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Abstract

3D point cloud generation is of great use for 3D scene

modeling and understanding. Real-world 3D object point

clouds can be properly described by a collection of low-

level and high-level structures such as surfaces, geometric

primitives, semantic parts, etc. In fact, there exist many dif-

ferent representations of a 3D object point cloud as a set of

point groups. Existing frameworks for point cloud genera-

tion either do not consider structure in their proposed solu-

tions, or assume and enforce a specific structure/topology,

e.g. a collection of manifolds or surfaces, for the gener-

ated point cloud of a 3D object. In this work, we pro-

pose a novel decoder that generates a structured point cloud

without assuming any specific structure or topology on the

underlying point set. Our decoder is softly constrained to

generate a point cloud following a hierarchical rooted tree

structure. We show that given enough capacity and allow-

ing for redundancies, the proposed decoder is very flexible

and able to learn any arbitrary grouping of points including

any topology on the point set. We evaluate our decoder on

the task of point cloud generation for 3D point cloud shape

completion. Combined with encoders from existing frame-

works, we show that our proposed decoder significantly out-

performs state-of-the-art 3D point cloud completion meth-

ods on the Shapenet dataset.

1. Introduction

Generating 3D point clouds using neural networks is in-

creasingly studied for various applications such as 3D re-

construction [9, 13, 37], object point cloud completion [38,

13], and representation learning for point clouds [37, 1, 13].

This work focuses on the common sub-task of producing a

complete 3D point cloud shape, given a feature vector rep-

resenting the shape. The input feature can originate from

various inputs (such as images [9], 2.5D sketches [35], point

clouds [23], etc.), but the scope of evaluation in this work

focuses on the task of 3D object shape completion, where

the input is a partial 3D point cloud and the desired output

Figure 1: Our proposed decoder generates point clouds accord-

ing to a tree structure where each node of the tree represents a

subset of the point cloud. The embedded point cloud structure is

shown by visualizing nodes in the decoder, as a collection of all

its descendant points. We show selected point grouping patterns

emerging from our structural decoder for several object classes.

is the ground-truth completed point cloud. The ability to

infer the full shape of an object from an incomplete scan

acquired by depth camera or LiDAR is indeed an important

task which enables several downstream applications such as

robotics manipulation [31], scene understanding for navi-

gation [7], and virtual manipulation of completed shapes

[8].

Although moderate success has been achieved with per-

forming shape completion on regular representations of 3D

objects such as distance fields, meshes, and voxel grids

[3, 6, 22, 28, 16, 14], these methods fall short due to in-

efficiency of such representations. Recent progresses in

developing highly efficient and powerful point cloud en-

coders [23, 21, 24, 20, 18], have made point clouds a highly

promising representation for 3D object generation and com-

pletion using neural networks. Several state-of-the-art ap-
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proaches applicable to shape completion focus on point-

cloud based shape completion [38, 13, 37]. The dominant

paradigm in these frameworks is to use a point cloud en-

coder to embed the partial point cloud input [21], and de-

sign a decoder to generate a completed point cloud from the

embedding of the encoder.

The key focus in most existing point cloud generation

approaches is on the representation of 2D or 3D objects

and also designation of a relevant point cloud based de-

coder for the proposed representation. The earliest method

uses a parallel multilayer perceptron network and a de-

convolution network to decode the latent feature generated

by a 2D encoder [9] while using a permutation invariant

loss such as the earth mover’s ditance [26, 9] or Chamfer

loss [9] to deal with the orderless nature of point clouds.

However, this framework does not explicitly consider any

topology or structure that naturally exists in real-world 3D

objects. The recent successful approaches concentrate on

the designation of decoders which generate structured point

clouds [38, 13, 37]. For example in [13], it is assumed

the point clouds of a 3D object lie on a 2-manifold, for-

mally defined as a topological space that locally resembles

the Euclidean plane. Therefore, the proposed decoder is en-

forced to learn a set of mappings or deformations from the

euclidean plane to the object point cloud. Imposing these

structures into the learning process may result in superior

performance in generating 3D object point clouds compared

to the approaches ignoring structure. However what is usu-

ally ignored is the potential impact that a specific represen-

tation for grouping the point clouds may have on a learning

process that uses an unstructured (i.e. permutation invari-

ant) loss. Enforcing a single specific structure during learn-

ing may not be optimal for training as the space of possible

solutions is constrained.

To address this issue, we propose a more general decoder

that can generate structured point clouds by implicitly mod-

eling the point cloud structure in a rooted tree architecture.

We show that given enough capacity and allowing for re-

dundancies, a rooted tree allows us to model structure, in-

cluding any topology on the point set, making our decoder a

more general structured decoder. Since structure is only im-

plicitly modeled in our decoder, our model is not bound to a

pre-determined structure, and therefore can embed arbitrary

structure and/or topologies on the point set, as in Fig. 1.

More specifically for the shape completion task, we em-

bed the partial input point cloud as a feature vector or code

which is used by our proposed decoder to generate a com-

pleted point cloud. Our decoder has a rooted tree structure

in which the root node embeds the entire point set as the en-

coder feature vector, the leaf nodes are individual points in

the point set, and each internal node embeds a subset of the

entire point cloud made of all its descendant leaves. The set

of point cloud subsets represented by the tree nodes defines

the generated point cloud structure or topology. This model

choice is inspired by the formal definition of topology on

finite discrete point sets as detailed in Section 4.

We evaluate our proposed decoder on the Shapenet

dataset and show a 34% relative improvement over the next-

best performing methods for the task of point cloud shape

completion1. Visualizations of the nodes of our tree de-

coder reveals various non-identical patterns learned by our

decoder.

The main contributions of the paper are summarized as

follows:

• We propose a novel way to model arbitrary struc-

ture/topology on a point cloud using a rooted tree in

which each node embeds a defining element of the

structure.

• We design a novel tree decoder network for point cloud

generation and completion which generates arbitrarily

structured point clouds without explicitly enforcing a

specific structure.

• We show an intuitive visualization of the structure

learned by our decoder by visualizing a node in the

tree decoder as a set of all its descendants.

• Finally, our network sets a new state-of-the-art on ob-

ject point cloud completion by more than 30% im-

provement over the next-best performing approach.

2. Related Works

Our work follows a long line of frameworks on shape

completion which leverage various representations. We re-

view a subset of these approaches among those leveraging

neural networks.

Volumetric 3D shape completion: Earlier and some

recent works on shape completion leveraging neural net-

works favored voxel grids, and distance fields representa-

tions [6, 15, 29, 27, 18] which are well suited for process-

ing with 3D convolutional neural networks. These works

have shown great success in the tasks of 3D Reconstruc-

tion [5, 11], shape completion [6, 14, 36, 19], and shape

generation from embeddings [3]. However voxel grids re-

quire large footprints and early works operate on low di-

mensional grids. This issue has been addressed using sparse

representations [30, 32, 33, 17, 12, 25] which makes pro-

cessing voxels more efficient. However the process of vox-

elization still introduces a quantization effect which dis-

cards some details of the data [34] and is not suitable for

representing fine-grained information. To avoid this limita-

tion, recent works generate 3D shapes in point cloud space

which is naturally able to represent fine-grained details, and

1The code for this project and an associated object point cloud com-

pletion benchmark with all evaluated methods are available at http:

//completion3d.stanford.edu.
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several of these works show superior performance to voxel-

based methods [38, 9, 10].

Multiresolution Point Cloud Generation with Neural

Networks: A few works on point cloud generation con-

sider or introduce a multi-resolution structure in the process

of point cloud generation. Yuan et al. [38] generate point

clouds in 2 stages where the first stage is a lower resolution

point cloud and the 2nd stage is the final output. Gadelha

et al. [10] represents a point cloud as a 1D list of spatially

ordered points, and generates a point cloud through a tree

network in which each branch aims at representing different

resolutions of the point cloud which are connected through

multiresolution convolution. These works while highly per-

formant, constrain the network to focus on the multiresolu-

tion structure in the point cloud.

Unstructured Point Cloud Generation with Neural

Networks: Fan et al. [9] proposed one of the earliest works

in the literature addressing the task of generating 3D point

clouds from an input image. They proposed an architecture

made of an encoder which encodes the input into a embed-

ding, and a decoder which generates the point cloud from

the embedding. The decoder they propose is a 2 branch ar-

chitecture, one multilayer perceptron (MLP) branch and one

deconvolutional branch. They also introduce the Chamfer

loss, a differentiable loss for point cloud comparison which

we leverage in our work. However, the output generated

by their method is an unstructured point cloud, while real-

world object point clouds are structured and can be repre-

sented as a collection of subsets, e.g. surfaces and parts.

Recent approaches based on imposing one of the structured

representations, have shown to be superior in generating

point clouds of real-world objects. We review them next.

Manifold-based Point Cloud Generation with Neural

Networks: Several state-of-the-art methods on point cloud

generation and completion generate structured point clouds

by assuming and enforcing a 2-manifold topology on the

point cloud. Groueix et al. [13] design a decoder that learns

a manifold by learning a mapping from the Euclidean plane

to the ground-truth point cloud. Yang et al. [37] and Yuan

et al. [38] also learn to generate a point cloud structured as

a manifold through a series of deformation (folding) oper-

ations on the Euclidean plane. While several point clouds

are indeed derived from sampling manifolds, they exhibit

several other structures or topological representations that

can be leveraged during training. Therefore enforcing a

specific structured representation may constrain the learn-

ing process by limiting the solution search space. To avoid

this limitation, we propose a decoder which is able to rep-

resent arbitrary structures and topologies on a point set.

The decoder has a rooted tree structure in which each node

of the tree represents and generates a subset of the point

cloud defining the point cloud structure. Unlike [13, 37, 38]

which specifically enforce their decoder to generate a mani-

fold, we do not enforce our decoder to generate any specific

topology which increases the space of potential topologies

that can be generated by the decoder. Visualization of struc-

tural patterns learned by our decoder suggests that the de-

coder learns patterns which are not necessarily traditional

2-manifolds but occur across several objects.

3. Background and Motivation

We first provide some background on concepts relating

to object structure and topology.

2-manifolds and surface topology: Object structure is

commonly modeled as a surface or 2-manifold which for-

mally is a topological space that locally resembles the Eu-

clidean plane. This implies that 2-manifolds have a local

smoothness property. Previous works have attempted to

explicitly enforce this property by learning mappings from

smooth 2D grids to local surfaces of 3D objects[13, 37, 38].

While enforcing local smoothness may be helpful for learn-

ing explicitly smooth representations such as meshes, this

assumption may be less relevant for point clouds due to their

discrete nature which allows for various potentially more

suitable non-smooth representations.

Topology on discrete point sets: Unlike 2-manifold

representations, we do not leverage the local smoothness

assumption due to the discrete nature of point clouds. In-

stead we leverage one of the multiple more general equiva-

lent definitions of topological space on finite discrete point

sets which for a set S is defined as a nonempty collection of

subsets of S [2](see Section 4). Note that this definition of

topology is significantly less constrained than 2-manifolds

and does not impose restrictions on smoothness or point

neighborhoods within the topology. Leveraging this defini-

tion allows us to design a point cloud decoder which is less

constrained than previous topological point cloud decoders.

Indeed, we simply design a decoder which is able to group

the point cloud into subsets defining the point cloud struc-

ture. The intuition behind designing a decoder that groups

a point cloud into subsets is that if a topology - defined as

a collection of nonempty subsets is adequate for the learn-

ing process, then the decoder has the ability to generate the

point cloud according to that topology by adequately group-

ing points.

Designing Topological Decoders: Given the more gen-

eral definition of topology on discrete finite point sets as a

collection of subsets, how can we design a decoder capa-

ble of generating collections of subsets for a set S? One

straightforward approach is to train N multilayer percep-

trons to generate separate point cloud subsets and merge

them into the final point cloud. This method trivially scales

poorly the larger the size of the topology or structure de-

fined on the point set. We build and improve on this basic

idea and instead propose a decoder modeled as a hierarchi-

cal rooted tree in which each node of the tree represents a
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subset of the point cloud and the root of the tree represents

the entire point cloud (Fig. 1). This rooted tree architecture

has several appealing properties including its ability to rep-

resent arbitrary topologies and structure on discrete point

sets. The hierarchical nature of the decoder is also a more

efficient and compact representation since parts of the neu-

ral network are shared in generating overlapping subsets of

the point cloud (see Section 5). Next, we present the the-

oretical foundation of our work starting with a formal defi-

nition of topology on discrete point sets, and we show that

our proposed rooted tree structure is adequate to represent

several point cloud structures including any arbitrary topol-

ogy.

4. Topology Representation

In this work, we leverage a general definition of topol-

ogy on point sets and propose a decoder that generates

a structured point cloud. To this end, we first provide a

general definition of a topological space on point sets.

There exists several equivalent definitions of topological

spaces, and for our purposes, we use the following [2]:

Definition: Assume S = {s1, s2, · · · , sn} is a set of

points, where si ∈ Rd is a point in d dimensional space,

and T = {S1,S2, · · · ,Sk} is a collection of open subsets

of S . Then, T is a topology on S if:

1. The empty set ∅ and S are open,

2. The intersection of any finite number of subsets of T is

in T, i.e. ∩∀iSi ∈ T,

3. The union of an arbitrary number of subsets of T is in

T, i.e. ∪∀iSi ∈ T,

Any finite point set can be defined as open and through-

out this work we use that assumption, such that ∅, S , and

all subsets of S are open. From the above definition, it be-

comes apparent that topology on a finite discrete point set

can be generally conceived as a collection of subsets of the

point set. Therefore a decoder modeling topology must be

able to generate or model groups of points in order to rep-

resent a topology on the point set. Among several possibil-

ities to accomplish the task of generating a point cloud as

a group of points, we choose to use a rooted tree topology

for two main reasons. The first reason for our choice is that

assuming enough capacity and allowing for redundancies,

any topology T on a point set S can be represented as a

rooted tree as shown in Proposition 1. The second reason

for our choice is that any rooted tree with at least three non

leaf nodes can embed at least 2 topologies (Proposition 2)

meaning this representation regardless of capacity, (as long

as there are at least 3 non leaf nodes) can quantitatively en-

code more topologies than previous works in which a single

pre-determined topology is assumed. We now go into the

details and proof of the two propositions above.

Proposition 1: Any topology T on a point set S can be

modeled as a rooted tree structure G in which:

– Every leaf of G represents a singleton {s} where s is

an individual point s ∈ S (P1a)

– Each non-leaf node G(Si) in the tree represents a non-

empty element Si ∈ T (P1b)

– For any pair of nodes G(Si), G(Sj) in G, if G(Sj) is

a child of G(Si), then Si ⊆ Sj (P1c)

Proof by existence: We want to show that for each topology

T on a set S , there exists at least one rooted tree structure

G satisfying the conditions of Proposition 1. Lets define

T∗ = T ∪ {{s} : s ∈ S}. We create a graph G as follows:

– For each individual point s ∈ S and each non-empty

set Si ∈ T, we create a representative node G(s),
G(Si) in G. (C1a)

– For each non-empty Si,Sj ∈ T∗, if Si * Sj , we add a

directed edge E(Si,Sj) from Si to Sj in G (C1b)

– Since ∀Si ∈ T∗/S,Si * S, E(Si,S) is an edge in

G and we designate G(S) as the root of our graph G
(C1d)

By C1a, all non-empty subsets of T are represented by a

node in G and we now show that G satisfies the conditions

in Proposition 1.

P1a proof: Let Gl be a leaf in G representing a subset

Si ⊆ S . By C1a, Si is non-empty which means ∃s ∈
S, s ∈ Si. Therefore s ⊆ Si. By contradiction, lets assume

Si is not a singleton. By C1b, E(Si, {s}) is a directed edge

G which means Gl is not a leaf which is a contradiction. Si

must therefore be a singleton.

P1b proof: This is a direct consequence of the definition

in C1a

P1c proof: This is a direct consequence of the converse

of C1d

Corollary 1: The set of all leaf descendants of a given node

in G(Si) in G is equal to Si. Based on this corollary, we

can visualize individual nodes in a point set's topological

tree by visualizing all its descendants leaves.

Proposition 2: Given a structured point cloud, repre-

senting a set of points S , and a rooted tree graph G with at

least 3 non-leaf nodes, and the properties defined in Propo-

sition 1, there exist more than one topology that can be rep-

resented by G.

Proof: This proposition can also be proven by exam-

ple. There are two trivial topologies that can be represent

in a rooted tree G of at least 3 non-leaf nodes. The first of

which being T = {∅,S} which can be represent in G by

choosing the root node and every other node in the tree to

represent S (our representation allows for duplicate nodes).

The empty set is represented implicitly. The second trivial

topology that can be represented by G is T = {∅,S,S1,S2}
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Figure 2: Model Architecture: Our point completion framework

comprises a 2-stage point cloud encoder, and a tree-structured de-

coder. The arrows of the decoder are multilayer perceptron net-

works (MLP). Similarly colored MLP share the same parameters.

where S2 is the complement of S1 in S1 i.e. S2 = S/S1.

This topology can be represented by G by assigning the

root node to represent S and the first 2 children nodes of

G to represent S1 and S2, concluding our proof.

In summary, our propositions show that it is possible to

represent structure/topology on a discrete and finite point

set using a rooted tree in which every node of the tree repre-

sents an element of the topology and the edges of tree rep-

resent a subset relationship from child to parent. While this

representation of topology is not the only way to represent

a topology, we find it to be suitable as a basis for designing

a point cloud decoder which is flexible enough to represent

various structures and topology, but not too constrained as

to be forced to generate a specific or any topology. The de-

sign of such a decoder and our general framework for point

cloud generation and completion are presented next.

5. Structured Point Set Generation

Given that general structure and topology on discrete

and finite point sets can be represented as a rooted tree, we

present a novel decoder with a rooted tree structure which

takes as input an embedding representing a 3D shape and

generates the corresponding point cloud (Fig. 2). Our pro-

posed decoder generates point clouds according to a tree

structure where each node of the tree represents a subset of

the point cloud (Fig. 1). The decoder is trained using the

Chamfer distance as loss [9], within a framework that in-

cludes an encoder as a first stage.

5.1. Design of Rooted Tree Decoder

Our proposed decoder architecture has a rooted tree

structure in which the root node embeds and processes the

global point cloud embedding representing a 3D shape. A

collection of multilayer perceptrons arranged in a tree struc-

ture are used to learn embeddings of child nodes from par-

ent node embeddings concatenated with the global embed-

ding at each node. The decoder architecture is illustrated in

Fig. 2. Our decoder’s architecture features a root node N0

which takes the feature vector from the encoder and uses

M1 MLPs to generate M1 feature vectors of dimension C

corresponding to M1 children node at level 1 of the tree.

Subsequently , the feature vector of each node at level i ≥ 1
of the tree is concatenated with the global feature produced

by the encoder and further processed by Mi+1 MLPs to pro-

duce Mi+1 children features per node for the next level i+1.

All nodes at a given level i are processed by the same Mi

shared MLPs. At the last level of the tree, the feature vec-

tors generated for each leaf node have dimension C = 3,

and represent the individual points in the output point cloud.

Design analysis: In Section 4, we demonstrated that any

topology T on a set S can be embedded in a rooted tree in

which each node of the tree represents a non-empty subset

of T or a singleton of S . We proved this hypothesis for

any arbitrary rooted tree. However, the decoder D which

we propose here, is a specific rooted tree structure with the

following features:

– Every node in D has at most one parent

– All nodes at the same level have the same number of

children

– All leaves are at the same level.

While G is not guaranteed to meet the conditions above, it

can be transformed into a new equivalent tree G′ for which

the conditions above are met by performing a series of node

duplication on G. We provide more details in the supple-

mentary materials. Our decoder in this case can be seen as

modeling G′ rather than G which implies potential dupli-

cation of nodes and points. This is acceptable since dupli-

cation of points in a point set does not change the point set

overall.

5.2. Point Cloud Loss

The point cloud generated by our decoder needs to be

compared against the ground-truth for learning. An ideal

loss must be differentiable and invariant to the permutation

of point clouds in both target S and ground-truth SG. The

Chamfer distance between S,SG ⊆ R3 proposed by Fan et
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al. [9] meets these two requirements and is defined as:

dCD(S,SG) =
∑

x∈S

min
y∈SG

‖x− y‖2 +
∑

y∈SG

min
x∈S

‖x− y‖2

(1)

For each point, the Chamfer distance finds the nearest

neighbor in the other set and computes their squared dis-

tances which are summed over both target and ground-truth

sets.

6. Experiments

We now evaluate our proposed decoder both quantita-

tively and qualitatively on the task of 3D point cloud shape

completion. A given partial input point cloud is processed

through an existing point cloud encoder and the resulting

embedding is processed by our decoder to generate a point

cloud. The encoder used in our final model is the 2-stage

PointNet-based encoder from Yuan et al. [38].

Dataset: We evaluate our dataset on a subset of the

Shapenet dataset [4] derived from the dataset in Yuan et

al. [38] The ground-truth in [38] was generated by uni-

formly sampling 16384 points on the mesh surfaces and the

partial point clouds were generated by back-projecting 2.5D

depth images into 3D. In our experiments we use N = 2048

for both input and ground-truth point clouds which are ob-

tained by random subsampling/oversampling of the clouds

in [38]. We keep the same train/test split as [38].

Implementation Details: Our final decoder has L = 6
levels and each MLP in the decoder tree generates a small

node feature embedding of size F = 8. When generat-

ing N = 2048 points, the root node has 4 children and all

other internal nodes in subsequent level generate 8 children,

yielding a total of N = 4 × (83) = 2048 points generated

by the decoder. Each MLP in the decoder is a has 3 stages

with 256, 64, and C channels respectively, where C = 8 for

inner nodes and C = 3 for leaf nodes.

Training Setup: We train all models for 300 epochs,

with a batch size of 32, a learning rate of 1e-2 or 5e-3

depending on stability, and Adagrad optimizer. The best

model is chosen based on the validation set.

Evaluation: We evaluate our model across 8 classes

from the Shapenet dataset, against state-of-the-art methods

on point cloud completion. For each class, the Chamfer

Distance is computed (averaged over the number of class

instances). Our final metric is the mean Chamfer Distance

averaged across classes. In addition, we train a fully con-

nected decoder baseline with 4 layers of output dimensions

256, 512, 1024, and 3 × N . For N = 2048, the results of

the evaluation of our method against state-of-the-art meth-

ods are shown in Table 1, with qualitative results in Figure

4. Our method significantly outperforms existing methods

across all classes, and shows a 33.9% relative improvement

over the next best method.

Figure 3: Number of Parameters: We analyze the performance

of our networks instantiations as a function of its number of pa-

rameters. Across all instantiations, our network outperforms pre-

vious works. A local minimum seems to emerge from this plot.

Note the Chamfer distance is reported multiplied by 10
4.

6.1. Encoder analysis

Methods proposed in previous works use a variety of en-

coders. The point cloud generated is dependent not only

on the decoder but also on the feature generated by the en-

coder. In this experiment we analyze the effect of encoder

choice on the performance of our decoder and that of pre-

vious decoder. The results of this analysis are tabulated in

Table 2. The first encoder (A) used in previous works [13]

and for our fully connected baseline is a PointNet[13]. The

second encoder is proposed in [38] in which it demonstates

better performance than PointNet++ [24]. We show results

with these two encoders and compare against methods us-

ing each respectively. Regardless of the encoder used, our

method outperforms existing methods. There is a noticeable

gap in performance depending on the encoder chosen, but

comparing across methods using the same encoder, our net-

works still shows a significant performance improvement.

6.2. Ablation studies

Design choices involved in our decoder include choosing

the number of features F generated for each node embed-

ding and the number of tree levels L. We analyze the effect

of these parameters for an output cloud size N = 2048 by

varying F in {8, 16, 32, 64}, and L in {2, 4, 6, 8}. This ab-

lations study was used to pick the model’s final number of

layers and number of features. One important thing to note

is that since the number of output points is fixed at 2048
in this experiment, increasing the number of levels requires

decreasing the number of children per level. This opera-

tion is therefore not similar to adding a new layer in con-

ventional networks and a deeper tree may not necessarily

improve performance.

In Figure 5a, we plot the Chamfer distance as a func-

tion of the number of levels L for different values of F. For
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Method
/

Eval. Chamfer Distance (CD)

Plane Cabinet Car Chair Lamp Couch Table Watercraft Average

AtlasNet [13] 10.37 23.40 13.41 24.16 20.24 20.82 17.52 11.62 17.69

PointNetFCAE [base.] 10.31 19.07 11.83 24.69 20.31 20.09 17.57 10.50 16.80

Folding [37] 11.18 20.15 13.25 21.48 18.19 19.09 17.80 10.69 16.48

PCN [38] 8.09 18.32 10.53 19.33 18.52 16.44 16.34 10.21 14.72

Ours 5.50 12.02 8.90 12.56 9.54 12.20 9.57 7.51 9.72

Table 1: Point Cloud Completion Results on ShapeNet: Comparison of our approach against previous works for the resolution (N ∼=

2048). The Chamfer distance is reported multiplied by 10
4.

Method AtlasNet-A[13] PointNetFC-A[base.] Folding-B[37] PCN-B[38] Ours(A) Ours(B)

CD 17.69 16.80 16.48 14.72 12.97 9.72

Table 2: Encoder analysis: Comparison of our approach against previous works using different encoders. The Chamfer distance is

reported multiplied by 10
4. Encoder A is a 1-stage PointNet based encoder, and encoder B is a 2-stage PointNet encoder. Our method

outperforms all other methods with their respective encoders, with encoder B giving a better performance than encoder A.

F ∈ {8, 32, 64} the graphs exhibit different local minima

but for F = 6, the performance oscillates around an aver-

age value. In Figure 5b, we plot the Chamfer distance as

a function of the number of features F for different values

of L). The graphs for L ∈ {4, 6, 8} exhibit slightly simi-

lar trend though the pattern is non-convex. The graph for

L = 2 exhibits a very different pattern compare to the oth-

ers. In all experiments, regardless of the value for L and F
above, our method outperforms all previous method.

6.3. Number of parameters

The number of parameters used by each method can in-

fluence performance so we analyze the performance of our

method as a function of the number of parameters for F = 8
and L ∈ {2, 4, 6, 8}. This analysis in shown in Figure 3

where the Chamfer distance is plotted as a function of the

number of network parameters. Our model varies in the

number of network parameters depending on design choice

with some instantiations of our method having fewer or

more parameters than previous methods. Regardless of the

number of parameters in experiments, our network shows

superior performance, which suggests that the number of

parameters is not the primary reason for our performance.

6.4. Analysis of point cloud resolution

Previous works have found that the shape of most objects

in Shapenet can be summarized by as few as N = 1024
points[23]. But for other applications such as graphics in

which the ability to get accurate normals is key, generat-

ing dense accurate point clouds can be useful. We therefore

analyze the performance of our network as the number of

output points scales upward. We compare performance at

N = 2048, 4096, 8192, 16384. Since the computation of

the Chamfer loss scales quadratically with the number of

points, we keep the ground-truth at 2048 points and only in-

crease the output size: quantitative results are shown in Ta-

ble 3. We notice that our network’s performance increases

with the number of output points albeit the absolute im-

provement is less than that of PCN[38]. As a percentage,

the improvement is still significant, ranging from 9.16% to

18.46% for our method while PCN’s improvement ranges

from -2.61% to 20.26%. In all resolutions, our method still

shows superior absolute performance.

7. Discussion and limitations

The decoder proposed in our work aims at generating

structured point clouds by generating a point cloud as a col-

lection of its subsets. A constraint of our decoder is that

the tree needs to be sufficiently large: for instance, repre-

senting a topology of S whose elements are all subsets of S

requires our decoder to have at least 2|S|+1 nodes, which is

intractable. The capacity of the decoder therefore can limit

the possible topologies learned. The proposed architecture

is still a promising step towards incorporating structure in

decoders as unlike previous works, we generate a structured

point cloud without explicitly enforcing a specific structure

which allows the network to learn arbitrary topologies.

Visualizing learned structure: By design, each node in

our decoder generates a subset of S made of all its descen-

dant leaves. We can visualize learned structure by plotting

each node’s descendant leaves. In Fig. 1 and the supplemen-

tary material we visualize several decoder nodes. We notice

that several geometric clustering patterns emerge. Some

clusterings seem geometric while others appear random but

are consistent across.This can be seen as a consequence of

our adopting the more general definition of topology which

does not enforce the generated clustering to be smooth.

Usefulness & Redundancies: One interesting future study
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Resolution Method
(# points) AtlasNet [13] PointNetFCAE [base.] Folding [37] PCN [38] Ours

2048 17.69 16.8 16.48 14.72 9.72

4096 16.12 14.79 13.19 11.88 8.83

8192 15.32 12.57 12.95 12.19 7.20

16384 14.85 10.61 12.26 9.72 6.50

Table 3: Resolution analysis: Comparison of our approach against the best performing method (PCN) with varying point cloud resolution.

We train each method to generate N = 2048, 4096 points. The Chamfer distance is reported, multiplied by 10
4. Our method outperforms

PCN for all different resolutions, but the performance gap between the methods is higher for low-resolution point clouds.

Figure 4: Point Cloud Completion Results. A partial point cloud is given as input and our method generates a completed point cloud.

(a) (b)

Figure 5: Ablation Experiments: We analyze the effect of varying different parameters in our network. We vary the number of node

features {8, 16, 32, 64}, and the number of tree levels {2, 4, 6, 8}, while keeping the number of outputs constants. For instance when the

number of levels L=2, the number of children per level is 32-64. When L=4, the number of children per level is 4, 4, 4, 8. All instantiations

of our method outperform previous works. The number of levels seem to suggest a local minimum, but the number of features does not

show a noticeable pattern. The Chamfer distance is reported multiplied by 10
4.

would be to explore if the learned structure embeddings

have value as representations in classification. Another fu-

ture improvement of this work could be to propose a way to

generate structured point clouds without redundancies.

Multiple structures: While our proposed model can em-

bed arbitrary topologies, it is only able to embed a single

topology at test time. One avenue of exploration would be

to combine several such decoders and evaluate whether they

all converge to the same topology for S or whether each de-

coder learns to embed disjoint subsets of S.
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