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Abstract

Designing convolutional neural networks (CNN) for

mobile devices is challenging because mobile models need

to be small and fast, yet still accurate. Although significant

efforts have been dedicated to design and improve mobile

CNNs on all dimensions, it is very difficult to manually

balance these trade-offs when there are so many architec-

tural possibilities to consider. In this paper, we propose

an automated mobile neural architecture search (MNAS)

approach, which explicitly incorporate model latency into

the main objective so that the search can identify a model

that achieves a good trade-off between accuracy and

latency. Unlike previous work, where latency is considered

via another, often inaccurate proxy (e.g., FLOPS), our

approach directly measures real-world inference latency

by executing the model on mobile phones. To further

strike the right balance between flexibility and search

space size, we propose a novel factorized hierarchical

search space that encourages layer diversity throughout

the network. Experimental results show that our approach

consistently outperforms state-of-the-art mobile CNN

models across multiple vision tasks. On the ImageNet

classification task, our MnasNet achieves 75.2% top-1

accuracy with 78ms latency on a Pixel phone, which is

1.8× faster than MobileNetV2 [29] with 0.5% higher

accuracy and 2.3× faster than NASNet [36] with 1.2%

higher accuracy. Our MnasNet also achieves better mAP

quality than MobileNets for COCO object detection. Code

is at https://github.com/tensorflow/tpu/

tree/master/models/official/mnasnet.

1. Introduction

Convolutional neural networks (CNN) have made signif-

icant progress in image classification, object detection, and

many other applications. As modern CNN models become

increasingly deeper and larger [31, 13, 36, 26], they also be-

come slower, and require more computation. Such increases

in computational demands make it difficult to deploy state-

of-the-art CNN models on resource-constrained platforms
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Figure 1: An Overview of Platform-Aware Neural Archi-

tecture Search for Mobile.
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Figure 2: Accuracy vs. Latency Comparison – Our Mnas-

Net models significantly outperforms other mobile models

[29, 36, 26] on ImageNet. Details can be found in Table 1.

such as mobile or embedded devices.

Given restricted computational resources available on

mobile devices, much recent research has focused on de-

signing and improving mobile CNN models by reducing

the depth of the network and utilizing less expensive oper-

ations, such as depthwise convolution [11] and group con-

volution [33]. However, designing a resource-constrained

mobile model is challenging: one has to carefully balance

accuracy and resource-efficiency, resulting in a significantly

large design space.
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In this paper, we propose an automated neural architec-

ture search approach for designing mobile CNN models.

Figure 1 shows an overview of our approach, where the

main differences from previous approaches are the latency

aware multi-objective reward and the novel search space.

Our approach is based on two main ideas. First, we formu-

late the design problem as a multi-objective optimization

problem that considers both accuracy and inference latency

of CNN models. Unlike in previous work [36, 26, 21] that

use FLOPS to approximate inference latency, we directly

measure the real-world latency by executing the model on

real mobile devices. Our idea is inspired by the observa-

tion that FLOPS is often an inaccurate proxy: for exam-

ple, MobileNet [11] and NASNet [36] have similar FLOPS

(575M vs. 564M), but their latencies are significantly dif-

ferent (113ms vs. 183ms, details in Table 1). Secondly, we

observe that previous automated approaches mainly search

for a few types of cells and then repeatedly stack the same

cells through the network. This simplifies the search pro-

cess, but also precludes layer diversity that is important for

computational efficiency. To address this issue, we propose

a novel factorized hierarchical search space, which allows

layers to be architecturally different yet still strikes the right

balance between flexibility and search space size.

We apply our proposed approach to ImageNet classifica-

tion [28] and COCO object detection [18]. Figure 2 sum-

marizes a comparison between our MnasNet models and

other state-of-the-art mobile models. Compared to the Mo-

bileNetV2 [29], our model improves the ImageNet accuracy

by 3.0% with similar latency on the Google Pixel phone.

On the other hand, if we constrain the target accuracy, then

our MnasNet models are 1.8× faster than MobileNetV2

and 2.3× faster thans NASNet [36] with better accuracy.

Compared to the widely used ResNet-50 [9], our MnasNet

model achieves slightly higher (76.7%) accuracy with 4.8×
fewer parameters and 10× fewer multiply-add operations.

By plugging our model as a feature extractor into the SSD

object detection framework, our model improves both the

inference latency and the mAP quality on COCO dataset

over MobileNetsV1 and MobileNetV2, and achieves com-

parable mAP quality (23.0 vs 23.2) as SSD300 [22] with

42× less multiply-add operations.

To summarize, our main contributions are as follows:

1. We introduce a multi-objective neural architecture

search approach that optimizes both accuracy and real-

world latency on mobile devices.

2. We propose a novel factorized hierarchical search

space to enable layer diversity yet still strike the right

balance between flexibility and search space size.

3. We demonstrate new state-of-the-art accuracy on both

ImageNet classification and COCO object detection

under typical mobile latency constraints.

2. Related Work

Improving the resource efficiency of CNN models has

been an active research topic during the last several years.

Some commonly-used approaches include 1) quantizing the

weights and/or activations of a baseline CNN model into

lower-bit representations [8, 16], or 2) pruning less impor-

tant filters according to FLOPs [6, 10], or to platform-aware

metrics such as latency introduced in [32]. However, these

methods are tied to a baseline model and do not focus on

learning novel compositions of CNN operations.

Another common approach is to directly hand-craft more

efficient mobile architectures: SqueezeNet [15] reduces the

number of parameters and computation by using lower-

cost 1x1 convolutions and reducing filter sizes; MobileNet

[11] extensively employs depthwise separable convolution

to minimize computation density; ShuffleNets [33, 24] uti-

lize low-cost group convolution and channel shuffle; Con-

densenet [14] learns to connect group convolutions across

layers; Recently, MobileNetV2 [29] achieved state-of-the-

art results among mobile-size models by using resource-

efficient inverted residuals and linear bottlenecks. Unfortu-

nately, given the potentially huge design space, these hand-

crafted models usually take significant human efforts.

Recently, there has been growing interest in automating

the model design process using neural architecture search.

These approaches are mainly based on reinforcement learn-

ing [35, 36, 1, 19, 25], evolutionary search [26], differen-

tiable search [21], or other learning algorithms [19, 17, 23].

Although these methods can generate mobile-size models

by repeatedly stacking a few searched cells, they do not in-

corporate mobile platform constraints into the search pro-

cess or search space. Closely related to our work is MONAS

[12], DPP-Net [3], RNAS [34] and Pareto-NASH [4] which

attempt to optimize multiple objectives, such as model size

and accuracy, while searching for CNNs, but their search

process optimizes on small tasks like CIFAR. In contrast,

this paper targets real-world mobile latency constraints and

focuses on larger tasks like ImageNet classification and

COCO object detection.

3. Problem Formulation

We formulate the design problem as a multi-objective

search, aiming at finding CNN models with both high-

accuracy and low inference latency. Unlike previous ar-

chitecture search approaches that often optimize for indi-

rect metrics, such as FLOPS, we consider direct real-world

inference latency, by running CNN models on real mobile

devices, and then incorporating the real-world inference la-

tency into our objective. Doing so directly measures what

is achievable in practice: our early experiments show it is

challenging to approximate real-world latency due to the

variety of mobile hardware/software idiosyncrasies.
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Figure 3: Objective Function Defined by Equation

2, assuming accuracy ACC(m)=0.5 and target latency

T=80ms: (top) show the object values with latency as a

hard constraint; (bottom) shows the objective values with

latency as a soft constraint.

Given a model m, let ACC(m) denote its accuracy on

the target task, LAT (m) denotes the inference latency on

the target mobile platform, and T is the target latency. A

common method is to treat T as a hard constraint and max-

imize accuracy under this constraint:

maximize
m

ACC(m)

subject to LAT (m) ≤ T
(1)

However, this approach only maximizes a single metric and

does not provide multiple Pareto optimal solutions. Infor-

mally, a model is called Pareto optimal [2] if either it has

the highest accuracy without increasing latency or it has the

lowest latency without decreasing accuracy. Given the com-

putational cost of performing architecture search, we are

more interested in finding multiple Pareto-optimal solutions

in a single architecture search.

While there are many methods in the literature [2], we

use a customized weighted product method1 to approximate

Pareto optimal solutions, with optimization goal defined as:

maximize
m

ACC(m)×

[

LAT (m)

T

]w

(2)

where w is the weight factor defined as:

w =

{

α, if LAT (m) ≤ T

β, otherwise
(3)

1We pick the weighted product method because it is easy to customize,

but we expect methods like weighted sum should be also fine.

where α and β are application-specific constants. An empir-

ical rule for picking α and β is to ensure Pareto-optimal so-

lutions have similar reward under different accuracy-latency

trade-offs. For instance, we empirically observed doubling

the latency usually brings about 5% relative accuracy gain.

Given two models: (1) M1 has latency l and accuracy a; (2)

M2 has latency 2l and 5% higher accuracy a · (1 + 5%),
they should have similar reward: Reward(M2) = a · (1 +
5%) · (2l/T )β ≈ Reward(M1) = a · (l/T )β . Solving this

gives β ≈ −0.07. Therefore, we use α = β = −0.07 in

our experiments unless explicitly stated.

Figure 3 shows the objective function with two typical

values of (α, β). In the top figure with (α = 0, β = −1),

we simply use accuracy as the objective value if measured

latency is less than the target latency T ; otherwise, we

sharply penalize the objective value to discourage mod-

els from violating latency constraints. The bottom figure

(α = β = −0.07) treats the target latency T as a soft con-

straint, and smoothly adjusts the objective value based on

the measured latency.

4. Mobile Neural Architecture Search

In this section, we will first discuss our proposed novel

factorized hierarchical search space, and then summarize

our reinforcement-learning based search algorithm.

4.1. Factorized Hierarchical Search Space

As shown in recent studies [36, 20], a well-defined

search space is extremely important for neural architecture

search. However, most previous approaches [35, 19, 26]

only search for a few complex cells and then repeatedly

stack the same cells. These approaches don’t permit layer

diversity, which we show is critical for achieving both high

accuracy and lower latency.

In contrast to previous approaches, we introduce a novel

factorized hierarchical search space that factorizes a CNN

model into unique blocks and then searches for the oper-

ations and connections per block separately, thus allowing

different layer architectures in different blocks. Our intu-

ition is that we need to search for the best operations based

on the input and output shapes to obtain better accurate-

latency trade-offs. For example, earlier stages of CNNs

usually process larger amounts of data and thus have much

higher impact on inference latency than later stages. For-

mally, consider a widely-used depthwise separable convo-

lution [11] kernel denoted as the four-tuple (K,K,M,N)
that transforms an input of size (H,W,M)2 to an output of

size (H,W,N), where (H,W ) is the input resolution and

M,N are the input/output filter sizes. The total number of

multiply-adds can be described as:

2We omit batch size dimension for simplicity.
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Figure 4: Factorized Hierarchical Search Space. Network layers are grouped into a number of predefined skeletons, called

blocks, based on their input resolutions and filter sizes. Each block contains a variable number of repeated identical layers

where only the first layer has stride 2 if input/output resolutions are different but all other layers have stride 1. For each block,

we search for the operations and connections for a single layer and the number of layers N , then the same layer is repeated

N times (e.g., Layer 4-1 to 4-N4 are the same). Layers from different blocks (e.g., Layer 2-1 and 4-1) can be different.

H ∗W ∗M ∗ (K ∗K +N) (4)

Here we need to carefully balance the kernel size K and

filter size N if the total computation is constrained. For in-

stance, increasing the receptive field with larger kernel size

K of a layer must be balanced with reducing either the filter

size N at the same layer, or compute from other layers.

Figure 4 shows the baseline structure of our search space.

We partition a CNN model into a sequence of pre-defined

blocks, gradually reducing input resolutions and increasing

filter sizes as is common in many CNN models. Each block

has a list of identical layers, whose operations and con-

nections are determined by a per-block sub search space.

Specifically, a sub search space for a block i consists of the

following choices:

• Convolutional ops ConvOp: regular conv (conv), depthwise

conv (dconv), and mobile inverted bottleneck conv [29].

• Convolutional kernel size KernelSize: 3x3, 5x5.

• Squeeze-and-excitation [13] ratio SERatio: 0, 0.25.

• Skip ops SkipOp: pooling, identity residual, or no skip.

• Output filter size Fi.

• Number of layers per block Ni.

ConvOp, KernelSize, SERatio, SkipOp, Fi determines

the architecture of a layer, while Ni determines how many

times the layer will be repeated for the block. For exam-

ple, each layer of block 4 in Figure 4 has an inverted bot-

tleneck 5x5 convolution and an identity residual skip path,

and the same layer is repeated N4 times. We discretize all

search options using MobileNetV2 as a reference: For #lay-

ers in each block, we search for {0, +1, -1} based on Mo-

bileNetV2; for filter size per layer, we search for its relative

size in {0.75, 1.0, 1.25} to MobileNetV2 [29].

Our factorized hierarchical search space has a distinct

advantage of balancing the diversity of layers and the size

of total search space. Suppose we partition the network into

B blocks, and each block has a sub search space of size S
with average N layers per block, then our total search space

size would be SB , versing the flat per-layer search space

with size SB∗N . A typical case is S = 432, B = 5, N = 3,

where our search space size is about 1013, versing the per-

layer approach with search space size 1039.

4.2. Search Algorithm

Inspired by recent work [35, 36, 25, 20], we use a re-

inforcement learning approach to find Pareto optimal solu-

tions for our multi-objective search problem. We choose

reinforcement learning because it is convenient and the re-

ward is easy to customize, but we expect other methods like

evolution [26] should also work.

Concretely, we follow the same idea as [36] and map

each CNN model in the search space to a list of tokens.

These tokens are determined by a sequence of actions a1:T
from the reinforcement learning agent based on its parame-

ters θ. Our goal is to maximize the expected reward:

J = EP (a1:T ;θ)[R(m)] (5)

where m is a sampled model determined by action a1:T , and

R(m) is the objective value defined by equation 2.

As shown in Figure 1, the search framework consists of

three components: a recurrent neural network (RNN) based

controller, a trainer to obtain the model accuracy, and a

mobile phone based inference engine for measuring the la-

tency. We follow the well known sample-eval-update loop

to train the controller. At each step, the controller first sam-

ples a batch of models using its current parameters θ, by
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Model Type #Params #Mult-Adds Top-1 Acc. (%) Top-5 Acc. (%) Inference Latency

MobileNetV1 [11] manual 4.2M 575M 70.6 89.5 113ms

SqueezeNext [5] manual 3.2M 708M 67.5 88.2 -

ShuffleNet (1.5x) [33] manual 3.4M 292M 71.5 - -

ShuffleNet (2x) manual 5.4M 524M 73.7 - -

ShuffleNetV2 (1.5x) [24] manual - 299M 72.6 - -

ShuffleNetV2 (2x) manual - 597M 75.4 - -

CondenseNet (G=C=4) [14] manual 2.9M 274M 71.0 90.0 -

CondenseNet (G=C=8) manual 4.8M 529M 73.8 91.7 -

MobileNetV2 [29] manual 3.4M 300M 72.0 91.0 75ms

MobileNetV2 (1.4x) manual 6.9M 585M 74.7 92.5 143ms

NASNet-A [36] auto 5.3M 564M 74.0 91.3 183ms

AmoebaNet-A [26] auto 5.1M 555M 74.5 92.0 190ms

PNASNet [19] auto 5.1M 588M 74.2 91.9 -

DARTS [21] auto 4.9M 595M 73.1 91 -

MnasNet-A1 auto 3.9M 312M 75.2 92.5 78ms

MnasNet-A2 auto 4.8M 340M 75.6 92.7 84ms

MnasNet-A3 auto 5.2M 403M 76.7 93.3 103ms

Table 1: Performance Results on ImageNet Classification [28]. We compare our MnasNet models with both manually-

designed mobile models and other automated approaches – MnasNet-A1 is our baseline model;MnasNet-A2 and MnasNet-A3

are two models (for comparison) with different latency from the same architecture search experiment; #Params: number of

trainable parameters; #Mult-Adds: number of multiply-add operations per image; Top-1/5 Acc.: the top-1 or top-5 accuracy

on ImageNet validation set; Inference Latency is measured on the big CPU core of a Pixel 1 Phone with batch size 1.

predicting a sequence of tokens based on the softmax logits

from its RNN. For each sampled model m, we train it on the

target task to get its accuracy ACC(m), and run it on real

phones to get its inference latency LAT (m). We then cal-

culate the reward value R(m) using equation 2. At the end

of each step, the parameters θ of the controller are updated

by maximizing the expected reward defined by equation 5

using Proximal Policy Optimization [30]. The sample-eval-

update loop is repeated until it reaches the maximum num-

ber of steps or the parameters θ converge.

5. Experimental Setup

Directly searching for CNN models on large tasks like

ImageNet or COCO is expensive, as each model takes

days to converge. While previous approaches mainly per-

form architecture search on smaller tasks such as CIFAR-

10 [36, 26], we find those small proxy tasks don’t work

when model latency is taken into account, because one typ-

ically needs to scale up the model when applying to larger

problems. In this paper, we directly perform our architec-

ture search on the ImageNet training set but with fewer

training steps (5 epochs). As a common practice, we re-

serve randomly selected 50K images from the training set

as the fixed validation set. To ensure the accuracy improve-

ments are from our search space, we use the same RNN

controller as NASNet [36] even though it is not efficient:

each architecture search takes 4.5 days on 64 TPUv2 de-

vices. During training, we measure the real-world latency

of each sampled model by running it on the single-thread

big CPU core of Pixel 1 phones. In total, our controller

samples about 8K models during architecture search, but

only 15 top-performing models are transferred to the full

ImageNet and only 1 model is transferred to COCO.

For full ImageNet training, we use RMSProp optimizer

with decay 0.9 and momentum 0.9. Batch norm is added

after every convolution layer with momentum 0.99, and

weight decay is 1e-5. Dropout rate 0.2 is applied to the last

layer. Following [7], learning rate is increased from 0 to

0.256 in the first 5 epochs, and then decayed by 0.97 every

2.4 epochs. We use batch size 4K and Inception preprocess-

ing with image size 224×224. For COCO training, we plug

our learned model into SSD detector [22] and use the same

settings as [29], including input size 320× 320.

6. Results

In this section, we study the performance of our models

on ImageNet classification and COCO object detection, and

compare them with other state-of-the-art mobile models.

6.1. ImageNet Classification Performance

Table 1 shows the performance of our models on Ima-

geNet [28]. We set our target latency as T = 75ms, similar
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Figure 5: Performance Comparison with Different Model Scaling Techniques. MnasNet is our baseline model shown in

Table 1. We scale it with the same depth multipliers and input sizes as MobileNetV2.

Inference Latency Top-1 Acc.

w/o SE

MobileNetV2 75ms 72.0%

NASNet 183ms 74.0%

MnasNet-B1 77ms 74.5%

w/ SE
MnasNet-A1 78ms 75.2%

MnasNet-A2 84ms 75.6%

Table 2: Performance Study for Squeeze-and-Excitation

SE [13] – MnasNet-A denote the default MnasNet with SE

in search space; MnasNet-B denote MnasNet with no SE in

search space.

to MobileNetV2 [29], and use Equation 2 with α=β=-0.07

as our reward function during architecture search. After-

wards, we pick three top-performing MnasNet models, with

different latency-accuracy trade-offs from the same search

experiment and compare them with existing mobile models.

As shown in the table, our MnasNet A1 model achieves

75.2% top-1 / 92.5% top-5 accuracy with 78ms latency and

3.9M parameters / 312M multiply-adds, achieving a new

state-of-the-art accuracy for this typical mobile latency con-

straint. In particular, MnasNet runs 1.8× faster than Mo-

bileNetV2 (1.4) [29] on the same Pixel phone with 0.5%

higher accuracy. Compared with automatically searched

CNN models, our MnasNet runs 2.3× faster than the

mobile-size NASNet-A [36] with 1.2% higher top-1 ac-

curacy. Notably, our slightly larger MnasNet-A3 model

achieves better accuracy than ResNet-50 [9], but with 4.8×
fewer parameters and 10× fewer multiply-add cost.

Given that squeeze-and-excitation (SE [13]) is relatively

new and many existing mobile models don’t have this extra

optimization, we also show the search results without SE in

the search space in Table 2; our automated approach still

significantly outperforms both MobileNetV2 and NASNet.

6.2. Model Scaling Performance

Given the myriad application requirements and device

heterogeneity present in the real world, developers often

scale a model up or down to trade accuracy for latency or

model size. One common scaling technique is to modify

the filter size using a depth multiplier [11]. For example,

a depth multiplier of 0.5 halves the number of channels in

each layer, thus reducing the latency and model size. An-

other common scaling technique is to reduce the input im-

age size without changing the network.

Figure 5 compares the model scaling performance of

MnasNet and MobileNetV2 by varying the depth multipli-

ers and input image sizes. As we change the depth mul-

tiplier from 0.35 to 1.4, the inference latency also varies

from 20ms to 160ms. As shown in Figure 5a, our Mnas-

Net model consistently achieves better accuracy than Mo-

bileNetV2 for each depth multiplier. Similarly, our model

is also robust to input size changes and consistently outper-

forms MobileNetV2 (increaseing accuracy by up to 4.1%)

across all input image sizes from 96 to 224, as shown in

Figure 5b.

In addition to model scaling, our approach also allows

searching for a new architecture for any latency target. For

example, some video applications may require latency as

low as 25ms. We can either scale down a baseline model, or

search for new models specifically targeted to this latency

constraint. Table 4 compares these two approaches. For fair

comparison, we use the same 224x224 image sizes for all
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Network #Params #Mult-Adds mAP mAPS mAPM mAPL Inference Latency

YOLOv2 [27] 50.7M 17.5B 21.6 5.0 22.4 35.5 -

SSD300 [22] 36.1M 35.2B 23.2 5.3 23.2 39.6 -

SSD512 [22] 36.1M 99.5B 26.8 9.0 28.9 41.9 -

MobileNetV1 + SSDLite [11] 5.1M 1.3B 22.2 - - - 270ms

MobileNetV2 + SSDLite [29] 4.3M 0.8B 22.1 - - - 200ms

MnasNet-A1 + SSDLite 4.9M 0.8B 23.0 3.8 21.7 42.0 203ms

Table 3: Performance Results on COCO Object Detection – #Params: number of trainable parameters; #Mult-Adds:

number of multiply-additions per image; mAP : standard mean average precision on test-dev2017; mAPS ,mAPM ,mAPL:

mean average precision on small, medium, large objects; Inference Latency: the inference latency on Pixel 1 Phone.

Params MAdds Latency Top1 Acc.

MobileNetV2 (0.35x) 1.66M 59M 21.4ms 60.3%

MnasNet-A1 (0.35x) 1.7M 63M 22.8ms 64.1%

MnasNet-search1 1.9M 65M 22.0ms 64.9%

MnasNet-search2 2.0M 68M 23.2ms 66.0%

Table 4: Model Scaling vs. Model Search – MobileNetV2

(0.35x) and MnasNet-A1 (0.35x) denote scaling the base-

line models with depth multiplier 0.35; MnasNet-search1/2

denotes models from a new architecture search that targets

22ms latency constraint.

models. Although our MnasNet already outperforms Mo-

bileNetV2 with the same scaling parameters, we can further

improve the accuracy with a new architecture search target-

ing a 22ms latency constraint.

6.3. COCO Object Detection Performance

For COCO object detection [18], we pick the MnasNet

models in Table 2 and use them as the feature extractor for

SSDLite, a modified resource-efficient version of SSD [29].

Similar to [29], we compare our models with other mobile-

size SSD or YOLO models.

Table 3 shows the performance of our MnasNet mod-

els on COCO. Results for YOLO and SSD are from [27],

while results for MobileNets are from [29]. We train our

models on COCO trainval35k and evaluate them on test-

dev2017 by submitting the results to COCO server. As

shown in the table, our approach significantly improve the

accuracy over MobileNet V1 and V2. Compare to the stan-

dard SSD300 detector [22], our MnasNet model achieves

comparable mAP quality (23.0 vs 23.2) as SSD300 with

7.4× fewer parameters and 42× fewer multiply-adds.

7. Ablation Study and Discussion

In this section, we study the impact of latency constraint

and search space, and discuss MnasNet architecture details

and the importance of layer diversity.
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(b) α = β = −0.07

Figure 6: Multi-Objective Search Results based on equa-

tion 2 with (a) α=0, β=-1; and (b) α=β=−0.07. Target la-

tency is T=75ms. Top figure shows the Pareto curve (blue

line) for the 3000 sampled models (green dots); bottom fig-

ure shows the histogram of model latency.

7.1. Soft vs. Hard Latency Constraint

Our multi-objective search method allows us to deal with

both hard and soft latency constraints by setting α and β to

different values in the reward equation 2. Figure 6 shows

the multi-objective search results for typical α and β. When

α = 0, β = −1, the latency is treated as a hard constraint,

so the controller tends to focus more on faster models to

avoid the latency penalty. On the other hand, by setting

α = β = −0.07, the controller treats the target latency as a

soft constraint and tries to search for models across a wider

latency range. It samples more models around the target

latency value at 75ms, but also explores models with latency

smaller than 40ms or greater than 110ms. This allows us

to pick multiple models from the Pareto curve in a single

architecture search as shown in Table 1.
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7.2. Disentangling Search Space and Reward

To disentangle the impact of our two key contributions:

multi-objective reward and new search space, Figure 5 com-

pares their performance. Starting from NASNet [36], we

first employ the same cell-base search space [36] and sim-

ply add the latency constraint using our proposed multiple-

object reward. Results show it generates a much faster

model by trading the accuracy to latency. Then, we ap-

ply both our multi-objective reward and our new factorized

search space, and achieve both higher accuracy and lower

latency, suggesting the effectiveness of our search space.

Reward Search Space Latency Top-1 Acc.

Single-obj [36] Cell-based [36] 183ms 74.0%

Multi-obj Cell-based [36] 100ms 72.0%

Multi-obj MnasNet 78ms 75.2%

Table 5: Comparison of Decoupled Search Space and

Reward Design – Multi-obj denotes our multi-objective

reward; Single-obj denotes only optimizing accuracy.

7.3. MnasNet Architecture and Layer Diversity

Figure 7(a) illustrates our MnasNet-A1 model found by

our automated approach. As expected, it consists of a vari-

ety of layer architectures throughout the network. One in-

teresting observation is that our MnasNet uses both 3x3 and

5x5 convolutions, which is different from previous mobile

models that all only use 3x3 convolutions.

In order to study the impact of layer diversity, Table

6 compares MnasNet with its variants that only repeat a

single type of layer (fixed kernel size and expansion ra-

tio). Our MnasNet model has much better accuracy-latency

trade-offs than those variants, highlighting the importance

of layer diversity in resource-constrained CNN models.

8. Conclusion

This paper presents an automated neural architecture

search approach for designing resource-efficient mobile

CNN models using reinforcement learning. Our main ideas

are incorporating platform-aware real-world latency infor-

mation into the search process and utilizing a novel factor-

ized hierarchical search space to search for mobile models

with the best trade-offs between accuracy and latency. We

demonstrate that our approach can automatically find sig-

nificantly better mobile models than existing approaches,

and achieve new state-of-the-art results on both ImageNet

classification and COCO object detection under typical mo-

bile inference latency constraints. The resulting MnasNet

architecture also provides interesting findings on the impor-

tance of layer diversity, which will guide us in designing

and improving future mobile CNN models.
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Figure 7: MnasNet-A1 Architecture – (a) is a representa-

tive model selected from Table 1; (b) - (d) are a few cor-

responding layer structures. MBConv denotes mobile in-

verted bottleneck conv, DWConv denotes depthwise conv,

k3x3/k5x5 denotes kernel size, BN is batch norm, HxWxF

denotes tensor shape (height, width, depth), and ×1/2/3/4
denotes the number of repeated layers within the block.

Top-1 Acc. Inference Latency

MnasNet-A1 75.2% 78ms

MBConv3 (k3x3) only 71.8% 63ms

MBConv3 (k5x5) only 72.5% 79ms

MBConv6 (k3x3) only 74.9% 116ms

MBConv6 (k5x5) only 75.6% 146ms

Table 6: Performance Comparison of MnasNet and Its

Variants – MnasNet-A1 denotes the model shown in Figure

7(a); others are variants that repeat a single type of layer

throughout the network. All models have the same number

of layers and same filter size at each layer.
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