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Abstract

The linear and non-flexible nature of deep convolutional

models makes them vulnerable to carefully crafted adver-

sarial perturbations. To tackle this problem, we propose

a non-linear radial basis convolutional feature mapping

by learning a Mahalanobis-like distance function. Our

method then maps the convolutional features onto a linearly

well-separated manifold, which prevents small adversarial

perturbations from forcing a sample to cross the decision

boundary. We test the proposed method on three publicly

available image classification and segmentation datasets

namely, MNIST, ISBI ISIC 2017 skin lesion segmentation,

and NIH Chest X-Ray-14. We evaluate the robustness of our

method to different gradient (targeted and untargeted) and

non-gradient based attacks and compare it to several non-

gradient masking defense strategies. Our results demon-

strate that the proposed method can increase the resilience

of deep convolutional neural networks to adversarial per-

turbations without accuracy drop on clean data.

1. Introduction

Deep convolutional neural networks (CNNs) are highly

vulnerable to adversarial perturbations [14, 43] produced

by two main groups of attack mechanisms: white- and

black-box, in which the target model parameters and ar-

chitecture are accessible and hidden, respectively. In or-

der to mitigate the effect of adversarial attacks, two cate-

gories of defense techniques have been proposed: data-level

and algorithmic-level. Data-level methods include adver-

sarial training [14, 43], pre-/post-processing methods (e.g.,

feature squeezing) [55], pre-processing using basis func-
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tions [39], and noise removal [16, 28]. Algorithmic-level

methods [12, 18, 37] modify the deep model or the train-

ing algorithm by reducing the magnitude of gradients [32]

or blocking/masking gradients [3, 15, 41]. However, these

approaches are not completely effective against several dif-

ferent white- and black-box attacks [28, 37, 47] and pre-

processing based methods might sacrifice accuracy to gain

resilience to attacks that may never happen. Generally, most

of these defense strategies cause a drop in the standard ac-

curacy on clean data [48]. For more details on adversarial

attacks and defenses, we refer the readers to [56].

Gradient masking has shown sub-optimal performance

against different types of adversarial attacks [31, 47]. Atha-

lye et al. [2] identified obfuscated gradients, a special case

of gradient masking that leads to a false sense of security

in defenses against adversarial perturbations. They showed

that 7 out of 9 recent white-box defenses relying on this phe-

nomenon ([3, 8, 15, 25, 37, 41, 53]) are vulnerable to single

step or non-gradient based attacks. They finally suggested

several symptoms of defenses that rely on obfuscated gradi-

ents. Although adversarial training [27] showed reasonable

robustness against first order adversaries, this method has

two major drawbacks. First, in practice the attack strategy

is unknown and it is difficult to choose appropriate adver-

sarial images for training, and second, the method requires

more training time [1]. Furthermore, recent studies [23, 40]

show that the adversarial training overfits the L∞ metric

while remaining highly susceptible to L0, L1, and L2 per-

turbations.

As explored in the literature, successful adversarial at-

tacks are mainly the result of models being too linear [13,

14, 24, 38] in high dimensional manifolds causing the de-

cision boundary to be close to the manifold of the training

data [45] and/or because of the models’ low flexibility [10].

Another hypothesis is that adversarial examples are off the
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data manifold [22, 37, 41]. To boost the non-linearity of a

model, Goodfellow et al. [14] explored a variety of meth-

ods involving utilizing quadratic units and including shal-

low and deep radial basis function (RBF) networks. They

achieved reasonably good performance against adversarial

perturbations with shallow RBF networks. However, they

found it difficult to train deep RBF models, leading to a

high training error using stochastic gradient decent. Fawzi

et al. [11] showed that support vector machines with RBF

kernels can effectively resist adversarial attacks.

Typically, a single RBF network layer takes a vector

of x ∈ R
n as input and outputs a scalar function of the

input vector f(x) : R
n → R computed as f (x) =

∑P

i=1 wie
−βiD(x,ci), where P is the number of neurons

in the hidden layer, ci is the center vector for neuron

i, D(x, ci) measures the distance between x and ci, wi

weights the output of neuron i, and βi corresponds to the

width of the Gaussian. The input can be made linearly sep-

arable with a high probability by transforming it to a higher

dimensional space (Cover’s theorem [7])). The Gaussian

basis functions, commonly used in RBF networks, are local

to the center vectors, i.e., lim‖x‖→∞ D(x, ci) = 0, which

in turn implies that a small perturbation ǫ added to a sample

input x of the neuron has an increasingly smaller effect on

the output response as x becomes farther from the center of

that neuron. Traditional RBF networks are normally trained

in two sequential steps. First, an unsupervised method, e.g.,

K-means clustering, is applied to find the RBF centers [52]

and, second, a linear model with coefficients wi is fit to the

desired outputs.

To tackle the linearity issue of the current deep CNN

models (i.e., which are persistent despite stacking sev-

eral linear units and using non-linear activation functions

[13, 14, 24, 38]), which results in vulnerability to adversar-

ial perturbations, we equip CNNs with radial basis map-

ping kernels. Radial basis functions with Euclidean dis-

tance might not be effective as the activation of each neuron

depends only on the Euclidean distance between a pattern

and the neuron center. Also, since the activation function is

constrained to be symmetrical, all attributes are considered

equally relevant. To address these limitations, we can add

flexibility to the model by applying asymmetrical quadratic

distance functions, such as the Mahalanobis distance, to the

activation function in order to take into account the variabil-

ity of the attributes and their correlations. However, com-

puting the Mahalanobis distance requires complete knowl-

edge of the attributes, which are not readily available in dy-

namic environments (e.g., features iteratively updated dur-

ing training CNNs), and are not optimized to maximize the

accuracy of the model.

Contributions. In this paper, (I) we propose a new non-

linear kernel based Mahalanobis distance-like feature trans-

formation method. (II) Unlike the traditional Mahalanobis

formulation, in which a constant, pre-defined covariance

matrix is adopted, we propose to learn such a “transforma-

tion” matrix Ψ. (III) We propose to learn the RBF cen-

ters and the Gaussian widths in our RBF transformers. (IV)

Our method adds robustness to attacks without reducing the

model’s performance on clean data, which is not the case

for previously proposed defenses. (V) We propose a defense

mechanism which can be applied to various tasks, e.g., clas-

sification, segmentation (both evaluated in this paper), and

object detection.

2. Method

In this section, we introduce a novel asymmetrical

quadratic distance function (2.1), and then propose a mani-

fold mapping method using the proposed distance function

(2.2). Then we discuss the model optimization and mani-

fold parameter learning algorithm (2.3).

2.1. Adaptive kernelized distance calculation

Given a convolutional feature map f (l) ∈ Fnm of size

n × m × K(l) for layer l of a CNN, the goal is to map

the features onto a new manifold g(l) ∈ Gnm of size

n × m × P (l) where classes are more likely to be linearly

separable. Towards this end, we leverage an RBF trans-

former that takes feature vectors of f
(l)

K(l) as input and maps

them onto a linearly separable manifold by learning a trans-

formation matrix Ψ(l) ∈ R
K(l)×P (l)

and a non-linear kernel

κ : F × F → R for which there exists a representation

manifold G and a map φ : F → G such that

κ(x, z) = φ(x).φ(z) ∀x, z ∈ F (1)

The kth RBF neuron activation function is given by

φ
(l)
k = e

−β
(l)
k

D
(

f
(l)

K(l)
,c

(l)
k

)

(2)

where c
(l)
k is kth learnable center, and the learnable param-

eter β
(l)
k controls the width of the kth Gaussian function.

We use a distance metric D(.) inspired by the Mahalanobis

distance, which refers to a distance between a convolutional

feature vector and a center, and is computed as:

D
(

f
(l)

K(l) , c
(l)
k

)

=
(

f
(l)

K(l) − c
(l)
k

)T (

Ψ(l)
)−1 (

f
(l)

K(l) − c
(l)
k

)

(3)

where Ψ(l) refers to the learnable transformation matrix of

size K(l) × P (l). To ensure that the transformation matrix

Ψ(l) is positive semi-definite, we set Ψ(l) = AAT and opti-

mize for A.

Finally, the transformed feature vector g(l)(f
(l)

K(l)) is

computed as:
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g(l)
(

f
(l)

K(l)

)

=

P (l)
∑

k=1

(

w
(l)
k · φ

(l)
k

)

+ b(l) (4)

2.2. The proposed manifold mapping

For any intermediate layer l in the network, we compute

the transformed feature vector when using the RBF trans-

formation matrix as

g(l)
(

f (l)
)

=

P (l)
∑

k=1

(

w
(l)
k · φ

(l)
k

)

+ b(l)

=

P (l)
∑

k=1

(

wk
(l) · φ

(l)
k

(

f
(l)
k (Θ)

))

+ b(l)

=

P (l)
∑

k=1

(

w
(l)
k

)

· exp

{

−β
(l)
k

(

f
(l)
k (Θ)

− c
(l)
k

)T (

Ψ(l)
)−1 (

f
(l)
k (Θ)− c

(l)
k

)

}

+ b(l)

(5)

where f (l) is a function of the CNN parameters Θ.

The detailed diagram of the mapping step is shown in

Figure 1. In each layer l of network, output feature maps of

the convolutional block are concatenated to the transformed

feature maps (Figure 2).
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Figure 1: Detailed diagram of the proposed radial basis

mapping block g(l)(f (l)). In the figure, i = 1 : n;

j = 1 : m; l = 1 : L where n, m, K(l), and P (l) are

the width, the height, and the number of channels of the

input and the output feature maps respectively for layer l.

For the last layer (layer L) of the network, as shown in

the green bounding box in Figure 2, the expression becomes

g(L)
(

f (L)
)

=

P (L)
∑

k=1

(

w
(L)
k

)

· exp

{

−β
(L)
k

(

f
(L)
k (Θ)

− c
(L)
k

)T (

Ψ(L)
)−1 (

f
(L)
k (Θ)− c

(L)
k

)

}

+ b(L)

(6)

The concatenation output of the last layer is given by

y =
[

g(L)(f (L)), f (L)
]

(7)

2.3. Model optimization and mapping parameter
learning

All the RBF parameters, i.e., the transformation matrix

Ψ(l), the RBF centers C(l) = {c
(l)
1 , c

(l)
2 , · · · , c

(l)

N(l)} (where

N (l) denotes the number of RBF centers in layer l), and the

widths of the Gaussians β
(l)
i , along with all the CNN pa-

rameters Θ, are learned end-to-end using back-propagation.

This approach results in the local RBF centers being ad-

justed optimally as they are updated based on the whole

network parameters.

The categorical cross entropy loss is calculated using the

softmax activation applied to the concatenation output of

the last layer. The softmax activation function for the ith

class, denoted by ξ(y)i, is defined as

ξ(y)i =
eyi

∑Q

j eyj

(8)

where Q represents the total number of classes. The loss is

therefore defined by

L = −

Q
∑

i

ti log (ξ(y)i) (9)

Since the multi-class classification labels are one-hot en-

coded, the expression for the loss contains only the element

of the target vector t which is not zero, i.e., tp, where p

denotes the positive class. This expression can be simpli-

fied by discarding the summation elements which are zero

because of the target labels, and we get

L = − log

(

eyp

∑Q

j eyj

)

(10)

where yp represents the network output for the positive

class.

Therefore, we define a loss function L encoding the clas-

sification error in the transformed manifold and seek A∗,

β∗, C∗, and Θ∗ that minimize L:

A∗, C∗, β∗,Θ∗ = arg min
A,C,β,Θ

L (A,C, β,Θ) . (11)
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Figure 2: Placing radial basis mapping blocks in a CNN network. ⊗ shows concatenation operation, and f (l) is the output

of convolution layer l. The output of each RBF block contains n ∈ [1, N ] channels that are concatenated to convolutional

feature maps.

3. Data

We conduct two sets of experiments: image (i) classifica-

tion and (ii) segmentation. (i) For the image classification

experiments, we use the MNIST [21] and the NIH Chest

X-Ray-14 [51] (hereafter referred to as CHEST) datasets,

where the latter comprises of 112,120 gray-scale images

with 14 disease labels and one ‘no (clinical) finding’ label.

We treat all the disease classes as positive and formulate a

binary classification task. We randomly selected 90,000 im-

ages for training: 45,000 images with “positive” label and

the remaining 45,000 with “negative” label. The validation

set comprised of 13,332 images with 6,666 images of each

label. We randomly picked 200 unseen images as the test

set, with 93 images of positive and 107 images of nega-

tive class, respectively. These clean (test) images are used

for carrying out different adversarial attacks and the models

trained on clean images are evaluated against them. (ii) For

the image segmentation task experiments, we use the 2D

RGB skin lesion dataset from the 2017 IEEE ISBI Inter-

national Skin Imaging Collaboration (ISIC) Challenge [6]

(hereafter referred to as SKIN). We trained on a set of 2,000

images and test on an unseen set of 150 images.

4. Experiments and results

In this section, we report the results of several experi-

ments for two tasks of classification and segmentation. We

first start with MNIST as it has extensively been used for

evaluating adversarial attacks and defenses. Next, we show

how the proposed method is applicable to another classifi-

cation dataset and segmentation task.

4.1. Evaluation on classification task

In this section, we analyze the performance of the

proposed method on two different classifications datasets

MNIST and CHEST. In Table 1, we report the results of the

proposed method on MNIST dataset when attacked by dif-

ferent targeted and un-targeted attacks i.e., fast gradient sign

method (FGSM) [19], basic iterative method (BIM) [19],

projected gradient descent (PGD) [27], Carlini & Wag-

ner method (C&W) [5], and momentum iterative method

(MIM) [9] (the winner of NIPS 2017 adversarial attacks

competition). The proposed method (i.e., PROP) success-

fully resists all the attacks (with both L∞ and L2 per-

turbations) for which the 3-layers CNN (i.e., ORIG) net-

work almost completely fails e.g., for the strongest attack

(i.e., MIM) the proposed method achieves 64.25% accu-

racy while the original CNN network obtains almost zero

(0.58%) accuracy. Further, we test the proposed method

with two non-gradient based attacks: simultaneous per-

turbation stochastic approximation (SPSA) [49] and Gaus-

sian additive noise (GN) [33] to show that the robustness

of the proposed method is not because of gradient mask-

ing. We compare our results to other defenses e.g., Binary

CNN, Nearest Neighbour (NN) model, Analysis by Synthe-

sis (ABS), Binary ABS [23] and Fortified Networks [20].

Looking at the Binary ABS and ABS results in Table 1,

the former generally outperforms the latter, but it should be

noted that Binary ABS is applicable only to simple datasets,

e.g., MNIST, as it leverages binarization. Although Forti-

fied Net outperforms our method for the FGSM attack, it

has been tested only on gradient-based attacks, and there-

fore, it is unclear how it would perform against gradient-

free attacks such as SPSA and GN.

To ensure that the robustness of the proposed method is

not due to masked/obfuscated gradient, as suggested by [2],

we test the proposed feature mapping method based on sev-

eral characteristic behaviors of defenses that cause obfus-

cated gradients to occur. a) As reported in Table 1, one-

step attacks (e.g., FGSM) did not perform better than iter-

ative attacks (e.g., BIM, MIM); b) According to Tables 4

and 5, black-box attacks did not perform better than white-

box ones; c) as shown in Figure 3 (a and b), larger distor-

tion factors monotonically increase the attack success rate;

d) the proposed method performs well against gradient-free

attacks e.g., GN and SPSA. The subplot (b) in Figure 3 also

indicates that the robustness of the proposed method is not

because of numerical instability of gradients.

Next, to quantify the compactness and separability of

different clusters/classes, we evaluate the features produced

ORIG and PROP methods with clustering evaluation tech-

niques such as mutual information based score [50], homo-
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Table 1: Classification accuracy under different attacks tested on MNIST dataset. FGSM: ǫ = 0.3; BIM: ǫ = 0.3 and

iterations = 5; MIM: ǫ = 0.3, iterations = 10, and decay factor = 1; PGD: ǫ = 0.1, iterations = 40; C&W: iterations = 50,

GN: ǫ = 20; SPSA: ǫ = 0.3. “n/a” denotes that the corresponding entry was not reported in the respective paper.

Models Clean
L2 L∞

C&W [5] GN [33] FGSM [19] BIM [19] MIM [9] PGD [27] SPSA [49]

ORIG [30] 0.9930 0.1808 0.7227 0.0968 0.0070 0.0051 0.1365 0.3200

Binary CNN [23] 0.9850 n/a 0.9200 0.7100 0.7000 0.7000 n/a n/a

NN [23] 0.9690 n/a 0.9100 0.6800 0.4300 0.2600 n/a n/a

Binary ABS [23] 0.9900 n/a 0.8900 0.8500 0.8600 0.8500 n/a n/a

ABS [23] 0.9900 n/a 0.9800 0.3400 0.1300 0.1700 n/a n/a

Fortified Net [20] 0.9893 0.6058 n/a 0.9131 n/a n/a 0.7954 n/a

PROP 0.9942 0.9879 0.7506 0.8582 0.7887 0.6425 0.8157 0.7092
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(a) top: PGD and bottom: GN attack

(b) Gradient distribution

Figure 3: Gradient masking analysis: (a) accuracy-

distortion plots and (b) gradient distribution for the pro-

posed method and the original CNN

geneity and completeness [35], Silhouette coefficient [36],

and Calinski-Harabaz index [4]. Both Silhouette coefficient

and Calinski-Harabaz index quantify how well clusters are

separated from each other and how compact they are with-

out taking into account the ground truth labels, while mu-

tual information based score, homogeneity, and complete-

ness scores evaluate clusters based on labels. As reported in

Table 2, when the original CNN network applies radial basis

feature mapping it achieves considerably higher scores (for

all the metrics, higher values are better). As both the orig-

inal and the proposed method achieved high classification

test accuracy i.e., ∼ 99%, the difference in scores for label

based metrics, i.e., mutual information based, homogeneity,

and completeness, scores are small.

Table 2: Feature mapping analysis via intra-class compact-

ness and inter-class separability measures of the MNIST

dataset for original 3-layer CNN versus the proposed

method. The abbreviated column headers are Silhouette,

Calinski, Mutual Information, Homogeneity, and Com-

pleteness metrics, respectively.

Sil. Cal. MI Homo. Comp.

ORIG [30] 0.2612 1658.20 0.9695 0.9696 0.9721

PROP 0.4284 2570.42 0.9720 0.9721 0.9815

In Figure 4, we visualize the feature spaces of each layer

in a simple 3-layer CNN using t-SNE [26] and PCA [17]

methods by reducing the high dimensional feature space

into two dimensions. As can be seen, the proposed ra-

dial basis feature mapping reduces intra-class and increases

inter-class distances.

To test the robustness of the proposed method on

CHEST, we follow the strategy of Taghanaki et al. [44].

We select Inception-ResNet-v2 [42] and modify it by the

proposed radial basis function blocks. According to the

study done by Taghanaki et al. [44], we focus on the

most effective attacks in term of imperceptibility and power

i.e., gradient-based attacks (basic iterative method [19]:

BIM and L1-BIM). We also compare the proposed method

with two defense strategies: Gaussian data augmentation
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Figure 4: Feature space visualization at different layers via t-SNE and PCA of MNIST dataset produced via original 3-layer

CNN network and the proposed method.

(GDA) [57] and feature squeezing (FSM) [55]. GDA is a

data augmentation technique that augments a dataset with

copies of the original samples to which Gaussian noise has

been added. FSM method reduces the precision of the

components of the original input by encoding them with a

smaller number of bits. In Table 3, we report the classifi-

cation accuracy of different attacks and defenses (including

PROP) on CHEST.

Table 3: Classification accuracy on CHEST for different

attacks and defenses.

Defense

Attack Iteration ORIG GDA FSM PROP

L1 BIM [19] 5 0 0 0.55 0.63

L∞ BIM [19] 5 0 0 0.54 0.65

Clean - 0.74 0.75 0.57 0.74

4.2. Evaluation on segmentation task

To assess the segmentation vulnerability to adversarial

attacks, we apply the dense adversary generation (DAG)

method proposed by Xie et al. [54] to two state-of-the-art

segmentation networks: U-Net [34] and V-Net [29] under

both white- and black-box conditions. We compare the pro-

posed feature mapping method to other defense strategies

e.g., Gaussian and median feature squeezing [55] (FSG and

FSM, respectively) and adversarial training [14] (ADVT)

on SKIN. From Table 4, it can be seen that the proposed

method is more robust to adversarial attacks and when ap-

plied to U-Net, its performance deteriorates much lesser

than the next best method (ADVT) 1.60% and 6.39% vs

9.44% and 13.47% after 10 and 30 iterations of the at-

tack with γ = 0.03. Similar performance was also ob-

served for V-Net, where the accuracy drop of the proposed

method using the same γ for 10 iterations was 8.50%,

while the next best method (ADVT) dropped by 11.76%.

It should also be noted that applying the feature mapping

led to an improvement in the segmentation accuracy on

clean (non-attacked/unperturbed) images, and the perfor-

mance increased to 0.7780 from the original 0.7743 for U-

Net, and to 0.8213 from the original 0.8070 for V-Net.

Figure 5 visualizes the segmentation results of a few

samples from SKIN for different defense strategies. As

shown, the proposed method obtains the closest results to

the ISIC ground truth (GT) than all other methods. Al-

though adversarial training (ADVT) also produces promis-

ing segmentation results, it requires knowledge of the adver-

sary in order to perform robust optimization which is almost

impossible to obtain in practice since the attack is unknown.

However, the proposed method does not have such a depen-

dency.

As reported in Table 5, under black-box attack, the pro-

posed method is the best performing method across all 12

experiments except for one in which the accuracy of the

best method was just 0.0022 higher (i.e., 0.7284 ± 0.2682
vs 0.7262 ± 0.2621). However, it should be noted that the

standard deviation of the winner is larger than the proposed

method.

Next, we analyze the usefulness of learning the trans-

formation matrix (Ψ) and width of the Gaussian (β) in our

Mahalanobis-like distance calculation. As can be seen in

Table 6, in all the cases, i.e., testing with clean images and

images 10 and 30 iterations of attack, our method with Ψ
and β achieved higher performance.
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Table 4: Segmentation results (average DICE ± standard error) of different defense mechanisms compared to the proposed

radial basis feature mapping method for V-Net and U-Net under DAG attack. 10i and 30i refer to 10 and 30 iterations of

attack, respectively.

Network Method Clean 10i (% Accuracy drop) 30i (% Accuracy drop)

U-Net [34]

ORIG [34] 0.7743± 0.0202 0.5594± 0.0196(27.75%) 0.4396± 0.0222(43.23%)

FSG [55] 0.7292± 0.0229 0.6382± 0.0206(15.58%) 0.5858± 0.0218(24.34%)

FSM [55] 0.7695± 0.0198 0.6039± 0.0199(22.01%) 0.5396± 0.0211(30.31%)

ADVT [14] 0.6703± 0.0273 0.7012± 0.0255(9.44%) 0.6700± 0.0260(13.47%)

PROP 0.7780 ± 0.0209 0.7619 ± 0.0208 (1.60%) 0.7248 ± 0.0226 (6.39%)

V-Net [29]

ORIG [34] 0.8070± 0.0189 0.5320± 0.0207(34.10%) 0.3865± 0.0217(52.10%)

FSG [55] 0.7886± 0.0205 0.6990± 0.0189(13.38%) 0.6840± 0.0188(15.24%)

FSM [55] 0.8084± 0.0189 0.5928± 0.0209(26.54%) 0.5144± 0.0218(36.26%)

ADVT [14] 0.7924± 0.0162 0.7121± 0.0174(11.76%) 0.7113 ± 0.0179 (11.85%)

PROP 0.8213 ± 0.0177 0.7384 ± 0.0169 (8.50%) 0.6944± 0.0178(13.95%)

Table 5: Segmentation DICE ± standard error scores of black-box attacks; adversarial images were produced with methods

in first left column and tested with methods in the first row. U-PROP and V-PROP refer to equipped U-Net and V-Net with

our mapping method.

- U-Net [34] U-PROP V-Net [29] V-PROP

U-Net [34] - 0.7341 ± 0.0205 0.6364± 0.0189 0.7210± 0.0189

U-PROP 0.7284 ± 0.0219 - 0.6590± 0.0218 0.7262± 0.0241

V-Net [29] 0.7649± 0.0168 0.7773 ± 0.0167 - 0.7478± 0.2090

V-PROP 0.7922± 0.0188 0.7964 ± 0.0192 0.6948± 0.0171 -

Figure 5: Lesion segmentation sample results on SKIN for different defense strategies applied with U-Net.

Figure 6 shows how the Ψ of a single layer converges

after a few epochs on the MNIST dataset. The Y-axis is the

Frobenius norm of the change in Ψ between two consecu-

tive epochs. Adopting the value Ψ converges to results in a
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Table 6: Ablation study over the usefulness of learning the transformation matrix Ψ and β on SKIN for V-Net; mean ±
standard error

Ψ β Dice FPR FNR

Clean

✗ ✓ 0.7721± 0.0210 0.0149± 0.0022 0.2041± 0.0245

✓ ✗ 0.8200± 0.0163 0.0177± 0.0026 0.1547± 0.0188

✗ ✗ 0.8002± 0.0184 0.0137± 0.0022 0.1883± 0.0211

✓ ✓ 0.8213 ± 0.0177 0.0141± 0.0020 0.1706± 0.0200

10i

✗ ✓ 0.6471± 0.0213 0.0437± 0.0052 0.1992± 0.0261

✓ ✗ 0.7010± 0.0161 0.0606± 0.0054 0.1020± 0.0166

✗ ✗ 0.6740± 0.0187 0.0458± 0.0037 0.1472± 0.0217

✓ ✓ 0.7384 ± 0.0169 0.0444± 0.0041 0.1234± 0.0186

30i

✗ ✓ 0.6010± 0.0221 0.0371± 0.0030 0.2304± 0.0273

✓ ✗ 0.6458± 0.0180 0.0633± 0.0042 0.1164± 0.0183

✗ ✗ 0.6188± 0.0188 0.0615± 0.0040 0.1384± 0.0205

✓ ✓ 0.6944 ± 0.0179 0.0418± 0.0038 0.1489± 0.0205

superior performance (e.g., mean Dice 0.8213 vs 0.7721, as

reported in Table 6) compared to when we do not optimize

for Ψ, i.e., hold it constant (identity matrix).
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0.000

0.005
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ro

b
en

iu
s

n
o

rm

Figure 6: Convergence: Plotting the Frobenius norm of the

change in Ψ between two consecutive epochs.

5. Implementation details

5.1. Classification experiments

• MNIST experiments: For both the original CNN with

3-layers (i.e., ORIG) and the proposed method (i.e., PROP),

we used a batch size of 128 and Adam optimizer with learn-

ing rate of 0.001.

• CHEST: Inception-ResNet-v2 network was trained

with a batch size of 4 with RMSProp optimizer [46] with

a decay of 0.9 and ǫ = 1 and an initial learning rate of

0.045, decayed every 2 epochs using an exponential rate of

0.94.

For all the gradient based attacks applied in the classifi-

cation part, we used the CleverHans library [30], and for the

Gaussian additive noise attack, we used FoolBox [33].

5.2. Segmentation experiments

For both U-Net and V-Net, we used a batch size of 16,

ADADELTA optimizer with learning rate of 1.0, rho = 0.95,

and decay = 0.0. We tested the DAG method with 10 and

30 iterations and perturbation factor γ = 0.03. For FSM

and FSG defenses, we applied a window size of 3× 3 and a

standard deviation of 1.0, respectively.

6. Conclusion

We proposed a nonlinear radial basis feature mapping

method to transform layer-wise convolutional features into

a new manifold, where improved class separation reduces

the effectiveness of perturbations when attempting to fool

the model. We evaluated the model under white- and black-

box attacks for two different tasks of image classification

and segmentation and compared our method to other non-

gradient based defenses. We also performed several tests to

ensure that the robustness of the proposed method is neither

because of numerical instability of gradients nor because

of gradient masking. In contrast to previous methods, our

proposed feature mapping improved the classification and

segmentation accuracy on both clean and perturbed images.
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[47] F. Tramèr, A. Kurakin, N. Papernot, I. Goodfellow,

D. Boneh, and P. McDaniel. Ensemble adversarial train-

ing: Attacks and defenses. arXiv preprint arXiv:1705.07204,

2017.

[48] D. Tsipras, S. Santurkar, L. Engstrom, A. Turner, and

A. Madry. There is no free lunch in adversarial robust-

ness (but there are unexpected benefits). arXiv preprint

arXiv:1805.12152, 2018.

[49] J. Uesato, B. O’Donoghue, A. v. d. Oord, and P. Kohli. Ad-

versarial risk and the dangers of evaluating against weak at-

tacks. arXiv preprint arXiv:1802.05666, 2018.

[50] N. X. Vinh, J. Epps, and J. Bailey. Information theoretic

measures for clusterings comparison: Variants, properties,

normalization and correction for chance. Journal of Machine

Learning Research, 11(Oct):2837–2854, 2010.

[51] X. Wang, Y. Peng, L. Lu, Z. Lu, M. Bagheri, and R. M.

Summers. Chestx-ray8: Hospital-scale chest x-ray database

and benchmarks on weakly-supervised classification and lo-

calization of common thorax diseases. In Computer Vision

and Pattern Recognition (CVPR), 2017 IEEE Conference on,

pages 3462–3471. IEEE, 2017.

[52] Y. Wu, H. Wang, B. Zhang, and K.-L. Du. Using radial basis

function networks for function approximation and classifica-

tion. ISRN Applied Mathematics, 2012.

[53] C. Xie, J. Wang, Z. Zhang, Z. Ren, and A. Yuille. Mitigat-

ing adversarial effects through randomization. arXiv preprint

arXiv:1711.01991, 2017.

[54] C. Xie, J. Wang, Z. Zhang, Y. Zhou, L. Xie, and A. Yuille.

Adversarial examples for semantic segmentation and object

detection. arXiv preprint arXiv:1703.08603, 2017.

[55] W. Xu, D. Evans, and Y. Qi. Feature squeezing: Detecting

adversarial examples in deep neural networks. arXiv preprint

arXiv:1704.01155, 2017.

[56] X. Yuan, P. He, Q. Zhu, R. R. Bhat, and X. Li. Adversarial

examples: Attacks and defenses for deep learning. arXiv

preprint arXiv:1712.07107, 2018.

[57] V. Zantedeschi, M.-I. Nicolae, and A. Rawat. Efficient de-

fenses against adversarial attacks. In Proceedings of the 10th

ACM Workshop on Artificial Intelligence and Security, pages

39–49. ACM, 2017.

11349


