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Abstract

In this paper, we propose Text2Scene, a model that gen-

erates various forms of compositional scene representations

from natural language descriptions. Unlike recent works,

our method does NOT use Generative Adversarial Networks

(GANs). Text2Scene instead learns to sequentially generate

objects and their attributes (location, size, appearance, etc)

at every time step by attending to different parts of the in-

put text and the current status of the generated scene. We

show that under minor modifications, the proposed frame-

work can handle the generation of different forms of scene

representations, including cartoon-like scenes, object lay-

outs corresponding to real images, and synthetic images.

Our method is not only competitive when compared with

state-of-the-art GAN-based methods using automatic met-

rics and superior based on human judgments but also has

the advantage of producing interpretable results.

1. Introduction

Generating images from textual descriptions has recently

become an active research topic [26, 37, 38, 13, 33, 11].

This interest has been partially fueled by the adoption of

Generative Adversarial Networks (GANs) [8] which have

demonstrated impressive results on a number of image syn-

thesis tasks. Synthesizing images from text requires a level

of language and visual understanding which could lead to

applications in image retrieval through natural language

queries, representation learning for text, and automated

computer graphics and image editing applications.

In this work, we introduce Text2Scene, a model to in-

terpret visually descriptive language in order to generate

compositional scene representations. We specifically fo-

cus on generating a scene representation consisting of a

list of objects, along with their attributes (e.g. location,

size, aspect ratio, pose, appearance). We adapt and train

models to generate three types of scenes as shown in Fig-

ure 1, (1) Cartoon-like scenes as depicted in the Abstract

Scenes dataset [41], (2) Object layouts corresponding to im-

age scenes from the COCO dataset [19], and (3) Synthetic

Figure 1. Sample inputs (left) and outputs of our Text2Scene

model (middle), along with ground truth reference scenes (right)

for the generation of abstract scenes (top), object layouts (middle),

and synthetic image composites (bottom).

scenes corresponding to images in the COCO dataset [19].

We propose a unified framework to handle these three seem-

ingly different tasks with unique challenges. Our method,

unlike recent approaches, does not rely on Generative Ad-

versarial Networks (GANs) [8]. Instead, we produce an in-

terpretable model that iteratively generates a scene by pre-

dicting and adding new objects at each time step. Our

method is superior to the best result reported in Abstract

Scenes [41], and provides near state-of-the-art performance

on COCO [19] under automatic evaluation metrics, and

state-of-the-art results when evaluated by humans.

Generating rich textual representations for scene gen-

eration is a challenging task. For instance, input textual

descriptions could hint only indirectly at the presence of

attributes – e.g. in the first example in Fig. 1 the input

text “Mike is surprised” should change the facial attribute

on the generated object “Mike”. Textual descriptions often

have complex information about relative spatial configura-
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Figure 2. Overview of Text2Scene. Our general framework consists of (A) a Text Encoder that produces a sequential representation of

the input, (B) an Image Encoder that encodes the current state of the generated scene, (C) a Convolutional Recurrent Module that tracks,

for each spatial location, the history of what have been generated so far, (D-F) two attention-based predictors that sequentially focus on

different parts of the input text, first to decide what object to place, then to decide what attributes to be assigned to the object, and (G) an

optional foreground embedding step that learns an appearance vector for patch retrieval in the synthetic image generation task.

tions – e.g. in the first example in Fig. 1 the input text “Jenny

is running towards Mike and the duck” makes the orienta-

tion of “Jenny” dependent on the positions of both “Mike”,

and “duck”. In the last example in Fig. 1 the text “elephants

walking together in a line” also implies certain overall spa-

tial configuration of the objects in the scene. We model this

text-to-scene task using a sequence-to-sequence approach

where objects are placed sequentially on an initially empty

canvas (see an overview in Fig 2). Generally, Text2Scene,

consists of a text encoder (Fig 2 (A)) that maps the input

sentence to a set of latent representations, an image encoder

(Fig 2 (B)) which encodes the current generated canvas, a

convolutional recurrent module (Fig 2 (C)), which passes

the current state to the next step, attention modules (Fig 2

(D)) which focus on different parts of the input text, an ob-

ject decoder (Fig 2 (E)) that predicts the next object condi-

tioned on the current scene state and attended input text, and

an attribute decoder (Fig 2 (F)) that assigns attributes to the

predicted object. To the best of our knowledge, Text2Scene

is the first model demonstrating its capacities on both ab-

stract and real images, thus opening the possibility for fu-

ture work on transfer learning across domains.

Our main contributions can be summarized as follows:

• We propose Text2Scene, a framework to generate

compositional scene representations from natural lan-

guage descriptions.

• We show that Text2Scene can be used to generate, un-

der minor modifications, different forms of scene rep-

resentations, including cartoon-like scenes, semantic

layouts corresponding to real images, and synthetic

image composites.

• We conduct extensive experiments on the tasks of

abstract image generation for the Abstract Scenes

dataset [41], semantic layout and synthetic image gen-

erations for the COCO dataset [19].

2. Related Work

Most research on visually descriptive language has fo-

cused on generating captions from images [5, 21, 16, 14, 31,

32, 22, 2]. Recently, there is work in the opposite direction

of text-to-image synthesis [25, 26, 37, 13, 38, 33, 11]. Most

of the recent approaches have leveraged conditional Gen-

erative Adversarial Networks (GANs). While these works

have managed to generate results of increasing quality, there

are major challenges when attempting to synthesize images

for complex scenes with multiple interacting objects with-

out explicitly defining such interactions [34]. Inspired by

the principle of compositionality [39], our model does not

use GANs but produces a scene by sequentially generat-

ing objects (e.g. in the forms of clip-arts, bounding boxes,

or segmented object patches) containing the semantic ele-

ments that compose the scene.

Our work is also related to prior research on using ab-

stract scenes to mirror and analyze complex situations in

the real world [40, 41, 7, 30]. In [41], a graphical model

was introduced to generate an abstract scene from textual

descriptions. Unlike this previous work, our method does

not use a semantic parser but is trained end-to-end from

input sentences. Our work is also related to recent re-

search on generating images from pixel-wise semantic la-

bels [12, 4, 24], especially [24] which proposed a retrieval-

based semi-parametric method for image synthesis given

the spatial semantic map. Our synthetic image genera-

tion model optionally uses the cascaded refinement module

in [24] as a post-processing step. Unlike these works, our

method is not given the spatial layout of the objects in the

scene but learns to predict a layout indirectly from text.

Most closely related to our approach are [13, 9, 11],

and [15], as these works also attempt to predict explicit

2D layout representations. Johnson et al [13] proposed a

graph-convolutional model to generate images from struc-

6711



Mike is holding a hotdog.         Jenny is sitting in the sandbox.        Jenny is holding the shovel.

object attn: 

sitting sandbox holding

attribute attn: 
jenny <eos> jenny

object attn: 

sandbox sitting mike

attribute attn: 
sandbox <eos> jenny

object attn: 

mike jenny sitting

attribute attn: 
holding hotdog mike

object attn: 

jenny jenny mike

attribute attn: 
sitting jenny holding

object attn: 

hotdog shovel holding

attribute attn: 
mike hotdog holding

object attn: 

shovel holding sandbox

attribute attn: 
shovel holding <eos>

Figure 3. Step-by-step generation of an abstract scene, showing the top-3 attended words for the object prediction and attribute prediction

at each time step. Notice how except for predicting the sun at the first time step, the top-1 attended words in the object decoder are

almost one-to-one mappings with the predicted objects. The attended words by the attribute decoder also correspond semantically to useful

information for predicting either pose or location, e.g. to predict the location of the hotdog at the fifth time step, the model attends to mike

and holding.

tured scene graphs. The presented objects and their re-

lationships were provided as inputs in the scene graphs,

while in our work, the presence of objects is inferred from

text. Hong et al [11] targeted image synthesis using con-

ditional GANs but unlike prior works, it generated lay-

outs as intermediate representations in a separably trained

module. Our work also attempts to predict layouts for

photographic image synthesis but unlike [11], we generate

pixel-level outputs using a semi-parametric retrieval mod-

ule without adversarial training and demonstrate superior

results. Kim et al [15] performed pictorial generation from

chat logs, while our work uses text which is considerably

more underspecified. Gupta et al [9] proposed a semi-

parametric method to generate cartoon-like pictures. How-

ever the presented objects were also provided as inputs to

the model, and the predictions of layouts, foregrounds and

backgrounds were performed by separably trained modules.

Our method is trained end-to-end and goes beyond cartoon-

like scenes. To the best of our knowledge, our model is

the first work targeting various types of scenes (e.g. ab-

stract scenes, semantic layouts and composite images) un-

der a unified framework.

3. Model

Text2Scene adopts a Seq-to-Seq framework [28] and in-

troduces key designs for spatial and sequential reasoning.

Specifically, at each time step, the model modifies a back-

ground canvas in three steps: (1) the model attends to the

input text to decide what is the next object to add, or decide

whether the generation should end; (2) if the decision is to

add a new object, the model zooms in the language context

of the object to decide its attributes (e.g. pose, size) and re-

lations with its surroundings (e.g. location, interactions with

other objects); (3) the model refers back to the canvas and

grounds (places) the extracted textual attributes into their

corresponding visual representations.

To model this procedure, Text2Scene consists of a text

encoder, which takes as input a sequence of M words wi

(section 3.1), an object decoder, which predicts sequen-

tially T objects ot, and an attribute decoder that predicts

for each ot their locations lt and a set of k attributes {Rk
t }

(section 3.2). The scene generation starts from an initially

empty canvas B0 that is updated at each time step. In the

synthetic image generation task, we also jointly train a fore-

ground patch embedding network (section 3.3) and treat the

embedded vector as a target attribute. Figure 3 shows a step-

by-step generation of an abstract scene.

3.1. Text Encoder

Our text encoder is a bidirectional recurrent network

with Gated Recurrent Units (GRUs). For a given sentence,

we compute for each word wi:

hE
i = BiGRU(xi, h

E
i−1, h

E
i+1), (1)

Here BiGRU is a bidirectional GRU cell, xi is a word em-

bedding vector corresponding to the i-th word wi, and hE
i is

a hidden vector encoding the current word and its context.

We use the pairs [hE
i ;xi], the concatenation of hE

i and xi,

as the encoded text feature.

3.2. Object and Attribute Decoders

At each step t, our model predicts the next object ot from

an object vocabulary V and its k attributes {Rk
t }, using text

feature {[hE
i ;xi]} and the current canvas Bt as input. For

this part, we use a convolutional network (CNN) Ω to en-

code Bt into a C × H × W feature map, representing the

current scene state. We model the history of the scene states

{hD
t } with a convolutional GRU (ConvGRU):

hD
t = ConvGRU(Ω(Bt), h

D
t−1), (2)

The initial hidden state is created by spatially replicating

the last hidden state of the text encoder. Here hD
t provides
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an informative representation of the temporal dynamics of

each spatial (grid) location in the scene. Since this repre-

sentation might fail to capture small objects, a one-hot vec-

tor of the object predicted at the previous step ot−1 is also

provided as input to the downstream decoders. The initial

object is set as a special start-of-scene token.

Attention-based Object Decoder: Our object decoder is

an attention-based model that outputs the likelihood scores

of all possible objects in an object vocabulary V . It takes as

input the recurrent scene state hD
t , text features {[hE

i ;xi]}
and the previously predicted object ot−1:

uo
t = AvgPooling(Ψo(hD

t )), (3)

cot = Φo([uo
t ; ot−1], {[h

E
i ;xi]}), (4)

p(ot) ∝ Θo([uo
t ; ot−1; c

o
t ]), (5)

here Ψo is a convolutional network with spatial attention on

hD
t , similar as in [32]. The goal of Ψo is to collect the spa-

tial contexts necessary for the object prediction, e.g. what

objects have already been added. The attended spatial fea-

tures are then fused into a vector uo
t by average pooling. Φo

is the text-based attention module, similar as in [20], which

uses [uo
t ; ot−1] to attend to the language context {[hE

i ;xi]}
and collect the context vector cot . Ideally, cot encodes infor-

mation about all the described objects that have not been

added to the scene thus far. Θo is a two-layer perceptron

predicting the likelihood of the next object p(ot) from the

concatenation of uo
t , ot−1, and cot , using a softmax function.

Attention-based Attribute Decoder The attribute set cor-

responding to the object ot can be predicted similarly. We

use another attention module Φa to “zoom in” the language

context of ot, extracting a new context vector cat . Compared

with cot which may contain information of all the objects

that have not been added yet, cat focuses more specifically

on contents related to the current object ot. For each spatial

location in hD
t , the model predicts a location likelihood lt,

and a set of attribute likelihoods {Rk
t }. Here, possible loca-

tions are discretized into the same spatial resolution of hD
t .

In summary, we have:

cat = Φa(ot, {[h
E
i ;xi]}) (6)

ua
t = Ψa([hD

t ; cat ]) (7)

p(lt, {R
k
t }) = Θa([ua

t ; ot; c
a
t ]), (8)

Φa is a text-based attention module aligning ot with the lan-

guage context {[hE
i ;xi]}. Ψa is an image-based attention

module aiming to find an affordable location to add ot. Here

cat is spatially replicated before concatenating with hD
t . The

final likelihood map p(lt, {R
k
t }) is predicted by a convolu-

tional network Θa, followed by softmax classifiers for lt
and discrete {Rk

t }. For continuous attributes {Rk
t } such as

the appearance vector Qt for patch retrieval (next section),

we normalize the output using an ℓ2-norm.

3.3. Foreground Patch Embedding

We predict a particular attribute: an appearance vector

Qt, only for the model trained to generate synthetic image

composites (i.e. images composed of patches retrieved from

other images). As with other attributes, Qt is predicted for

every location in the output feature map which is used at

test time to retrieve similar patches from a pre-computed

collection of object segments from other images. We train a

patch embedding network using a CNN which reduces the

foreground patch in the target image into a 1D vector Ft.

The goal is to minimize the ℓ2-distance between Qt and Ft

using a triplet embedding loss [6] that encourages a small

distance ||Qt, Ft||2 but a larger distance with other patches

||Qt, Fk||2. Here Fk is the feature of a ”negative” patch,

which is randomly selected from the same category of Ft:

Ltriplet(Qt, Ft) = max{||Qt, Ft||2 − ||Qt, Fk||2 + α, 0}
(9)

α is a margin hyper-parameter.

3.4. Objective

The loss function for a given example in our model with

reference values (ot, lt, {R
k
t }, Ft) is:

L =− wo

∑

t

log p(ot)− wl

∑

t

log p(lt)

−
∑

k

wk

∑

t

log p(Rk
t ) + we

∑

t

Ltriplet(Qt, Ft)

+ wO
a L

O
attn + wA

a L
A
attn,

where the first three terms are negative log-likelihood losses

corresponding to the object, location, and discrete attribute

softmax classifiers. Ltriplet is a triplet embedding loss op-

tionally used for the synthetic image generation task. L∗

attn

are regularization terms inspired by the doubly stochastic

attention module proposed in [32]. Here L∗

attn =
∑

i[1 −∑
t α

∗

ti]
2 where {αo

ti} and {αa
ti} are the attention weights

from Φo and Φa respectively. These regularization terms

encourage the model to distribute the attention across all

the words in the input sentence so that it will not miss any

described objects. Finally, wo, wl, {wk}, we, wO
a , and wA

a

are hyperparameters controlling the relative contribution of

each loss.

Details for different scene generation tasks In the Ab-

stract Scenes generation task, Bt is represented directly as

an RGB image. In the layout generation task, Bt is a 3D

tensor with a shape of (V, H,W ), where each spatial loca-

tion contains a one-hot vector indicating the semantic la-

bel of the object at that location. Similarly, in the synthetic

image generation task, Bt is a 3D tensor with a shape of

(3V, H,W ), where every three channels of this tensor en-

code the color patches of a specific category from the back-

ground canvas image. For the foreground embedding mod-

ule, we adopt the canvas representation in [24] to encode

6713



Methods
U-obj B-obj

Pose Expr
U-obj B-obj

Prec Recall Prec Recall Coord Coord

Zitnick et al. [41] 0.722 0.655 0.280 0.265 0.407 0.370 0.449 0.416

Text2Scene (w/o attention) 0.665 0.605 0.228 0.186 0.305 0.323 0.395 0.338

Text2Scene (w object attention) 0.731 0.671 0.312 0.261 0.365 0.368 0.406 0.427

Text2Scene (w both attentions) 0.749 0.685 0.327 0.272 0.408 0.374 0.402 0.467

Text2Scene (full) 0.760 0.698 0.348 0.301 0.418 0.375 0.409 0.483

Table 1. Quantitative evaluation on the Abstract Scenes dataset. Our full model performs better in all metrics except U-obj Coord which

measures exact object coordinates. It also shows that our sequential attention approach is effective.

Methods Scores ≥ 1 ≥ 2
Obj-Single Obj-Pair Location Expression

sub-pred sub-pred-obj pred:loc pred:expr

Reference 0.919 1.0 0.97 0.905 0.88 0.933 0.875

Zitnick et al. [41] 0.555 0.92 0.49 0.53 0.44 0.667 0.625

Text2Scene (w/o attention) 0.455 0.75 0.42 0.431 0.36 0.6 0.583

Text2Scene (full) 0.644 0.94 0.62 0.628 0.48 0.667 0.708

Table 2. Human evaluation on Abstract Scenes. Each scene is generated from three textual statements. Users are asked to rate if the

generated scene validates each input statement. Our method generates scenes that abide by at least one of the statements 94% of the times,

and by at least two statements 64%, and is superior in all types of statements except Location.

the foreground patch for simplicity. As the composite im-

ages may exhibit gaps between patches, we also leverage

the stitching network in [24] for post-processing. Note that

the missing region may also be filled by any other inpaint-

ing approaches. Full details about the implementation of

our model can be found in the supplementary material. Our

code and data are publicly available1.

Figure 4. Evaluation metrics for the abstract scene generation task

(best viewed in color): the green dots show the common U-obj

between the reference (B) and the generated abstract scene (A),

the blue dots show the missing and mispredicted objects. Sim-

ilarly, the yellow lines show the common B-obj and the red

lines show the missing and mispredicted B-obj. The U-obj

precision/recall for this example is 0.667/0.667, the B-obj pre-

cision/recall is 1.0/0.5.

4. Experiments

We conduct experiments on three text-to-scene tasks:

(I) constructing abstract scenes of clip-arts in the Abstract

Scenes [41] dataset; (II) predicting semantic object layouts

of real images in the COCO [19] dataset; and (III) generat-

ing synthetic image composites in the COCO [19] dataset.

1https://github.com/uvavision/Text2Scene

Task (I): Clip-art Generation on Abstract Scenes We use

the dataset introduced by [41], which contains over 1,000

sets of 10 semantically similar scenes of children playing

outside. The scenes are composed with 58 clip-art objects.

The attributes we consider for each clip-art object are the

location, size (|Rsize| = 3), and the direction the object

is facing (|Rdirection| = 2). For the person objects, we

also explicitly model the pose (|Rpose| = 7) and expression

(|Rexpression| = 5). There are three sentences describing

different aspects of a scene. After filtering empty scenes,

we obtain 9997 samples. Following [41], we reserve 1000

samples as the test set and 497 samples for validation.

Task (II): Semantic Layout Generation on COCO The

semantic layouts contain bounding boxes of the objects

from 80 object categories defined in the COCO [19] dataset.

We use the val2017 split as our test set and use 5000 sam-

ples from the train2017 split for validation. We normal-

ize the bounding boxes and order the objects from bot-

tom to top as the y-coordinates typically indicate the dis-

tances between the objects and the camera. We further or-

der the objects with the same y-coordinate based on their

x-coordinates (from left to right) and categorical indices.

The attributes we consider are location, size (|Rsize| = 17),

and aspect ratio (|Raspect ratio| = 17). For the size at-

tribute, we discretize the normalized size range evenly into

17 scales. We also use 17 aspect ratio scales, which are

{ 1

9
, 1

8
, 1

7
, 1

6
, 1

5
, 1

4
, 1

3
, 1

2
, 1

1
, 2

1
, 3

1
, 4

1
, 5

1
, 6

1
, 7

1
, 8

1
, 9

1
}.

Task (III): Synthetic Image Generation on COCO We

demonstrate our approach by generating synthetic image

composites given input captions in COCO [19]. For

fair comparisons with alternative approaches, we use the

val2014 split as our test set and use 5000 samples from the
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Methods B1 B2 B3 B4 METEOR ROUGE CIDEr SPICE

Captioning from True Layout [36] 0.678 0.492 0.348 0.248 0.227 0.495 0.838 0.160

Text2Scene (w/o attention) 0.591 0.391 0.254 0.169 0.179 0.430 0.531 0.110

Text2Scene (w object attention) 0.591 0.391 0.256 0.171 0.179 0.430 0.524 0.110

Text2Scene (w both attentions) 0.600 0.401 0.263 0.175 0.182 0.436 0.555 0.114

Text2Scene (full) 0.615 0.415 0.275 0.185 0.189 0.446 0.601 0.123

Table 3. Quantitative evaluation on the layout generation task. Our full model generates more accurate captions from the generated layouts

than the baselines. We also include caption generation results from ground truth layouts as an upper bound on this task.

Methods IS B1 B2 B3 B4 METEOR ROUGE CIDEr SPICE

Real image 36.00±0.7 0.730 0.563 0.428 0.327 0.262 0.545 1.012 0.188

GAN-INT-CLS [26] 7.88±0.07 0.470 0.253 0.136 0.077 0.122 – 0.160 –

SG2IM* [13] 6.7±0.1 0.504 0.294 0.178 0.116 0.141 0.373 0.289 0.070

StackGAN [37] 10.62±0.19 0.486 0.278 0.166 0.106 0.130 0.360 0.216 0.057

HDGAN [38] 11.86±0.18 0.489 0.284 0.173 0.112 0.132 0.363 0.225 0.060

Hong et al [11] 11.46±0.09 0.541 0.332 0.199 0.122 0.154 – 0.367 –

AttnGan [33] 25.89±0.47 0.640 0.455 0.324 0.235 0.213 0.474 0.693 0.141

Text2Scene (w/o inpaint.) 22.33±1.58 0.602 0.412 0.288 0.207 0.196 0.448 0.624 0.126

Text2Scene (w inpaint.) 24.77±1.59 0.614 0.426 0.300 0.218 0.201 0.457 0.656 0.130

Table 4. Quantitative evaluation on the synthetic image generation task. Our model is superior on automated metrics than all competing

approaches except AttnGan, even without post-processing. *The result of SG2IM is evaluated on the validation set defined in [13], which

is a subset of the COCO val2014 split.

Ratio

Text2Scene > SG2IM [13] 0.7672

Text2Scene > HDGAN [38] 0.8692

Text2Scene > AttnGAN [33] 0.7588

Table 5. Two-alternative forced-choiced evaluation on the syn-

thetic image generation task against competing methods.

train2014 split for validation. We collect segmented object

and stuff patches from the training split. The stuff segments

are extracted from the training images by taking connected

components in corresponding semantic label maps from the

COCO-Stuff annotations [10]. For object segments, we use

all 80 categories defined in COCO. For stuff segments, we

use the 15 super-categories defined in [10] as the class la-

bels, which results in 95 categories in total. We order the

patches as in the layout generation task but when compos-

ing the patches, we always render the object patches in front

of the stuff patches. In our experiment, Qt and Ft have a di-

mension of 128.

4.1. Evaluation

Automatic Metrics Our tasks pose new challenges on

evaluating the models as (1) the three types of scene repre-

sentations are quite different from each other; and (2) there

is no absolute one-to-one correspondence between a sen-

tence and a scene. For the abstract scene generation task,

we draw inspiration from the evaluation metrics applied in

machine translation [17] but we aim at aligning multimodal

visual-linguistic data instead. To this end, we propose to

compute the following metrics: precision/recall on single

objects (U-obj), “bigram” object pairs (B-obj); classi-

fication accuracies for poses, expressions; Euclidean dis-

tances (defined as a Gaussian function with a kernel size

of 0.2) for normalized coordinates of U-obj and B-obj.

A “bigram” object pair is defined as a pair of objects with

overlapping bounding boxes as illustrated in Figure 4.

In the layout generation experiment, it is harder to define

evaluation metrics given the complexity of real world object

layouts. Inspired by [11], we employ caption generation as

an extrinsic evaluation. We generate captions from the se-

mantic layouts using [36] and compare them back to the

original captions used to generate the scenes. We use com-

monly used metrics for captioning such as BLEU [23], ME-

TEOR [17], ROUGE L [18], CIDEr [29] and SPICE [1].

For synthetic image generation, we adopt the Inception

Score (IS) metric [27] which is commonly used in recent

text to image generation methods. However, as IS does not

evaluate correspondence between images and captions, we

also employ an extrinsic evaluation using image captioning

using the Show-and-Tell caption generator [31] as in [11].

Baselines For abstract scene generation, we run compar-

isons with [41]. We also consider variants of our full model:

(1) Text2Scene (w/o attention): a model without any atten-

tion module. In particular, we replace Eq. 3 with a pure

average pooling operation on hD
t , discard cot in Eq. 5, dis-

card cat and replace ua
t with hD

t in Eq. 8. (2) Text2Scene (w

object attention): a model with attention modules for object

prediction but no dedicated attention for attribute predic-
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Figure 5. Examples of generated abstract scenes. The first column

shows the input text, and the last column shows the reference true

scene from the dataset.

tion. Specifically, we replace (ua
t , cat ) with (hD

t , cot ) in Eq. 8.

(3) Text2Scene (w both attentions): a model with dedicated

attention modules for both object and attribute predictions

but no regularization.

Human Evaluations We also conduct human evaluations

using crowdsourcing on 100 groups of clip-art scenes gen-

erated for the Abstract Scene dataset using random captions

from the test split. Human annotators are asked to determine

whether an input text is a true statement given the generated

scene (entailment). Each scene in this dataset is associated

with three sentences that are used as the statements. Each

sentence-scene pair is reviewed by three annotators to de-

termine if the entailment is true, false or uncertain.

Ignoring uncertain responses, we use the ratio of the

sentence-scene pairs marked as true for evaluation.

We also perform predicate-argument semantic frame

analysis [3] on our results. Using the semantic parser

from [41], we subdivide the sentences as: sub-pred

corresponding to sentences referring to only one object,

sub-pred-obj corresponding to sentences referring to

object pairs with semantic relations, pred:loc corre-

sponding to sentences referring to locations, and pred:pa

corresponding to sentences mentioning facial expressions.

For synthetic image generation we use a similar human

evaluation as in [24]. We compare our method against

SG2IM [13], HDGAN [38] and AttnGAN [33]. We resize

our generated images to the same resolutions as in these

alternative methods, 64 × 64 for SG2IM [13], 256 × 256

for HDGAN [38] and AttnGAN [33]. For each sentence

randomly selected from the test set, we present images gen-

erated by our method and a competing method and allow

the user to choose the one which better represents the text.

We collect results for 500 sentences. For each sentence, we

collect responses from 5 different annotators.

Figure 6. Generated layouts from input captions and generated

captions from the predicted layouts (best viewed in color). Our

model successfully predicts the presence (purple text) and number

of objects (blue text), and their spatial relations (red text).

4.2. Results and Discussion

Abstract Scenes and Semantic Layouts: Table 1 shows

quantitative results on Abstract Scenes. Text2Scene im-

proves over [41] and our variants on all metrics ex-

cept U-obj Coord. Human evaluation results on Ta-

ble 2 confirm the quality of our outputs, where Scores

are the percentage of sentence-scene pairs with a true

entailment; (≥ 1) (≥ 2) indicate if our method pro-

duces scenes that entailed at least one (or two) out of

three statements. Text2Scene also shows better results

on statements with specific semantic information such as

Obj-single, Obj-pair, and Expression, and is

comparable on Location statements. As a sanity check,

we also test reference true scenes provided in the Abstract

Scenes dataset (first row). Results show that it is more chal-

lenging to generate the semantically related object pairs.

Overall, the results also suggest that our proposed metrics

correlate with human judgment on the task.

Figure 5 shows qualitative examples of our models on

Abstract Scenes in comparison with baseline approaches

and the reference scenes. These examples illustrate that

Text2Scene is able to capture semantic nuances such as the

spatial relation between two objects (e.g., the bucket and the

shovel are correctly placed in Jenny’s hands in the last row)

and object locations (e.g., Mike is on the ground near the

swing set in the last row).

Table 3 shows an extrinsic evaluation on the layout gen-

eration task. We perform this evaluation by generating cap-

tions from our predicted layouts. Results show our full

method generates the captions that are closest to the cap-

tions generated from true layouts. Qualitative results in Fig-

ure 6 also show that our model learns important visual con-

cepts such as presence and number of object instances, and

their spatial relations.
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Figure 7. Qualitative examples of synthetic image generation (best viewed in color). The first column shows input captions with manually

highlighted objects (purple), counts (blue) and relations (red). The second columns shows the true images. Columns in the middle show

competing approaches. The last two columns show the outputs of our model before and after pre-processing.

Synthetic Image Composites: Table 4 shows evaluation

of synthetic scenes using automatic metrics. Text2Scene

without any post-processing already outperforms all previ-

ous methods by large margins except AttnGAN [33]. As

our model adopts a composite image generation framework

without adversarial training, gaps between adjacent patches

may result in unnaturally shaded areas. We observe that, af-

ter performing a regression-based inpainting [24], the com-

posite outputs achieve consistent improvements on all auto-

matic metrics. We posit that our model can be further im-

proved by incorporating more robust post-processing or in

combination with GAN-based methods. On the other hand,

human evaluations show that our method significantly out-

performs alternative approaches including AttnGAN [33],

demonstrating the potential of leveraging realistic image

patches for text-to-image generation. It is important to note

that SG2IM [13] and Hong et al [11] also use segment and

bounding box supervision – as does our method, and At-

tnGan [33] uses an Imagenet (ILSVRC) pretrained Incep-

tionv3 network. In addition, as our model contains a patch

retrieval module, it is important that the model does not gen-

erate a synthetic image by simply retrieving patches from a

single training image. On average, each composite image

generated from our model contains 8.15 patches from 7.38

different source images, demonstrating that the model does

not simply learn a global image retrieval. Fig. 7 shows qual-

itative examples of the synthetic image composites, We in-

clude examples of generated images along with their corre-

sponding source images from which patch segments are re-

trieved, and more extensive qualitative results in the supple-

mental material. Since our model learns about objects and

relations separately, we also observed that it is often able to

generalize to uncommon situations (as defined in [35]).

5. Conclusions

This work presents a novel sequence-to-sequence model

for generating compositional scene representations from vi-

sually descriptive language. We provide extensive quantita-

tive and qualitative analysis of our model for different scene

generation tasks on datasets from two different domains:

Abstract Scenes [41] and COCO [19]. Experimental results

demonstrate the capacity of our model to capture finer se-

mantic concepts from visually descriptive text and generate

complex scenes.
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