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Figure 1: Top left: slam dunk video visualizing backboard deformations with ball trajectory by yellow arrow. Bottom left (a)-(d) show

spatio-temporal slices along the single red line at top left. Right (a)-(d) show backgrounds in the green square at top left. (b) Acceleration

method [24] produces messy artifacts due to quick ball motion. (c) Jerk method [17] magnifies meaningful subtle backboard deformations

but misdetects non-meaningful subtle distortions of background window caused by photographic noise (purple circle). (d) On the contrary,

our proposed method magnifies only meaningful subtle backboard deformations. See supplementary material for video results.

Abstract

Video magnification methods can magnify and reveal

subtle changes invisible to the naked eye. However, in such

subtle changes, meaningful ones caused by physical and

natural phenomena are mixed with non-meaningful ones

caused by photographic noise. Therefore, current methods

often produce noisy and misleading magnification outputs

due to the non-meaningful subtle changes. For detecting

only meaningful subtle changes, several methods have been

proposed but require human manipulations, additional re-

sources, or input video scene limitations. In this paper, we

present a novel method using fractional anisotropy (FA) to

detect only meaningful subtle changes without the afore-

mentioned requirements. FA has been used in neuroscience

to evaluate anisotropic diffusion of water molecules in the

body. On the basis of our observation that temporal distri-

bution of meaningful subtle changes more clearly indicates

anisotropic diffusion than that of non-meaningful ones, we

used FA to design a fractional anisotropic filter that passes

only meaningful subtle changes. Using the filter enables our

method to obtain better and more impressive magnification

results than those obtained with state-of-the-art methods.

1. Introduction

Physical and natural phenomena often cause meaningful

and attractive changes in a small world. For example, mus-

cles and skin are slightly deformed by impacts spreading

through our bodies, materials deform elastically to absorb

external force and thus prevent breakage and ensure safety,

and strumming ukulele strings produce complicated string

vibrations and result in generating wonderful sounds. How-

ever, these meaningful and attractive subtle changes are too

small to see with the naked eye.

To visualize such subtle motion or color changes, video

magnification methods have been proposed [22, 20, 21].

These methods are typically based on Eulerian approach

which can measure subtle motion or color changes pixel

by pixel. With recently developed spatio-temporal filtering

[24, 17], current video magnification methods produce good

results for magnifying and revealing only subtle changes

under the presence of large motions of objects. However,

in such subtle changes, meaningful ones caused by physi-

cal and natural phenomena are mixed with non-meaningful

ones caused by noise introduced during the photographic

process (i.e. low light levels, high sensor gain, short expo-
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sure time, and so on). Therefore, current methods often pro-

duce noisy magnification outputs due to the non-meaningful

subtle changes; it is likely to lead users to incorrect insights

and conclusions for a small world.

For detecting only meaningful subtle changes, layer-

based methods have been developed [5, 7, 18]. These meth-

ods separate a target region to be magnified from the back-

ground by manual segmentation [5, 18] or depth layers [7].

They can magnify only meaningful subtle changes if they

know where the changes are, but require burdensome in-

terventions such as complicated manual operation and ar-

ranged environment for using a depth sensor.

In contrast, several methods magnify only meaning-

ful subtle changes without the aforementioned interven-

tions. By focusing on meaningful motion changes appear-

ing around edges [14], edge-aware spatial smoothing meth-

ods have been proposed [20, 19]. These methods help to

remove non-meaningful subtle changes in flat textured re-

gions but have limitations in that they can not be applied to

color magnification or to the removal of them around edges.

Alternatively, principal component analysis (PCA) has been

used for detecting only meaningful subtle changes [23] but

its limitation is that meaningful subtle changes need to be

larger than non-meaningful ones as the principal component

in input video scenes.

This paper presents a novel video magnification method

for detecting and magnifying only meaningful subtle color

or motion changes under the presence of photographic

noise, without additional interventions, resources, or in-

put video scene limitations. On the basis of our observa-

tion that temporal distribution of meaningful subtle changes

more clearly indicates anisotropic diffusion than that of

non-meaningful ones caused by photographic noise, we

considered that anisotropic diffusion in temporal distribu-

tion enables us to detect only meaningful subtle changes.

Therefore, we focused on fractional anisotropy (FA), which

is used in neuroscience to evaluate anisotropic diffusion of

water molecules in the body for revealing the shape of tiny

nerve cells [11, 2]. In developing our method, we used FA to

design a novel filter, which we call a fractional anisotropic

filter, that passes only meaningful subtle changes and ig-

nores non-meaningful ones. Our method, in which the frac-

tional anisotropic filter is applied to a state-of-the-art jerk-

aware method [17], produces impressive color or motion

magnification results in various input video scenes.

The main contributions of this paper are: (a) a success-

ful application of fractional anisotropy, a popular measure

in other research fields, to temporal analysis of video data,

(b) a novel filter for passing only meaningful subtle color or

motion changes under the presence of noise introduced dur-

ing photographic process in various input video scenes, (c)

a newly edge-aware regularization technique that incorpo-

rates strong normalization with hierarchical pyramid repre-

sentation for refining motion information, and (d) showing

of the qualitative and quantitative effects our method has on

video magnification.

2. Related Work

2.1. Lagrangian Approach

Liu et al. [10] first presented the concept of video mag-

nification with a Lagrangian approach. This approach uses

optical flow to estimate the motion difference of frames.

Through spatial registration of background motions, it can

output a video in which subtle motion changes are magni-

fied. However, estimating optical flow in this approach is

computationally expensive and has been investigated as an

unsolved problem [16, 8, 14].

2.2. Learning-based Approach

Recently, a learning-based approach that uses a deep

neural network has been proposed [12]. The network takes

two frames as input with an amplification factor and outputs

a new frame, in which subtle changes are magnified. The

implicitly learned motion representations in the network en-

able better noise handling to be achieved than with previous

hand-crafted approaches. However, as this approach often

misses subtle changes due to a strong dependence on a train-

ing dataset, the application range is still limited.

2.3. Eulerian Approach

Unlike the above approaches, our method is based on

the most commonly used Eulerian approach [22, 20, 21, 24,

17]. Eulerian-based methods do not explicitly require ob-

ject tracking and can detect subtle motion changes, as well

as subtle color changes at a fixed position over time. They

first decompose image sequences into Gaussian pyramids

for color magnification [22, 24, 17] or complex-steerable

pyramids (or Riesz pyramids) for motion magnification

[20, 21, 24, 17], then the signals of each pixel at each pyra-

mid are temporally filtered to detect subtle changes to be

magnified. Although these methods can not distinguish sub-

tle changes and other large object motions in pixels, recently

developed spatio-temporal filtering techniques [24, 17] can

isolate subtle changes from the large motions and selec-

tively magnify them. However, in such subtle changes,

meaningful ones caused by physical and natural phenom-

ena are mixed with non-meaningful ones caused by pho-

tographic noise. Therefore, current methods often produce

noisy and misleading magnification outputs due to the non-

meaningful subtle changes.

For detecting only meaningful subtle changes, layer-

based methods have been developed [5, 7, 18]. Elgharib

et al. [5] and Verma et al. [18] require a user to select a

region whose subtle changes are magnified. Kooij et al. [7]

proposed a depth-weighted bilateral steerable filter for au-
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tomatically selecting a region to be magnified at the same

depth layer. After the magnification process, these methods

synthesize the magnified region and other regions to out-

put final results. They can magnify only meaningful sub-

tle changes under the presence of photographic noise if a

user knows where they are. However, they require compli-

cated human interventions [5, 18] or an arranged environ-

ment suitable for a depth sensor [7]. Consequently, these

methods are time consuming and error prone.

In contrast, several methods magnify meaningful subtle

changes under the presence of photographic noise without

the aforementioned interventions. By focusing on meaning-

ful motion changes appearing around edges [14], Wadhwa

et al. [20] applied an edge-weighted Gaussian filter (EWG)

to motion changes spatially in each image pyramid, and

Verma et al. [19] used a local Laplacian filter (LLP) [13]

to improve pyramid decomposition in video magnification

methods in terms of edges and details. These methods help

to remove non-meaningful subtle changes in flat textured re-

gions but have limitations in that they can not be applied to

color magnification or to the removal of them around edges.

Alternatively, Wu et al. [23] adopted PCA to video magnifi-

cation as a pre-processing approach. This method can mag-

nify only meaningful subtle changes in video sequences, but

for enabling PCA to work well, it has a limitation that mean-

ingful subtle changes need to be larger than non-meaningful

ones as the principal component in input video scenes.

Our proposed method is more advanced than the afore-

mentioned methods because it can magnify not only mean-

ingful subtle motion changes but also color changes under

the presence of photographic noise without the additional

requirements or input video scene limitations.

3. Methods

We now present the details of our method. First, we ex-

plain our problem definition and why FA is a useful index to

distinguish meaningful subtle changes and non-meaningful

ones caused by photographic noise. Second, we describe

how we designed our fractional anisotropic filter that passes

only meaningful subtle changes and ignore non-meaningful

ones. Finally, we show how we applied this filter to the cur-

rent color or motion magnification method. We also present

our edge-aware regularization in the motion magnification

subsection.

3.1. Problem Definition

Given an input image signal I(x, t) at an image position

x that denotes 2D pixel coordinates and a time t, video mag-

nification methods [22, 20, 24, 17] attempt to detect subtle

changes B(x, t). However, such subtle changes are often

contaminated by photographic noise as

B(x, t) = B̂(x, t) + B̃(x, t), (1)
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Figure 2: The temporal distributions of subtle intensity (top) and

phase changes that represent motion (bottom). When the mean-

ingful subtle intensity changes appear, they are correlated between

neighboring pixels (top green), but do not when photographic

noise only appears (top red). The meaningful subtle phase changes

occur in a vertical direction (bottom green) but in no direction if

they are not meaningful (bottom red). We noticed that temporal

distribution of meaningful subtle changes more clearly indicates

anisotropic diffusion than that of non-meaningful ones caused by

photographic noise (blue arrow representing the trend).

where B̂(x, t) is meaningful subtle changes and B̃(x, t) is

non-meaningful ones caused by photographic noise. There-

fore, current methods often produce noisy and misleading

magnification outputs due to the B̃(x, t).

3.2. Fractional Anisotropy

Our key idea is based on our observation that temporal

distribution of meaningful subtle changes more clearly indi-

cates anisotropic diffusion than that of non-meaningful ones

because they are subject to the regularity of nature (Fig.2).

We considered that anisotropic diffusion in temporal distri-

bution enables us to detect only meaningful subtle changes

and focused on an index called fractional anisotropy (FA).

FA is used in neuroscience to evaluate anisotropic diffu-

sion of water molecules in the body [11, 2], and its defini-

tion is based on the diffusion equation as

f(g) =
1

(2π)d/2|D|1/2
exp

✓

�
1

2
g>D�1g

◆

, (2)

where f(g) is a probability distribution of water molecules

in directions g 2 R
d, and D is a positive semi-definite

matrix that represents diffusion strength of the distribution

f(g) along or between directions g. To the best of our

knowledge, on the basis of f(g), FA is defined in 3D case

but we generalize it for multi-dimensional case as

FA :=

r

d

d� 1
·

q

Pd
i=1(λi � λ̄)2

q

Pd
i=1 λ

2
i

, (3)

where (λ1, ...,λd) are eigenvalues of D and λ̄ =
1
d

Pd
i=1 λi. The eigenvalues of D indicate diffusion

strength to the direction of eigenvectors in original direc-

tions g.
q

d
d�1 normalizes the FA value between 0 and 1.
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Figure 3: Intuitive interpretation of FA in 3D case. FA is pro-

portional to sinθ, where θ is the angle between two vectors,

(λ1,λ2,λ3) which are eigenvalues of D, (1, 1, 1). If all the eigen-

values are equal such as (3, 3, 3), which means isotropic diffusion,

θ is 0 and the FA value is 0. If only one eigenvalue is high such

as (5, 0, 0), which means anisotropic diffusion, θ is maximum and

the FA value is 1.

Moreover, we found intuitive interpretation of FA as fol-

lows: let θ be the angle between two vectors, (λ1, ...,λd),
(1, ..., 1) 2 R

d, we can rewrite the definition of FA (Eq.3)

as

FA =

r

d

d� 1
· sinθ. (4)

For proof of this, see the supplementary material. This

equation implies that FA purely evaluates the degree of

match between the eigenvalues without depending on the

magnitude of them. Since the positive semi-definite matrix

of D makes all the eigenvalues positive, if only one eigen-

value is high, which means anisotropic diffusion, θ is maxi-

mum and FA value is 1, but if all the eigenvalues are equal,

which means isotropic diffusion, θ is 0 and FA value is 0

(Fig.3).

In neuroscience fields, it is known that nerve axons

have high FA values due to anisotropic diffusion of water

molecules along their long stick structures, but if their ax-

onal structures injury occurs due to such as a traffic acci-

dent or a neural disease, the probability distribution of water

molecules in the injured area indicates isotropic diffusion

and the FA value becomes lower [11, 2]. Thus, a changing

of FA value sensitively assesses the loss or recovery process

of the shape of nerve cells in humans or animals.

From these findings, we considered that FA values

strongly respond to meaningful subtle changes compared

with non-meaningful ones, due to the anisotropic diffusion

in temporal distribution of meaningful ones. To visualize

our hypothesis, we show FA values estimated by tempo-

ral distribution of subtle phase changes in ukulele-playing

video (Fig.4). Figure 4 indicates that the FA value is higher

when the meaningful subtle phase changes appear, such as

hand swaying and vibrations of ukulele strings.

3.3. Fractional Anisotropic Filter

On the basis of our knowledge of FA, we designed a

fractional anisotropic filter. This filter is designed using FA

Input video Fractional anisotropy (FA)
Low

High
FA value

Figure 4: Visualizing fractional anisotropy (FA) values. FA values

are estimated by temporal distribution of subtle phase changes and

are high when the meaningful subtle phase changes appear such as

hand swaying and vibrations of ukulele strings.

estimated from diffusion in temporal distribution of subtle

changes so that it will pass only meaningful subtle color or

motion changes, which have high FA values.

First, we get FA value FA(x, t) as follows. Given an

image patch Px = {x1, . . . ,xh⇥w} centered at x for a

time period T = {t1, . . . , tN} centered at t, let ytj be a

(h⇥w)-dimensional vector [B(x1, tj), . . . , B(xh⇥w, tj)]
>

that represents subtle changes in Px at a time tj . We as-

sume that the N vectors yt1 , . . . ,ytN are i.i.d samples from

a temporal distribution f(y) defined as

f(y) =
1

(2π)h⇥w/2|D|1/2
exp

✓

�
1

2
y>D�1y

◆

. (5)

Using maximum likelihood estimation method, we estimate

D representing diffusion strength of the temporal distribu-

tion f(y) along or between the image positions in Px as

D = cov ([yt1 , ...,ytN ]) , (6)

where cov(X) is the variance-covariance matrix of X .

Then, we get FA(x, t) by using Eq.(3) for Eq.(6).

After calculating FA(x, t), we design the fractional

anisotropic filter FAF (x, t) with a weight γ for adjusting

the filter response as

FAFσ,γ(x, t) = (Norm(Gσ ⌦ FA(x, t)))γ , (7)

where ⌦ is a convolution operator, Gσ is a 2D Gaussian

filter with a variance σ2 to smooth filter responses, and

Norm(X) normalizes X value from 0 to 1. This filter

has a high value only when anisotropic diffusion in tempo-

ral distribution of subtle changes appears, which means it

can pass only meaningful subtle changes and ignores non-

meaningful ones.

3.4. Video Color Magnification in the Wild

We present a novel color magnification method in which

the proposed fractional anisotropic filter is applied to the

jerk-aware color magnification method [17]. The jerk

method decomposes input video signal I(x, t) into I l(x, t)
at pyramid level l using a Gaussian pyramid and detects sub-

tle changes Bl
f (x, t) with a desired frequency f as

Bl
f (x, t) = JAF l

f (x, t) � (Hf (t)⌦ I l(x, t)), (8)
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Input video
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Jerk-aware filter

(b) Jerk

Phase change
(vertical)
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(d) Our method

Fractional anisotropic filter

(c) Jerk w/ FAF
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(*) Jerk w/ HEAR
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Figure 5: Our motion magnification method. (a) Acceleration method [24] misdetects quick hand strumming. (b) Jerk method [17] ignores

the quick motion but misdetects non-meaningful subtle phase changes caused by photographic noise. (c) By using fractional anisotropic

filter (FAF), we can detect only meaningful subtle phase changes of the ukulele strings but slightly misdetects non-meaningful ones in flat

textured areas (purple quadrangles). (d) Our method further applies hierarchical edge-aware regularization (HEAR) to refine them. (*)

Using only HEAR is insufficient for complex areas (purple quadrangles). These results indicate both of FAF and HEAR are needed.

where Hf (t) is the temporal acceleration filter [24],

JAF l
f (x, t) is the jerk-aware filter [17], and � is an

element-wise product. For details, see [17].

However, these subtle changes often include non-

meaningful ones caused by photographic noise. To de-

tect only meaningful subtle color changes, we design a

fractional anisotropic filter FAF l
f,σ,γ(x, t) from Bl

f (x, t)
through Eqs.(5)-(7). After this designing, we obtain the

color magnification signals Î lf (x, t) with the amplification

factor α at each pyramid level l as

Î lf (x, t) = I l(x, t) + α(FAF l
f,σ,γ(x, t) �B

l
f (x, t)). (9)

This process enables us to produce good color magnifica-

tion results under the presence of photographic noise.

3.5. Video Motion Magnification in the Wild

For magnifying subtle motions, we used the jerk-aware

phase-based method [17]. This method is based on the use

of the local phase changes in video that represent local mo-

tion changes [6]. To obtain local phase information, com-

plex steerable filters ψl
ω,θ, which are sets of filters with a

motion orientation θ at each spatial scale ω and pyramid

level l, are applied to I(x, t) as

ψl
ω,θ ⌦ I(x, t) = Al

ω(x, θ, t)e
iφl

ω
(x,θ,t), (10)

where Al
ω(x, θ, t) is amplitude and φl

ω(x, θ, t) is phase.

After obtaining the phase information, we detect subtle

phase changes Cl
f,ω(x, θ, t) with a desired frequency f as

Cl
f,ω(x, θ, t) = pJAF l

f,ω(x, θ, t) �
�

Hf (t)⌦ φl
ω(x, θ, t)

�

,

(11)

where pJAF l
f,ω(x, θ, t) is the jerk-aware filter with pyra-

mid correction [17]. For details, see [17].

However, these subtle phase changes include non-

meaningful ones. To detect only the meaningful ones,

we design the fractional anisotropic filter FAF l
f,ω,σ,γ(x, t)

about the subtle phase changes Cl
f,ω(x, θ, t) as follows.

We consider an image patch Px for a time period

T such as that described in Section 3.3 and orienta-

tions Θ = {θ1, . . . , θM}. Since phase changes oc-

cur along or between the orientations in Θ and the sub-

tle phase changes Cl
f,ω(x, θ, t) are similar within the

image patch Px, let yxi,tj be a M -dimensional vector
h

Cl
f,ω(xi, θ1, tj), . . . , C

l
f,ω(xi, θM , tj)

i>

that represents

the subtle phase changes in a position xi 2 Px at a time tj .

We assume that the N⇥h⇥w vectors yx1,t1 , . . . ,yxh×w,tN

are i.i.d samples from a temporal distribution f(y) defined

as Eq.(5). Then, using Eqs.(6)-(7), we design the phase-

based fractional anisotropic FAF l
f,ω,σ,γ(x, t).

After this designing, we can obtain the synthesis phase

information in which meaningful subtle phase changes are

only magnified as

φ̂l
ω(x, θ, t) = φl

ω(x, θ, t) + α(FAF l
f,ω,σ,γ(x, t) � C

l
f,ω(x, θ, t)). (12)

Figure 5 (c) shows that FAF l
f,ω,σ,γ(x, t) can pass only

meaningful phase subtle changes of ukulele strings and ig-

nore non-meaningful ones caused by photographic noise.

However, as the reliability of phase changes are low in flat

textured areas [20, 19], FAF l
f,ω,σ,γ(x, t) has errors and

slightly misdetects non-meaningful subtle phase changes in

the flat areas (Fig. 5 (c), purple quadrangles).

3.5.1 Hierarchical Edge-Aware Regularization

For refining the subtle phase changes, we use amplitude

information Al
ω in the same way as the previous technique

[20]. However, since this technique [20] uses only ampli-

tude information at each pyramid level l, we develop hier-

archical amplitude correction via z-transform as

Âl
ω = max

�Nl5i5Nl

(Z(Al
ω), res(Z(Al+i

ω ), l)), (13)
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where Nl is the number of the pyramid level l used for this,

Z(A) converts A into z-scores that are comparable between

each pyramid level l, and res(Al+i, l) resizes the amplitude

information at the pyramid level l+i to that at pyramid level

l with bicubic interpolation.

Furthermore, as the previous technique [20] adopts

amplitude-based smoothing but is weak in regularizing flat

textured areas due to its use of smoothing alone, we propose

a new strong regularization technique HEARσ(x, θ, t) as

HEARσ(x, θ, t) = Norm(Gσ ⌦ Âl
ω(x, θ, t)), (14)

where Norm(X) and Gσ are the same functions in Eq.(7).

By applying this regularization to Eq.(12), we can refine

meaningful subtle phase changes as shown in Figure 5 (d).

4. Results

4.1. Experimental Setup

To evaluate the usefulness of our proposed method,

which magnifies only meaningful subtle changes under the

presence of photographic noise, we conducted experiments

on real videos and synthetic ones with ground-truth magni-

fication. We assessed the performance qualitatively for real

videos and quantitatively against ground-truth for synthetic

ones. We set the parameters for each experiment as listed

in Table 1, but σ in Eqs.(7, 14) are equal to the spatial filter

widths used to construct image pyramids. We show all the

magnification results in the supplementary material.

Color Magnification. We used a Gaussian pyramid to de-

compose each video frame into multi-scales and magnified

the green color intensity changes on the fifth pyramid level.

Motion Magnification. We performed each method in YIQ

color space. To obtain amplitude and phase information

from input video, we used a complex steerable pyramid [20]

with half-octave bandwidth filters and 8 orientations. We set

parameter N in jerk method [17] as 5 and Nl in Eq.(13) as

2. For designing a fractional anisotropic filter (Eq.(7)), we

set the size of Px as 5x5, and T as the same sampling time

used to detect subtle changes with the target frequency f .

4.2. Real Videos

We compared our proposed method with two state-of-

the-art methods, acceleration [24] and jerk methods [17],

both of which can perform color or motion magnification

without user annotations or additional information in the

same way as our method.

4.2.1 Comparison with Color Magnification

Figure 6 illustrates subtle face color changes due to

blood flow through the face of a stationary man. Pro-

Video α f fs β γ source

Slam dunk 200 2 120 1 2 [1]

Ukulele 260 40 240 1 5 [17]

Face 180 0.5 60 0.001 3 [22]

Wood 230 2 120 3 2 [1]

Gun 100 20 480 0.5 1 [17]

Tennis 180 10 600 1 1 [1]

Synthetic ball 100 10 60 1 2 -

Golf 80 2 60 0.8 2 [1]

Drone 300 2 60 1 3 [17]

Table 1: Parameters for all videos: amplification factor α in our

method (this parameter in other methods was adjusted to magnify

meaningful subtle changes as much as ours), target frequency f ,

sampling rate fs, large motions suppression parameter β in the

jerk method [17], and hyper parameter γ in Eq.(7).

Original (a) Acceleration (b) Jerk (c) Ours

y

time

Figure 6: Color magnification at blood flow through the face of

a stationary man. Our proposed method magnifies only meaning-

ful subtle face color changes (bottom), while acceleration [24] and

jerk methods [17] misdetect and magnify non-meaningful back-

ground color fluctuations caused by photographic noise (top).

cessing this video with acceleration [24] or jerk methods

[17] succeeds in magnifying meaningful subtle face color

changes on the face, but it also misdetects and magnifies

non-meaningful background color fluctuations caused by

photographic noise. In contrast, our proposed method mag-

nifies only meaningful subtle face color changes.

4.2.2 Comparison with Motion Magnification

Figure 1 shows the motion magnification results from a

basketball video, to magnify and reveal the subtle deforma-

tions of the backboard when trying to absorb the impact of

a slam dunk for preventing breakage. Acceleration method

[24] does not work well due to the misdetection of the quick

ball motion. Jerk method [17] magnifies meaningful sub-

tle deformation of the backboard but also misdetects non-

meaningful subtle shape collapses of background window

caused by photographic noise. In contrast, our proposed

method magnifies only meaningful subtle deformations of

the backboard without the effects of noise.

Figure 7 shows a video sequence on the ability of a

wood-splitting stand to absorb the shock from a hand axe

for preventing injury. Acceleration method [24] produces

messy result due to the quick downswing of the hand

axe. Jerk method [17] can magnify subtle deformations of

the wood-splitting stand but produces pixel intensity dis-

turbances due to non-meaningful background fluctuations
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Figure 7: Wood-splitting video: visualizing deformations of a

wood-splitting stand. The graph shows pixel intensity changes

at yellow dot in top left. Our proposed method magnifies only

meaningful subtle deformations of the wood-splitting stand, while

acceleration method [24] misdetects the quick downswing of hand

axe (cyan circle) and jerk method [17] produces pixel intensity dis-

turbance due to non-meaningful background fluctuations (graph).
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Figure 8: Gun-shooting video: visualizing gun-shooting impact

spreading throughout body. Our method magnifies only mean-

ingful subtle arm deformations (left bottom) but jerk method [17]

misdetects background distortions caused by photographic noise

(right top) and learning method [12] induces disappearance of the

tip of the gun due to quick gun recoil motions (right bottom).

caused by photographic noise. Our method magnifies only

meaningful subtle deformations of the wood-splitting stand

under the presence of photographic noise.

Figure 8 shows a gun-shooting video. In this video, we

also tested a state-of-the-art learning method [12] with a

5⇥ dynamic mode. Jerk method [17] misdetects distor-

tions of background caused by photographic noise. Learn-

ing method [12] also misdetects them slightly and induces

disappearance of the tip of the gun due to quick gun recoil

motions. Our method magnifies only meaningful subtle de-

formations of muscles and skin due to the gun-shooting im-

pact spreading throughout the body.

Figure 9 shows a ball-hitting video with magnification

of impact spreading throughout a tennis racket. Acceler-

ation method [24] produces racket shape collapse due to

the quick swing motion. Jerk method [17] magnifies subtle

racket deformations when the ball is hit but induces pixel

intensity disturbances due to non-meaningful background

fluctuations caused by photographic noise. In contrast, our

method magnifies only meaningful deformations related to

sport activities under the presence of photographic noise.
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Figure 9: Tennis video: visualizing impact spreading throughout a

tennis racket. Our method magnifies only meaningful subtle tennis

racket deformations, but acceleration [24] and jerk methods [17]

produce pixel intensity disturbance due to non-meaningful back-

ground fluctuations caused by photographic noise (graph).

4.3. Controlled Experiments

In this section, we quantitatively assess the effective-

ness of our method using peak signal-to-noise ratio (PSNR)

between magnified synthetic video by each magnification

method and the ground-truth. Figure 10 (top left) shows a

4-second synthetic ball video with background texture from

the Describable Textures Dataset [4]. The ball has vertical

meaningful subtle motions defined as d = 0.5·sin(2π f
fsj),

where j is the frame number. When j reaches 80 frames,

the ball moves quickly and horizontally as dq = 100 ·
sin(2π 2

fs
j), but after 20 frames the ball movement returns

to what it was before. Moreover, Gaussian noise with an

average of 0 and standard deviation σn of 0–0.1 was added

to only the background in videos as the photographic noise

that causes non-meaningful subtle motions. To obtain the

ground-truth of meaningful subtle motion magnification,

we created magnification videos while changing d to 5 · d.

Note that to investigate the effectiveness of our proposed

method precisely, we prepared five additional methods: a

jerk method with EWG proposed by [20], a jerk method

with PCA, a jerk method with FAF, a jerk method with No-

hierarchical edge-aware regularization as EARσ(x,θ, t) =
N (Gσ ⌦Al

ω(x,θ, t)), and a jerk method with HEAR.

Figure 10 right shows PSNR in each area and each back-

ground, at the real noise level σn = 0.005 estimated by [9].

In the ball area, Eulerian-based methods [19, 23], accel-

eration method [24] and learning method [12] suffer from

handling quick motion and produce low PSNR, but all jerk

based methods that contain our proposed method magnify

only meaningful subtle motion and have high PSNR except

for jerk method with PCA, which can not magnify mean-

ingful ones due to large non-meaningful ones regarded as

a principal component. On the other hand, in the noise

area, jerk method produces very low PSNR due to non-

meaningful ones magnified by the large amplification factor

compared with acceleration method [24]. Jerk method with

EWG [20], PCA, our proposed FAF, and HEAR ignore non-

meaningful ones and increase PSNR compared with jerk
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Figure 10: Left: synthetic ball video with background. The ball

has meaningful subtle motion (red arrow) and quick motion (yel-

low arrow). Noise is added only to background and causes non-

meaningful subtle motion. Right: PSNR at σn = 0.005. Our

proposed method magnifies only meaningful subtle ball motions

under the presence of noise and has the highest PSNR in the total

area despite the complex background textures.

method [17] but all of these are insufficient. Our proposed

method, which considers anisotropic diffusion in tempo-

ral distribution by FAF and hierarchical amplitude informa-

tion by HEAR, ignores non-meaningful ones very well and

has high PSNR in the noise area. After all, our proposed

method magnifies only meaningful subtle ball motion un-

der the presence of noise and has the highest PSNR in the

total area despite the complex background textures.

Figure 11 shows the effect of noise variance σn on the

average of PSNR for all the background videos. In the

ball area, each magnification method maintains almost the

same PSNR. However, jerk method with PCA can not do

so because the principal component in video is switched

from meaningful subtle motions to non-meaningful ones

when σn = 0.005. In the noise area, PSNR in all meth-

ods gets lower in proportion to the noise increase. How-

ever, if we compare each magnification method for the to-

tal area, our proposed method resists the effect of noise in-

crease and has the highest PSNR in the real noise situations

(σn = 0.005, 0.01). Thus, our method produces the best

meaningful and non-misleading magnification results.

5. Discussion and Limitations

Our proposed method expands the applicable range

of video magnification by detecting and magnifying only

meaningful subtle changes under the presence of photo-

graphic noise but has some limitations below.

Our proposed fractional anisotropic filter can detect only

meaningful subtle changes, but it relies on the assump-

tion that the temporal distribution of non-meaningful ones

caused by photographic noise indicates isotropic diffusion.

In real videos, such a characteristic like Gaussian distribu-
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Figure 11: The effect of noise variance σn on PSNR for all the

background videos on average. In the total area, our proposed

method resists noise increase and has the highest PSNR in the real

noise situations [9].

tion often occurs but other ones also need to be considered:

gamma, exponential, uniform, impulse, and so on [3]. Thus,

we should handle such characteristics to expand the appli-

cable range of video magnification in future work.

If an input video size is large, our method has slow

running time due to the eigen-decomposition at each po-

sition, time, and pyramid level. If one wants to pre-

cisely reveal meaningful subtle changes and show the re-

sults, our method should be used to prevent magnified non-

meaningful changes that may be misleading. However, a

faster algorithm for our method needs to be developed.

Moreover, empirical estimation of covariance in FA of

our method is not robust to outliers under the Gaussian as-

sumption in Eq.(2). To increase the robustness, we consider

that a minimum covariance determinant approach [15] can

be useful. Even so, we should develop a simple and princi-

pled approach as a substitute for using FA in future work.

6. Conclusions

We proposed a novel video magnification method for de-

tecting and magnifying only meaningful subtle changes un-

der the presence of noise introduced during photographic

process, without the user annotations, additional informa-

tion, or input video scene limitations that previous meth-

ods required [5, 18, 7, 20, 19, 23]. In developing our

method, we presented a novel use of the index in neuro-

science called fractional anisotropy to detect only mean-

ingful subtle changes, and a hierarchical edge-aware reg-

ularization to refine motion representations. Our proposed

method detects only meaningful subtle changes and ignores

non-meaningful ones caused by photographic noise, and

produces impressive magnification results exceeding those

obtained with state-of-the-art methods. The results we ob-

tained demonstrate that we succeeded in expanding the ap-

plicable range of ”video magnification in the wild.”
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