-

cuses on evaluating the short-term tracking performance

and introduces a reset based experiment setting. We com-

pare our RPCF tracker with 9 state-of-the-art trackers in-

cluding CFWCR [17], ECO [7], CCOT [11], MCCT [30],

CFCF [15], CSR [23], MCPF [34], Gnet [20] and Sta-

ple [1]. The tracking performance of different trackers in

terms of EAO, A and R are provided in Table 1 and Figure 8.

Among all the compared trackers, our RPCF method has

a 31.6% EAO score which improves the ECO method by

3.5%. Also, our tracker has the best performance in terms

of robustness measure among all the compared trackers.

6. Conclusion

In this paper, we propose the ROI pooled correlation fil-

ters for visual tracking. Since the correlation filter algo-

rithm does not extract real-world training samples, it is in-

feasible to perform the pooling operation for each candidate

ROI region like the previous methods. Based on the math-

ematical derivations, we provide an alternative solution for

the ROI-based pooling with the circularly constructed vir-

tual samples. Then, we propose a correlation filter formula

with equality constraints, and develop an efficient ADMM

solver in the Fourier domain. Finally, we evaluate the pro-

posed RPCF tracker on OTB-2013, OTB-2015 and VOT-

2017 benchmark datasets. Extensive experiments demon-

strate that our method performs favourably against the state-

of-the-art algorithms on all the three datasets.
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Gustav Häger. The visual object tracking vot2017 challenge

results. In ICCV Workshops, 2017.

[21] Peixia Li, Dong Wang, Lijun Wang, and Huchuan Lu. Deep

visual tracking: Review and experimental comparison. Pat-

tern Recognition, 76:323–338, 2018.

[22] David G Lowe. Distinctive image features from scale-

invariant keypoints. International journal of computer vi-

sion, 60(2):91–110, 2004.

[23] Alan Lukezic, Tomas Vojir, Luka Cehovin Zajc, Jiri Matas,

and Matej Kristan. Discriminative correlation filter with

channel and spatial reliability. In CVPR, 2017.

[24] Chao Ma, Jia-Bin Huang, Xiaokang Yang, and Ming-Hsuan

Yang. Hierarchical convolutional features for visual tracking.

In ICCV, 2015.

[25] Yuankai Qi, Shengping Zhang, Lei Qin, Hongxun Yao,

Qingming Huang, Jongwoo Lim, and Ming-Hsuan Yang.

Hedged deep tracking. In CVPR, 2016.

[26] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun.

Faster r-cnn: Towards real-time object detection with region

proposal networks. In NIPS, 2015.

[27] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. arXiv

preprint arXiv:1409.1556, 2014.

[28] Chong Sun, Huchuan Lu, and Ming-Hsuan Yang. Learning

spatial-aware regressions for visual tracking. In CVPR, 2018.

[29] Chong Sun, Dong Wang, Huchuan Lu, and Ming-Hsuan

Yang. Correlation tracking via joint discrimination and re-

liability learning. In CVPR, pages 489–497, 2018.

[30] Ning Wang, Wengang Zhou, Qi Tian, Richang Hong, Meng

Wang, and Houqiang Li. Multi-cue correlation filters for ro-

bust visual tracking. In CVPR, 2018.

[31] Yi Wu, Jongwoo Lim, and Ming-Hsuan Yang. Online object

tracking: A benchmark. In CVPR, 2013.

[32] Yi Wu, Jongwoo Lim, and Ming-Hsuan Yang. Object track-

ing benchmark. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 37(9):1834–1848, 2015.

[33] Jianming Zhang, Shugao Ma, and Stan Sclaroff. Meem: ro-

bust tracking via multiple experts using entropy minimiza-

tion. In ECCV, 2014.

[34] Tianzhu Zhang, Changsheng Xu, and Ming-Hsuan Yang.

Multi-task correlation particle filter for robust object track-

ing. In CVPR, 2017.

5791


