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Abstract

This paper proposes Attribute Attention Network

(AANet), a new architecture that integrates person at-

tributes and attribute attention maps into a classification

framework to solve the person re-identification (re-ID)

problem. Many person re-ID models typically employ se-

mantic cues such as body parts or human pose to improve

the re-ID performance. Attribute information, however, is

often not utilized. The proposed AANet leverages on a base-

line model that uses body parts and integrates the key at-

tribute information in an unified learning framework. The

AANet consists of a global person ID task, a part detection

task and a crucial attribute detection task. By estimating the

class responses of individual attributes and combining them

to form the attribute attention map (AAM), a very strong

discriminatory representation is constructed. The proposed

AANet outperforms the best state-of-the-art method [20] us-

ing ResNet-50 by 3.36% in mAP and 3.12% in Rank-1 accu-

racy on DukeMTMC-reID dataset. On Market1501 dataset,

AANet achieves 92.38% mAP and 95.10% Rank-1 accuracy

with re-ranking, outperforming [11], another state of the

art method using ResNet-152, by 1.42% in mAP and 0.47%

in Rank-1 accuracy. In addition, AANet can perform per-

son attribute prediction (e.g., gender, hair length, clothing

length etc.), and localize the attributes in the query image.

1. Introduction

Given a query image, person re-ID aims to retrieve im-

ages of a queried person from a collection of network-

camera images. The retrieval is typically attempted from a

collection of images taken within a short time interval with

respect to the queried image. This supports the underlying

assumption that the query person’s appearance and cloth-

ing attributes remain unchanged across the query and the

collection images. Person re-ID is a challenging problem

due to many factors such as partial/total occlusion of the

Figure 1. Class-aware heat maps are extracted and combined to

form a discriminatory Attribute Attention Map (AAM) at the im-

age level. The six heat maps shown here correspond to the six

attributes such as hair, upper clothing color, lower clothing color

etc. Best viewed in color.

subject, pose variation, ambient light changes, low image

resolution, etc. Recent deep learning based re-ID solutions

have demonstrated good retrieval performance.

The approaches used to solve the person re-ID problem

can be broadly divided into two categories. The first cate-

gory comprises of metric learning methods that attempt to

learn an embedding space which brings images belonging to

a unique person close together and those belonging to dif-

ferent persons far away. Various approaches such as triplet

and quadruplet losses have been employed to learn such em-

bedding spaces [10, 2].

The second category of methods poses the re-ID problem

in a classification set-up. Such methods learn by using Soft-

max normalization and computing cross-entropy loss, based

on person identity as ground truth, for back-propagation.

Research has shown that by integrating semantic informa-

tion such as body parts, human pose etc, the classifica-
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Figure 2. Overview of AANet. The backbone network, which is based on the ResNet-50 architecture, outputs the feature map X . The

feature map X is forwarded to three tasks, namely the Global Feature Network(GFN), Part Feature Network (PFN) and Attribute Feature

Network (AFN). The output of these three tasks are combined using homoscedastic uncertainty learning to predict the person identification.

Best viewed in color.

tion and recognition accuracy can be significantly improved

[18, 22, 24]. Person attributes, such as clothing color, hair,

presence/absence of backpack, etc. are, however, not used

by the current state-of-the-art re-ID methods. Since, a typi-

cal re-ID model assumes that the physical appearance of the

person of interest would not significantly change between

query image and the search images, physical appearance

becomes a key information that can be mined to achieve

higher re-ID performances. Such information is not utilized

by current research and the state of the art re-ID methods.

In this work, we propose to utilize the person attribute

information into the classification framework. The re-

sulting framework, called the Attribute Attention Network

(AANet), brings together identity classification, body part

detection and person attribute into an unified framework

that jointly learns a highly discriminatory feature space.

The resulting network outperforms existing state of the art

methods in multiple benchmark datasets.

Figure 2 gives an overview of the proposed architec-

ture. The proposed framework consists of three sub-

networks. The first network, called the Global Feature Net-

work (GFN), performs global identity (ID) classification

based on the input query image. The second network, called

the Part Feature Network (PFN), focuses on body part de-

tection. The third network is the Attribute Feature Network

(AFN), which extracts class-aware regions from the persons

attributes to generate Attribute Attention Map (AAM). This

is shown in Figure 1. The three networks perform clas-

sification using person ID and attribute labels We use ho-

moscedastic uncertainty learning to optimize the weights of

the three sub-tasks for final loss calculations.

Since AANet performs person attribute classification as

part of network learning, it also output attribute predictions

for each query and gallery images. This enables attribute

matching of the gallery images, with or without retrieval by

query image.

Our key contributions can be summarized as follows:

1. We provide a new network architecture that integrates

attribute features with identity and body part classifi-

cation in a unified learning framework.

2. We outperform the existing best state-of-the-art re-ID

method on multiple benchmark datasets and propose

the new state of the art solution for person re-ID.

The rest of the paper is organized as follows. Section 2

provides an overview of the related works. In section 3 we

describe the proposed AANet framework. Experimental re-

sults are provided in section 4 and 5. The paper is concluded

in section 6.

2. Related works

In recent years, deep learning was used to solve various

challenging computer vision tasks [14, 9, 10, 6, 7]. In this

section, we provide an overview of the recent re-ID deep
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Best viewed in color.

learning based methods that achieve close to state-of-the-

art performance.

Deep learning based re-ID solutions are often posed as

an identity classification problem. Authors in [23] used

multi-domain datasets to achieve high re-ID performance

in a classification set-up. Wang et al. [21] proposed to for-

mulate the re-ID problem as a joint learning framework that

learns feature representations using not only the query im-

age but also query and gallery image pairs. Many solutions

have used additional semantic cues such as human pose

or body parts to further improve the classification perfor-

mance. Su et al. [18] proposed a Pose-driven Deep Con-

volutional (PDC) model to learn improved feature extrac-

tion and matching models from end-to-end. Wei et al. [22]

also adopted the human pose estimation, or key point de-

tection approach, in his Global-Local-Alignment Descriptor

(GLAD) algorithm. The local body parts are detected and

learned together with the global image by the four-stream

CNN model, which yields a discriminatory and robust rep-

resentation. Yao et al. [24] proposed the Part Loss Net-

works (PL-Net) to automatically detect human parts and

cross train them with the main identity task. Zhao et al.

[25] follows the concept of attention model and uses a part

map detector to extract multiple body regions in order to

compute their corresponding representations. The model is

learned through triplet loss function. Sun et al. [20] pro-

posed a strong Part-based Convolutional Baseline method,

with Refined Part Pooling method to re-align parts for high

accuracy performance. Kalayeh et al. [11] used multiple

datasets, deep backbone architecture, large training images,

and human semantic parsing to achieve good accuracy re-

sults. Similarly, Jon et al. [1] proposed using deep backbone

architecture and large input image, but with classification as

first pass learning, followed by metric learning for accuracy

fine-tuning.

Integrating semantic information such as body parts and

pose estimation have shown significant improvement in re-

ID performance. Since a person’s attributes do not change

significantly between the query image and the gallery im-

ages, we believe that attributes form a key information that

can significantly impact person re-ID performance. This,

however, has not been utilized in the current re-ID methods.

In view of this, we propose to integrate physical attributes

to the identity classification framework.

3. Proposed Attribute Attention Network

(AANet)

The proposed AANet is a multitask network with three

sub-networks, namely the GFN, PFN and AFN (Figure 2).

The sub-network, GFN, performs global image-level ID

classification. The PFN detects and extracts localized body

parts before the classification task. The AFN uses person

attributes for the classification task and generates the At-

tribute Activation Map (AAM) that plays a crucial role in

identity classification. Some examples of AAM are shown

in Figure 3. In the figure, the generated AAMs provide

more discriminatory features than the ID heatmap. As a re-

sult, when GFN, PFN and AFN learn together, our AANet

becomes more generic and better at predicting person ID.

The various components of AANet are described in details

in the following sections.

The backbone network of AANet is based on ResNet ar-

chitecture (Figure 2) since ResNet is known to perform well

in re-ID problems. We removed the fully connected layer of

the backbone network so that AANet’s sub-networks can be

integrated. There are four classifiers within AANet. They

are the Global ID Classifier, Part Classifiers, Attribute Clas-

sifiers and AAM Classifier. The Global ID and Part clas-

sifiers belong to GFN and PFN respectively. The Attribute

and AAM Classifiers belong to AFN. All four classifiers

have rather similar network design. All of them utilize

global average pooling to reduce over-fitting, and there is

a 3 layers (Z, V and C) architecture to increase network

depth for better feature learning. The classifiers learn using

Softmax normalization and Cross-entropy loss.

3.1. Global Feature Network

This network performs the identity (ID) classification us-

ing the query image (Figure 2). The convolutional feature

map X ∈ RZ×H×W extracted by the backbone network is

provided as input to a global average pooling (GAP) layer.

This is followed by a 1x1 convolution layer that brings the

dimensionality down to V. BatchNorm and Relu are then ap-

plied to V before linear transformation to C, which is used
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by Softmax function. Cross-entropy loss is calculated on

Softmax output for learning using back-propagation.

3.2. Part Feature Network

This network performs ID classification on body parts

using the same person ID labels used in GFN. The architec-

ture is shown in Figure 4. The body part detector partitions

the convolutional feature map X into six horizontal parts

and estimate the corresponding regions of interest (ROIs).

This is done by identifying peak activation regions in X .

Let (hz, wz) denote the peak activation location in each fea-

ture map z of X where z ∈ {1, . . . , Z}.

(hz, wz) = argmax
z

Xz(h,w) (1)

where Xz(h,w) is the activation value at location (h,w) on

the z’th feature channel of X . These locations are then clus-

tered into 6 bins based on their vertical positions. These 6
bins constitute the 6 ROIs/ parts. The feature map X is now

divided into 6 parts using these ROIs. Figure 4 shows this

process. Once the 6 parts are computed, the subsequent pro-

cessing, which is shown in Figure 2 is performed similarly

as in GFN.

3.3. Attribute Feature Network

The AFN captures the key attribute information in the

AANet architecture (Figure 2). The AFN consists of two

sub-tasks (i) attribute classification and (ii) attribute atten-

tion map (AAM) generation. The first sub-task performs

classification on individual person attributes. The second

sub-task leverages on the output of first sub-task and gen-

erates class activation map (CAM) [28] for each attribute.

CAM is a technique to localize the discriminatory image

regions even though the network is trained on image-level

labels only. Thus CAM fits well for AANet use. The CAMs

generated from selected attribute classes are combined to

form a feature map that is forwarded to the AAM Classifier

for learning. We describe these two sub-tasks in the follow-

ing paragraphs in detail.

(i) Attribute classification The first sub-task of AFN

is to perform attribute classification. There are 10 and 12

annotated attributes on DuketMTMC-reID and Market1501

respectively. The first layer of AFN is a 1x1 convolution

that downsized the channel depth of feature map X from Z

to V. Next, we partition the feature maps into three differ-

ent sets, namely the Top, Middle and Bottom feature maps,

each responsible for extracting features from their localized

regions. Part-based modeling is known to reduce back-

ground clutter and improve classification accuracy. The

different parts focus on different attributes. The Top fea-

ture maps, for example, are used for capturing features such

as hat, hair, sleeves and upper clothing color etc. Features

from the lower half of the body are ignored in the Top fea-

ture map. As shown in Figure 5, the outputs of these feature

maps, together with global feature map, are average pooled

to generate 4 feature vectors at layer V. These 4 vectors are

the input to the fully connected layer C. On Market1501,

there are 4 classifiers at layer C, each generating their own

attribute predictions.

(ii) Attribute Attention Map The Attribute Attention

Map (AAM) is the input to the Attribute Classifier (Fig-

ure 2, which performs person ID classification. AAM com-

bines class sensitive activation regions from individual at-

tributes. These individual class-sensitive activation regions

are extracted using CAM from each person attribute. As

explained before, CAM uses GAP, with little tweak, to gen-

erate discriminatory image regions. Thus, CAM’s output

reveals image regions representing the attribute. Figure 6

shows some example of class sensitive activation regions

and the combined AAM. For qualitative comparison, the

second column in the figure shows the activation map gen-

erated by the global identification task (GFN). The subse-

quent columns show the class specific activation regions of

various attributes such as gender, hair, sleeve, upper cloth-

ing color etc. The sixth column, for example, depicts the

class specific activation region for upper clothing color. We

can observe that the activation region corresponds to the up-

per clothing region in the input query image.

Out of the 12 available attributes, the gender, hair, upper

and lower clothing colors, lower clothing type and length
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attributes. Backpack, handbag, bag and hat attributes, despite being important visual cues, do not appear in all images, and are therefore

dropped. Attention map for sleeves captures too much background information and thus is unsuitable for AAM. Best viewed in color.

are good choices for AAM generation. The AAM genera-

tion process involves merging the individual class specific

activation regions by maximum operation and performing

an adaptive thresholding. The thresholding process removes

some background regions that sometimes appear within the

class specific activation region. An example of this can be

observed in the second row of Figure 6 where the Lower

clothing activation map contains some background region

but on thresholding the region is removed from the gener-

ated AAM. When qualitatively comparing the class activa-

tion map generated by the global feature network on the

same query image, we can see that the AAM was more spe-

cific in localizing regions with distinct attribute information.

The Attribute Classifier (Figure 2) takes the AAM and per-

form ID classification, and shares the learning experience

with the GFN and PFN.

3.4. Loss calculation

The proposed AANet is formulated as a multitask net-

work. The multitask loss function of the AANet is defined

as follows:

Ltotal(x,W, λ) =

T∑

i=0

λiLi(x,W ) (2)

Where x is a set of training images, W is the weights on in-

put x. T is the total number of task loss Li. λi are the task

loss weighting factors, and it plays an important role in op-

timizing the accuracy performance of AANet. If we assign

equal weighting to all λi, the retrieval accuracy will not be

optimal. In our work, we used homoscedastic uncertainty

learning [13, 8, 12] to obtain the task loss weighting. We

define the Bayesian probabilistic model classification like-

lihood output as

p(y|fW (x), σ) = Softmax(
1

σ2
fW (x)) (3)

Where fW (x) is the output of the neural network and is

scaled by σ2. σ is the observation noise. The log likelihood

for this output is given by

log(p(y = c|fW (x), σ)) =
1

σ2
fW
c (x)

−log(

C∑

i=0

exp(
1

σ2
fW
i (x)))

(4)

Where C is the number of classes for the classifica-

tion task. The task loss L(x,W, σ) can be formulated

as −log(p(y = c|fW (x), σ)). What we need is the

cross-entropy loss of the non-scaled y, which if defined as

L(x,W ) = −log Softmax(y, fW (x)) [13], the loss function

can be simplified to

L(x,W, σ) ≈
1

σ2
L(x,W ) + log σ (5)
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By applying the above loss function to our AANet, the

final AANet loss function is now given as

L(x,W, σg, σp, σa, σaa) ≈
1

σ2
g

Lg(x,W ) +
1

σ2
p

Lp(x,W )+

1

σ2
a

La(x,W ) +
1

σ2
aa

Laa(x,W ) + log σgσpσaσaa

(6)

Where Lg , Lp, La and Laa represent global, part, at-

tribute and attribute attention loss respectively. σg , σp, σa

and σaa represent observation noises for global, part, at-

tribute and attribute attention tasks respectively, and are in-

versely proportional to λi

3.5. Implementation

We implemented AANet with ResNet-50 and ResNet-

152 as backbone networks, and pre-trained them with the

ImageNet [4] dataset. Training images are enlarged to 384

x 128, with only random flip as the data augmentation

method. Batch size is set to 32 for ResNet-50, and 24 for

ResNet-152. Using Stochastic Gradient Descent (SGD) as

the optimizer, we train the network for 40 epoch. Learning

rate starts at 0.1 for the newly added layers, and 0.01 for

the pretrained ResNet parameters, and follows the staircase

schedule at 20 epoch with a 0.1 reduction factor for all pa-

rameters. In all the three sub-networks, the value of Z is

2048 and that of V is 256. The value of C depends on the

dataset under evaluation. For DukeMTMC-reID [16], C is

702 and for Market1501 [26] it is 751.

During testing, we concatenate the outputs of the V layer

from all the classifiers, namely, the global identity classifier,

the body part classifier, the attribute classifier and the AAM

classifier (Figure 2) to form the representation of the query

image. For ranking, we use the l2 norm between these de-

scriptors of the query and the gallery images.

4. Experimental Results

In the following experiments, we used the DukeMTMC-

reID [16] and Market1501 [26] datasets to conduct our

training and testing. DukeMTMC-reID is a subset of

DukeMTMC dataset. The images are cropped from videos

taken from 8 cameras. The dataset consists of 16,522 train-

ing images and 17,661 gallery images, with 702 identities

for both training and testing. 408 distractor IDs are also

included in the dataset. There are a total of 23 attributes

annotated by Lin et al. [15]. We use all attributes, but with

modification to the clothing color attributes. We merged all

8 upper clothing color attributes and 7 lower clothing color

attribute into a single upper clothing attribute and a single

lower clothing attribute respectively.

For Market1501, there are a total of 32,668 images for

both training and testing. There are 751 identities allocated

DukeMTMC-reID

Methods mAP Rank-1

FMN [5] 56.9 74.5

SVDNet [19] 56.8 76.7

DPFL [3] 60.6 79.2

KPM (Res-50) [17] 63.2 80.3

PCB (Res-50)[20] 69.2 83.3

Proposed AANet-50 72.56 86.42

GP-reID (Res-101) [1] 72.80 85.20

SPReID (Res-152) [11] 73.34 85.95

Proposed AANet-152 74.29 87.65

GP-reID (Res-101)[1] + RR 85.60 89.40

SPReID (Res-152)[11] + RR 84.99 88.96

Proposed AANet-152 + RR 86.87 90.36

Table 1. Performance comparison with other state-of-the-art meth-

ods using DukeMTMC-reID dataset. AANet-50 denotes AANet

trained using ResNet-50. AANet-152 denotes AANet trained us-

ing ResNet-152. RR denotes Re-Ranking[27] .

for training and 750 identities for testing. Lin et al. [15]

also annotated this dataset, but with 27 person attributes.

We use the same clothing color strategy as in DukeMTMC-

reID, and use all attributes for training our model.

4.1. Comparison with existing methods

DukeMTMC-reID dataset We perform comparison

with the state-of-the-art methods in Table 1. The table

has three parts based on the backbone network being used.

First part compares models based on ResNet-50. The three

comparative networks are KPM (Res-50) [17], PCB (Res-

50)[20] and the proposed AANet-50. We outperform the

best state-of-the-art method [20] in this category by 3.36%

in mAP and 3.12% in Rank-1 accuracy.

The second comparison is based on networks using

larger backbone models, which include both ResNet-101

and ResNet-152. The three comparative networks are GP-

reID (Res-101) [1], SPReID (Res-152) [11] and the pro-

posed AANet-152. Here, we again outperformed the state-

of-the-art method [11] by 0.95% in mAP and 1.70% in

Rank-1 accuracy.

The third comparison is based on networks from the sec-

ond comparison, but this time with re-ranking [27]. We out-

performed the state-of-the-art method [1] by 1.27% in mAP

and 0.96% in Rank-1 accuracy.

Market1501 dataset We perform similar comparisons

as in previous section in Table 2 using the Market1501

dataset. In the first comparison, which uses ResNet-50,

the networks selected are KPM (Res-50) [17], PCB (Res-

50)[20] and the proposed AANet-50. We outperformed the

best state-of-the-art method [20] in this category by 0.85%

in mAP and 0.09% in Rank-1 accuracy.
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Market1501

Methods mAP Rank1 Rank10

PDC [18] 63.4 84.4 94.9

PL-Net [24] 69.3 88.2 -

DPFL [3] 73.1 88.9 -

GLAD [22] 73.9 89.9 -

KPM (Res-50)[17] 75.3 90.1 97.9

PCB (Res-50)[20] 81.6 93.8 98.5

Proposed AANet-50 82.45 93.89 98.56

GP-reID (Res-101) [1] 81.20 92.20 -

SPReID (Res-152) [11] 83.36 93.68 98.40

Proposed AANet-152 83.41 93.93 98.53

GP-reID (Res-101)[1]+RR 90.00 93.00 -

SPReID (Res-152)[11]+RR 90.96 94.63 97.65

Proposed AANet-152+RR 92.38 95.10 97.94

Table 2. Performance comparison with other state-of-the-art meth-

ods using Market1501 dataset. AANet-50 denotes AANet trained

using ResNet-50. AANet-152 denotes AANet trained using

ResNet-152. RR denotes Re-Ranking[27].

The second comparison is made using GP-reID (Res-

101) [1], SPReID (Res-152) [11] and the proposed AANet,

with either ResNet-101 or ResNet152. Here, we again

outperformed the state-of-the-art method [11] by 0.05% in

mAP and 0.25% in Rank-1 accuracy.

The third comparison is made on networks from the pre-

vious section but with re-ranking [27]. We outperform the

state-of-the-art method [11] by 1.42% in mAP and 0.47% in

Rank-1 accuracy. We believe that the attribute information

is a key contributor in AANet’s person re-ID performance.

4.2. Network Analysis

In this section, we study the effect of task loss weights

and the size of the backbone network on the re-ID perfor-

mance. We also review various training parameters.

Ablation Study In Table 3, we show the impact of the

task loss weights on AANet accuracy performance using

DukeMTMC-reID dataset. The global ID task, the part task,

the attribute classification task and the attribute attention

map task are denoted as Lg , Lp, La and Laa respectively.

As we add each of these relevant tasks to the network, the

accuracy improves, which justifies the contribution of each

task on the overall performance. When we use homoscedas-

tic uncertainty learning to obtain the task loss weights Lg ,

Lp and La, the performance improves to 70.47% mAP and

85.44% Rank-1 accuracy. This result alone is enough to

outperform the best state-of-the-art method using ResNet-

50. With the integration of AAM, which provides more dis-

criminatory features for learning, we improve the accuracy

results to 72.56% mAP and 86.42% Rank-1 accuracy.

Effect of Backbone Network The depth of the back-

AANet-50 Task mAP Rank 1

Task Loss Weights % %

Lg 1 0 0 0 62.92 80.18

Lg + Lp 1 1 0 0 66.35 82.93

Lg + Lp + La 1 1 1 0 67.28 83.29

Lg + Lp + La Uncertainty 70.47 85.44

Lg + Lp + La + Laa Learning 72.56 86.42

Table 3. Performance comparisons of different combination of task

losses using DukeMTMC-reID dataset, with and without uncer-

tainty learning. The top three rows are AANet accuracy with equal

weights to the tasks. Bottom two rows show the results with loss

weights obtained from uncertainty learning.

Figure 7. Three queries from the DukeMTMC-reID with eight re-

trieved images for each query.

bone network affects the accuracy performance of person

re-ID. Deeper networks yield better result, and this is clearly

shown in both Tables 1 and 2. Table 1 also shows that

the our proposed smaller AANet-50 outperformed deeper

SPReID (Res-152) [11] in Rank-1 accuracy by 0.47%, and

GP-reID (Res-101) [1] by 1.22%. We achieved similar

Rank-1 results on Market1501 dataset, with our AANet-50

outperforming those using deeper backbone networks.

Effect of Training Parameters Many tricks have been

used in the literature to enhance accuracy [11] and [1]. In

[11], the authors aggregate a total of 10 different datasets

to generate ∼ 111k images and ∼ 17k identities for train-

ing and testing. In addition, multiple image sizes are used

to train the network in different phases. In [1], authors use

techniques such as pre-training before regression learning,

large image size, hard triplet mining and deeper backbone

network for good person re-ID. These are good practices.

However, the proposed AANet uses smaller image size,

simpler training process, and a shallower ResNet-50 archi-

tecture to outperform existing state-of-the-art.
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Matched images

Rank 1 to 5

Attributes

matching

Male and 

white lower clothing

Female, hat,

green and red clothing

Backpack, 

black and gray clothing

Query

images
Retrieved images 

Rank 1 to 10

Rank 1 Rank 10

Figure 8. Three examples of how person attributes help in improving the image retrieval accuracy. These are challenging image queries

that return many falsely accepted images. Since AANet returns each query and gallery images with predicted attributes, it provides an

option for the user to use attribute matching to filter away the unwanted retrieved images. The useful attributes include gender. clothing

colors, backpack, etc. Green box denotes same ID as query image. Red box denotes different ID from query image. Best viewed in color

Methods gender age hair L.slv L.low S.clth B.pack H.bag bag hat C.up C.low mean

APR [15] 86.45 87.08 83.65 93.66 93.32 91.46 82.79 88.98 75.07 97.13 73.40 69.91 85.33

AANet-152 92.31 88.21 86.58 94.45 94.24 94.83 87.77 89.61 79.72 98.01 77.08 70.81 87.80

Table 4. Performance comparisons of attribute accuracy on Market1501 dataset.

5. Experimental Results Using Attribute

In this section, we illustrate how person attributes help

in refining the retrieved images for person re-ID.

5.1. Retrieval results

We show three retrieval examples using AANet in Figure

7. Though there are some occlusions on the query subjects,

for examples, cars and unwanted pedestrian, AANet has no

problem retrieving correct images from the gallery set.

In Figure 8, we show some examples of challenging

queries where the subjects are heavily occluded. This re-

sulted in poor retrieval accuracy. The figure demonstrates

how AANet provides an option for the user to filter away

the incorrect retrievals by using predicted attributes from

query and gallery images. Three examples are given, each

with their own retrieval difficulties. First example is given

in row one. More than half of the query subject is occluded

by another pedestrian. Most computer vision methods will

pick the unwanted pedestrian as subject of interest, and re-

turn wrong images. In this example, 9 out of 10 images are

wrongly retrieved, which results in poor mAP performance.

Through AANet’s attribute matching, those wrong images

can be filtered out easily without laborious manual filtering.

The ranking of theses attribute matched images were 1, 19,

38, 78, 172 during first retrieval, indicating how difference

they are to query image. Same challenging queries are given

in row two and three. As in first example, attribute filtering

are performed to return correct images up to rank 5.

5.2. Attribute Classification Performance

The accuracy of attribute classification of the proposed

AANet is compared with APR [15] in Table 4. APR [15]

is provided by Lin et al., the author who annotated the

DukeMTMC-reID and Market1501 datasets with person at-

tributes. Since AANet employs localized attribute features

to enhance network learning, we obtained better represen-

tations and outperforms APR in every attribute prediction.

6. Conclusions

In this paper we propose a novel architecture to incorpo-

rate attributes based on physical appearance such as cloth-

ing color, hair, backpack etc. into a classication based per-

son re-ID framework. The proposed Attribute Attenion Net-

work (AANet) employs joint end-to-end learning and ho-

moscedastic uncertainty learning for multitask loss fusion.

The resulting network outperforms existing state-of-the-art

re-ID methods on multiple benchmark datasets.
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