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Abstract

Retrieving object instances among cluttered scenes effi-

ciently requires compact yet comprehensive regional image

representations. Intuitively, object semantics can help build

the index that focuses on the most relevant regions. How-

ever, due to the lack of bounding-box datasets for objects of

interest among retrieval benchmarks, most recent work on

regional representations has focused on either uniform or

class-agnostic region selection. In this paper, we first fill the

void by providing a new dataset of landmark bounding boxes,

based on the Google Landmarks dataset, that includes 94k
images with manually curated boxes from 15k unique land-

marks. Then, we demonstrate how a trained landmark detec-

tor, using our new dataset, can be leveraged to index image

regions and improve retrieval accuracy while being much

more efficient than existing regional methods. In addition, we

introduce a novel regional aggregated selective match kernel

(R-ASMK) to effectively combine information from detected

regions into an improved holistic image representation. R-

ASMK boosts image retrieval accuracy substantially with no

dimensionality increase, while even outperforming systems

that index image regions independently. Our complete image

retrieval system improves upon the previous state-of-the-art

by significant margins on the Revisited Oxford and Paris

datasets. Code and data will be released.

1. Introduction

In this paper, we address the image retrieval problem:

given a query image, a system should efficiently retrieve

similar images from a database. Image retrieval systems are

usually composed of two main stages: (1) filtering, where an

efficient technique ranks database images according to their

similarity with respect to the query; (2) re-ranking, where a

small number of the most similar database images from the

first stage are inspected in more detail and re-ranked.

Traditionally, hand-crafted local features [21, 6] were

coupled to Bag-of-Words-inspired techniques [35, 26, 27,

14, 15, 16, 37] to construct high-dimensional representations

used in the filtering step. Local feature matching and geo-

∗Both authors contributed equally to this work.
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Figure 1: Overview of our proposed regional aggregation method. Deep

local features (stars) and object regions (boxes) are extracted from an image.

Regional aggregation proceeds in two steps, using a large codebook of

visual words (red and yellow visual words are depicted): first, per-region

VLAD description; second, sum pooling and per-visual word normalization.

Our final regionally aggregated image representation can be combined to

selective match kernels and provide improved image similarity estimation:

we refer to this technique as regional aggregated selective match kernels

(R-ASMK). It leverages detected regions to improve image retrieval at no

dimensionality increase when compared to the original ASMK method [37].

metric verification [26, 27, 3] (commonly using RANSAC

[8]) have been used as effective re-ranking strategies. Re-

cently, several deep learning techniques have been proposed

for these two stages. Global image representations based on

convolutional neural networks (CNN) can produce compact

embeddings to enable fast similarity computation in the fil-

tering step [5, 4, 39, 1, 9, 30]. Local image representations

can also be extracted using CNNs, suitable to re-ranking via

spatial matching and geometric verification [25, 24, 23].

Today’s image retrieval systems tend to fail when relevant

objects do not occupy a large enough fraction of database

15109



images, typically in cluttered scenes. Often, these objects

produce local features that can be used to find local matches

against the query in the re-ranking stage. However, such

cluttered images usually fail to reach the re-ranking stage,

since their initial representation does not lead to high simi-

larity when compared to the query during the filtering stage.

The most common solution to estimate an improved simi-

larity with respect to the query image is to extract and sepa-

rately store image representations for regions-of-interest in

the database, using a fixed regional grid [2, 31] or a class-

agnostic detector [36, 17]. However, the existing region

selection techniques produce a large number of irrelevant

regions. In a recent large-scale experimental image retrieval

evaluation, Radenovic et al. [28] concluded that such re-

gional search approaches impose too high of a cost in terms

of memory and latency, with only small accuracy gains.

Contributions. (1) Our first contribution is aimed at im-

proving region selection: we introduce a dataset of manually

boxed landmark images, with 94k images from 15k unique

classes, and we show that detectors can be trained for ro-

bust landmark localization. (2) Our second contribution is

to leverage the trained detector and produce more efficient

regional search systems, which improve accuracy for small

objects with only a modest increase to the database size –

much more efficiently than previously proposed techniques.

(3) In our third contribution, we propose regional aggregated

match kernels to leverage selected image regions and pro-

duce a discriminative image representation, illustrated in

Fig. 1. This new representation outperforms regional search

systems significantly, while at the same time being more effi-

cient: only one descriptor needs to be stored per image. Our

image retrieval system outperforms previously published

results by 9.3% absolute mean average precision on the

Revisited Oxford-Hard dataset, and 1.9% on the Revisited

Paris-Hard dataset [28]. Towards the goal of facilitating

further research, we will release both code and data.

2. Related Work

Datasets. To the best of our knowledge, no manually cu-

rated datasets of landmark bounding boxes exist. Gordo et

al. [9] use SIFT [21] matching to estimate boxes in landmark

images. Such boxes are biased towards the feature extrac-

tion and matching technique, and may contain localization

errors. Their dataset contains 49k boxed images, from 586
landmarks. In comparison, we use human raters to anno-

tate the regions of interest, and produce 94k boxed images

from 15k landmarks. The OpenImages dataset [19] contains

9M images, annotated with generic object bounding boxes.

Some of them may be considered landmarks, for example:

buildings, towers, skyscrapers, billboards. However, these

classes make for a small fraction of the entire dataset.

Regional search and aggregation. Region selection has

been explored in image retrieval systems. They have been

used with two different purposes: (i) regional search: se-

lected regions are encoded independently in the database,

allowing for retrieval of subimages; (ii) regional aggregation:

selected regions are used to improve image representations.

In the following, we review these two types of approaches.

Regional search. Many papers propose to describe re-

gions using VLAD [15] or Fisher Vectors [16]: Arandjelovic

and Zisserman [2] use a multi-scale grid to extract 14 re-

gions per image; Tao et al. [36] use Selective Search [40]

with thousands of regions per image; Kim et al. [17] use max-

imally stable extremal regions (MSER) [22]. Razavian et al.

[31] use a multi-scale grid with 30 regions per image, and

compute the similarity of two images by taking into account

the distances between all region pairs. Iscen et al. [13, 12]

leverage multi-scale grids in conjunction with CNN features

[29], to enable query expansion via diffusion. More recently,

Radenovic et al. [28] performed a comprehensive evaluation

of retrieval techniques and concluded that existing regional

search methods may improve recognition accuracy, how-

ever at significantly larger memory and complexity costs. In

contrast, our Detect-to-Retrieve framework aims at efficient

regional search via the use of a custom trained detector.

Regional aggregation. Tolias et al. [39] leverage the grid

structure from [31] to pool pretrained CNN features [18, 34]

into compact representations; approximately 20 regions are

selected per image. Radenovic et al. [29] build upon [39] by

re-training features on a dataset collected in an unsupervised

manner. Gordo et al. [9] train a region proposal network

[32] from semi-automatic bounding box annotations, to re-

place the grid from [39]. Hundreds of regions per image are

considered in this case. Our work departs from these papers

by using a small set of regions (fewer than 5 per image), and

by formulating regional aggregation as a new match kernel

(instead of regional sum-pooling as in [39, 9]).

3. Google Landmark Boxes Dataset

In this section, we introduce our newly collected Google

Landmark Boxes dataset, describing the manual annotation

process. Our work builds upon the recent Google Landmarks

dataset (GLD) [25], whose training set contains 1.2M im-

ages of 15k unique landmarks, with a wide variety of objects

including buildings, monuments, bridges, statues as well as

natural landmarks such as mountains, lakes and waterfalls.

Each image in this dataset is considered to only depict

one landmark. In some cases, a landmark may consist of a

set of buildings: for example, skylines, which are common

in this dataset, are considered as a single landmark. Since

GLD is collected in a semi-automatic manner considering

popular touristic locations, it is sometimes ambiguous what

the landmark of interest may be. When collecting bounding

box annotations, our goal is to capture the most prominent

landmark in the image, according to the fact that each image

is only assigned one landmark label. Each box should reflect
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Figure 2: Examples of annotated images from our Google Landmark Boxes dataset. A box is drawn around the most prominent landmark depicted in the

image. The dataset contains a wide variety of objects, ranging from man-made to natural landmarks.

the main object (or set of objects) which is showcased in

each dataset image. For this reason, we instructed human

operators to draw at most one box per image.

One of the main challenges in such a fine-grained dataset

is the inherent long tail of number of image samples per

class. In GLD, some landmarks are associated to several

thousands of images, while for about half of the classes only

10 or fewer images are provided. Our goal is to represent

landmarks in a balanced manner in our new dataset, such

that trained detectors are able to localize a wide variety

of objects. For this reason, we first separate part of the

1.2M training set into a validation set. We randomly select

four training and four validation images per landmark. In

total, this yields 58k and 36k boxed images for training and

validation, respectively. Note that this means that for about

40% of landmarks, all available images are annotated.

Examples of annotated images are shown in Fig. 2. In

some cases, it is not possible to identify a prominent land-

mark (see Fig. 3): the landmark of interest may be occluded,

or the image may actually show the surroundings of a land-

mark. We remove such corner cases from our dataset (this

applied to about 8% of images which were initially selected).

We will make all annotations public to stimulate progress in

the area of landmark recognition and image retrieval.

4. Regional Search and Aggregation

We present techniques that enhance image retrieval per-

formance by utilizing bounding boxes predicted by a trained

landmark detector. In particular, our approach builds on top

of deep local features (DELF) [25] and aggregated selective

match kernels (ASMK) [37], which were recently shown to

achieve state-of-the-art performance on a large-scale image

retrieval benchmark [28].

4.1. Background

We briefly review the aggregated match kernel frame-

work by Tolias et al. [37]. An image X is described by a

set X = {x1, x2, . . . , xM} containing M local descriptors,

each of dimension D. A codebook C comprising C visual

words, learned using k-means, is used to quantize the de-

scriptors. Denote Xc = {x ∈ X : q(x) = c} as the subset

of descriptors from X which are assigned to visual word c
by the nearest neighbor quantizer q(x).

According to this framework, the similarity between two

images X and Y , represented by local descriptor sets X and

Y , can be computed as:

K(X,Y ) = γ(X )γ(Y)
∑

c∈C

σ(Φ(Xc)
TΦ(Yc)) (1)

where Φ(X ) is an aggregated vector representation,

σ(.) denotes a scalar selectivity function and γ(X ) =
(
∑

c σ(Φ(Xc)
TΦ(Xc))

)−1/2
is a normalization factor. This

formulation encompasses popular local feature aggregation

techniques, such as Bag-of-Words [35], VLAD [15] and

ASMK [37].

In particular, for VLAD, σ(u) = u and Φ(Xc) corre-

sponds to an aggregated residual V (Xc) =
∑

x∈Xc
x− q(x).

For ASMK, σ(u) corresponds to a thresholded polynomial

selectivity function

σ(u) =

{

sign(u)|u|α, if u > τ

0, otherwise
(2)

where usually α = 3 and τ = 0; and Φ(Xc) corre-

sponds to a normalized aggregated residual V̂ (Xc) =
V (Xc)/ ‖V (Xc)‖.
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Figure 3: Examples of Google Landmarks dataset images which do not depict a prominent landmark. In such cases (about 8% of images), no boxes were

drawn, and the images were not included in the Google Landmark Boxes dataset.

4.2. Regional Search

In this section, we consider image retrieval systems where

regional descriptors are stored independently in the database.

Denote the query image as X , and the database of N im-

ages as {Y (n)}, n = 1, 2, . . . , N . We are mainly interested

in the experimental configuration where a query contains

a well-localized region-of-interest (i.e., the query in prac-

tice contains only one region), which is a common setting

in image retrieval. For the n-th database image, regions

rn = 1, . . . , Rn are predicted by a landmark detector, defin-

ing the subimages {Y (n,rn)}. We denote Y (n,1) = Y (n)

as the subimage corresponding to the original image, and

always consider it as a valid region. To leverage uncluttered

representations, we store aggregated descriptors indepen-

dently for each subimage, which leads to a total of
∑N

n=1 Rn

items in the database.

To compute the similarity between the query X and a

database image Y (n), we consider max-pooling or average-

pooling individual regional similarities, respectively:

simMAX(X,Y (n)) = maxr=1,...,Rn
K

(

X ,Y(n,r)
)

(3)

simAVG(X,Y (n)) =
1

Rn

Rn
∑

r=1

K
(

X ,Y(n,r)
)

(4)

Max-pooling corresponds to assigning a database image’s

score considering only its highest-scoring subimage. Av-

erage pooling aggregates contributions from all subimages.

These two variants are compared in Sec. 5.

4.3. Regional Aggregated Match Kernels

Storing descriptors of each region independently in the

database incurs additional cost for both storage and search

computation. In this section, we consider utilizing the de-

tected bounding boxes to instead improve the aggregated rep-

resentations of database images – producing discriminative

descriptors at no additional cost. We extend the aggregated

match kernel framework of Tolias et al. [37] to regional

aggregated match kernels, as follows.

We start by noting that the average pooling similarity

Eq. (4) can be rewritten as:

simAVG(X,Y (n)) =

γ(X )
∑

c

∑

r

γ(Y(n,r))

Rn
σ
(

Φ(Xc)
TΦ(Y(n,r)

c )
)

(5)

Simple regional aggregation. For VLAD, this can be fur-

ther expanded as:

sim(R-VLAD)(X,Y (n))

= γ(X )
∑

c

∑

r

γ(Y(n,r))

Rn
V (Xc)

TV (Y(n,r)
c )

=
∑

c

γ(X )V (Xc)
T
∑

r

γ(Y(n,r))

Rn
V (Y(n,r)

c ) (6)

=
∑

c

VR(Xc)
TVR({Y

(n,r)
c }r) (7)

where we define

VR({Y
(n,r)
c }r) =

1

Rn

∑

r

γ(Y(n,r))V (Y(n,r)
c ) (8)

Using this definition, note that VR(Xc) = γ(X )V (Xc).
This derivation indicates that average pooling of regional

VLAD similarities can be performed using aggregated re-

gional descriptors and does not require storage of each re-

gion’s representation separately1. We refer to this simple

regional aggregated kernel as R-VLAD.

A similar derivation can be obtained for ASMK in the

case where σ(.) is the identity function (i.e., no selectivity

is applied), by replacing V (Xc) by V̂ (Xc) in Eq. (6). A

straightforward matching kernel using this idea would apply

the selectivity function when comparing the query ASMK

representation against this aggregated representation. We

refer to this aggregation variant as Naive-R-ASMK.

Both the R-VLAD and Naive-R-ASMK kernels present

an important problem when using many detected regions

per image and large codebooks. For a given image region,

1Another way to see that this applies to VLAD kernels is to note

that VLAD similarity is computed via a simple inner product, and that

the average inner product with a set of vectors equals the inner product

with the set average; i.e., for vector x and set {yn}, 1

N

∑

n
xT yn =

xT
(

1

N

∑

n
yn

)

.

5112



most visual words will not be associated to any local feature,

leading to many all-zero residuals for the region. For visual

words that correspond to visual patterns observed in only

a small number of regions, this will lead to substantially

downweighted residuals. We propose to fix this weakness

by developing the R-ASMK kernel as follows, inspired by

the changes introduced by the original ASMK with respect

to VLAD.

R-ASMK. We define the R-ASMK similarity between a

query and a database image as:

sim(R-ASMK)(X,Y (n)) =
∑

c

σ
(

V̂R(Xc)
T V̂R({Y

(n,r)
c }r)

)

(9)

where V̂R({Y
(n,r)
c }r) =

VR({Y(n,r)
c }r)

∥

∥

∥
VR({Y

(n,r)
c }r)

∥

∥

∥

is the normalized

regionally aggregated residual corresponding to visual word

c.

R-AMK. The kernels we presented in this section can be

regarded as different instantiations of a general regional

aggregated match kernel (R-AMK), defined as follows:

KR(X,Y ) =
∑

c∈C

σ
(

ΦR({X
(r)
c }r)

TΦR({Y
(r)
c }r)

)

(10)

where {X
(r)
c }r denotes the sets of local descriptors quan-

tized to visual word c, from each region of X . ΦR special-

izes to VR for R-VLAD, and to V̂R for R-ASMK. Note that

this definition involves regional aggregation for both images,

while in this work we focus on the asymmetric case where

regional aggregation is applied to the database image only.

The asymmetric case is more relevant when the query im-

age is itself a well-localized region-of-interest, which is a

common setup in image retrieval benchmarks.

Binarization. For codebooks with a large number of vi-

sual words, the storage cost for such aggregated representa-

tions may be prohibitive. Binarization is an effective strat-

egy to allow scalable retrieval in these cases. We adopt

a similar binarization strategy as [37], where a binarized

version of ΦR can be obtained by the elementwise func-

tion b(x) = +1 if x > 0,−1 otherwise. We denote the

binarized version by a ⋆ superscript (e.g., R-ASMK⋆ is the

binarized version of R-ASMK).

5. Experiments

We present two types of experiments: first, landmark

detection, to assess the quality of object detector models

trained on the new dataset. Second, we utilize the detected

landmarks to enhance image retrieval systems.

5.1. Landmark Detection

We train two types of detection models on the bounding

box data we have collected and described in Sec. 3: a sin-

gle shot Mobilenet-V2 [33] based SSD detector [20] and a

two stage Resnet-50 [10] based Faster-RCNN [32]. Stan-

dard object detection evaluation metric Average Precision

(AP) measured at 50% Intersection-over-Union ratio is used

during evaluation. Both models reach about 85% AP on

the validation set within 500k steps (85.61%, 84.37% re-

spectively). The models are trained with publicly available

Tensorflow Object Detection API [11]. The results indicate

that accurate landmark localization can be trained using our

dataset. The Mobilenet-V2-SSD variant runs at 27ms per

image, while the Resnet-50-Faster-RCNN runs at 89ms, both

numbers on a TitanX GPU.

5.2. Image Retrieval

We perform regional search and regional aggregation ex-

periments. The following describes the experimental setup.

Datasets. We use the Oxford [26] and Paris [27] datasets,

which have recently been revisited to correct annotation mis-

takes, add new query images and introduce new evaluation

protocols [28]; the datasets are referred to as ROxf and

RPar, respectively. There are 70 query images for each

dataset, with 4993 (6322) database images in the ROxf

(RPar) dataset. We report results on the Medium and Hard

setups; for ablations, we focus more specifically on the Hard

setup. Performance is measured using mean average preci-

sion (mAP) and mean precision at rank 10 (mP@10). We

also perform large-scale experiments using the R1M distrac-

tor set [28], which contains 1,001,001 images.

Image representation. We use the following setup in our

experiments, except where indicated otherwise. The released

DELF model [25] (pre-trained on the dataset from [9]) is

used, with the default configuration (maximum of 1000 fea-

tures per region are extracted, with a required minimum

attention score of 100), except that the feature dimension-

ality is set to 128 as in previous work [28]. A 1024-sized

codebook is used when computing aggregated kernels; as

common practice, codebooks are trained on ROxf for re-

trieval experiments on RPar, and vice-versa. We focus on

improving the core image representations for retrieval, and

do not consider query expansion (QE) [7] techniques such

as Hamming QE [38], α QE [30] or diffusion [13, 12]; these

methods could be incorporated to our system to obtain even

stronger retrieval performance.

Region selection techniques. For our Detect-to-Retrieve

(D2R) framework, we adopt the trained Faster R-CNN de-

tector described in Sec. 5.1. We compare against previously

proposed region selection techniques for image retrieval: the

uniform grid from [31, 39] (denoted RMACB, for “RMAC

boxes”) and Selective Search (SS) [40, 36]. To vary the

number of regions per image, we do as follows: (i) for D2R,
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Figure 4: Regional search and aggregation evaluations of different image representations, on ROxf-Hard. (a) Regional search: each regional representation

is stored independently in the database, leading to increased memory requirements. Our D2R-ASMK variants achieve significant improvements over the

single-image baseline while requiring substantially fewer boxes compared to other region selection approaches. (b) Regional aggregation: each region

contributes to the aggregated representation for the entire image. The memory requirements are identical for the single-image baseline that does not use

regions. Our D2R-R-ASMK variants leverage the different landmark regions to compose a strong image representation, which is even more effective than

storing each regional representation separately.

Method
Det. ROxf-Hard RPar-Hard

Thresh. mAP Size mAP Size

ASMK⋆ — 38.3 1 54.2 1

0.7 39.2 2.1 56.0 2.2
D2R- 0.5 39.7 2.4 56.2 2.4
ASMK⋆ 0.3 40.2 2.9 56.3 2.9

0.1 40.7 4.1 56.7 3.9

0.7 41.0 1 56.2 1
D2R-R- 0.5 41.5 1 56.2 1
ASMK⋆ 0.3 42.0 1 56.3 1

0.1 41.4 1 56.8 1

Table 1: Retrieval mAP and relative database size for the different region-

based techniques introduced in this work, on the ROxf-Hard and RPar-

Hard datasets, as a function of the landmark detector threshold used for

region selection. D2R-ASMK⋆ uses max-pooling similarity from Eq. (3).

The performances of both D2R-ASMK⋆ and D2R-R-ASMK⋆ tend to im-

prove as the detection threshold decreases (more regions are selected).

D2R-R-ASMK⋆ outperforms D2R-ASMK⋆ consistently, with a smaller

memory footprint.

we vary the landmark detector threshold; (ii) for RMACB,

we sweep the number of levels from 1 to 3; (iii) for SS, we

select the top {1, 2, 5, 10} boxes per image (as in this case

there are no confidence scores associated to regions). For

all region selection techniques, we add the original image as

one of the selected regions.

Implementation details. We implemented the aggregated

kernel framework in Python. As a comparison against the

reference MATLAB implementation [37], our ASMK⋆ with

a 1024-sized codebook and DELF features obtains 37.91%
mAP in the ROxf-Hard dataset, while the reference imple-

mentation obtains 37.08%. Note that the reference binarized

implementation uses a similar configuration as Hamming

Embedding (HE) [14], with a projection matrix before bi-

narizarion, residuals computed with respect to the median,

and IDF. We did not find consistent improvements using

these, so we use the simpler version as described in Sec. 4.

Similarly, the reference implementation uses multiple visual

word assignments, but our preliminary experiments show

improved results using single assignment, making retrieval

faster and simpler – therefore we adopt single assignment in

our experiments. We extend the implementation to support

our regional search and aggregation techniques, and plan to

release code to foster reproducibility of results.

5.2.1 Regional Search

We compare aggregated match kernels, region selection tech-

niques and similarity computation methods on the ROxf-

Hard dataset. When performing regional search, multiple

regions are selected per image and stored independently in

the database, leading to increased memory cost. Fig. 4a

presents results for ASMK variants, where all techniques use

max-pooling similarity from Eq. (3), except for D2RAVG-

ASMK⋆, which uses average-pooling similarity from Eq. (4).

Combining our proposed D2R regions with ASMK enhances

mAP by 3.23% when using an average of 4.05 regions per

image.

We compare the different region selection approaches

using ASMK⋆. Our D2R-ASMK⋆ achieves 40.65% mAP

when using 4.05 regions per image, improvement of 2.31%
over the single-image ASMK⋆ baseline. Other region se-

lection approaches improve retrieval accuracy, but with sig-

nificantly larger memory requirements. RMACB-ASMK⋆

requires 9.08 regions/image to achieve 40.43% mAP (this is

5114



Method
Medium Hard

ROxf ROxf+R1M RPar RPar+R1M ROxf ROxf+R1M RPar RPar+R1M

mAP mP@10 mAP mP@10 mAP mP@10 mAP mP@10 mAP mP@10 mAP mP@10 mAP mP@10 mAP mP@10

AlexNet-GeM [30] 43.3 62.1 24.2 42.8 58.0 91.6 29.9 84.6 17.1 26.2 9.4 11.9 29.7 67.6 8.4 39.6
VGG16-GeM [30] 61.9 82.7 42.6 68.1 69.3 97.9 45.4 94.1 33.7 51.0 19.0 29.4 44.3 83.7 19.1 64.9
ResNet101-GeM [30] 64.7 84.7 45.2 71.7 77.2 98.1 52.3 95.3 38.5 53.0 19.9 34.9 56.3 89.1 24.7 73.3
ResNet101-R-MAC [9] 60.9 78.1 39.3 62.1 78.9 96.9 54.8 93.9 32.4 50.0 12.5 24.9 59.4 86.1 28.0 70.0
HesAff-rSIFT-ASMK⋆ [37] 60.4 85.6 45.0 76.0 61.2 97.9 42.0 95.3 36.4 56.7 25.7 42.1 34.5 80.6 16.5 63.4
HesAff-rSIFT-ASMK⋆+SP [37] 60.6 86.1 46.8 79.6 61.4 97.9 42.3 95.3 36.7 57.0 26.9 45.3 35.0 81.7 16.8 65.3
HesAff-HardNet-ASMK⋆+SP [24] 65.6 90.2 – – 65.2 98.9 – – 41.1 59.7 – – 38.5 87.9 – –

DELF-ASMK⋆+SP [25, 28] 67.8 87.9 53.8 81.1 76.9 99.3 57.3 98.3 43.1 62.4 31.2 50.7 55.4 93.4 26.4 75.7

DELF-ASMK⋆ (reimpl.) 65.7 87.9 – – 77.1 98.7 – – 41.0 57.9 – – 54.6 90.9 – –

DELF-D2R-R-ASMK⋆ (ours) 69.9 89.0 – – 78.7 99.0 – – 45.6 61.9 – – 57.7 93.0 – –

— DELF-GLD (ours) 73.3 90.0 61.0 84.6 80.7 99.1 60.2 97.9 47.6 64.3 33.6 53.7 61.3 93.4 29.9 82.4

DELF-ASMK⋆+SP (reimpl.) 68.9 90.9 – – 76.6 98.7 – – 46.6 66.7 – – 52.2 87.6 – –

DELF-D2R-R-ASMK⋆+SP (ours) 71.9 91.3 – – 78.0 99.4 – – 48.5 66.7 – – 54.0 87.6 – –

— DELF-GLD (ours) 76.0 93.4 64.0 87.7 80.2 99.1 59.7 99.0 52.4 70.9 38.1 61.3 58.6 91.0 29.4 83.9

Table 2: Comparison of proposed techniques against state-of-the-art methods, on the ROxford (ROxf) and RParis (RPar) datasets (and their large-scale

extensions ROxf+R1M and RPar+R1M), with Medium and Hard evaluation protocols. Previously published results are presented in the first block of rows.

The second and third block of rows present our experimental results, considering systems without and with spatial verification (SP), respectively. In this

experiment, we use codebooks with 65k visual words, to make our results comparable to previous work [28]. DELF-GLD indicates a version of DELF which

we re-trained on the Google Landmarks dataset. Our methods achieve equal or improved performance for all evaluation protocols, datasets and metrics.

0.22% mAP below the previously mentioned D2R-ASMK⋆

operating point, despite requiring 2.24× more memory).

SS-ASMK⋆ benefits from some regions, while performance

decreases when a large number of regions are selected, since

many of those regions are irrelevant.

Average pooling of individual regional similarities im-

proves upon the single-image baseline significantly, at

low overhead memory requirements: D2RAVG-ASMK⋆

achieves 40.35% mAP with only 1.96× storage cost. Note

that in this case performance drops significantly as more

regions are added, since irrelevant regional similarities are

added to the final image similarity. We also experimented

with a D2R-VLAD representation: mAP improves from

30.17% (single-image) to 33.87% (2.87 regions/image).

Tab. 1 further presents D2R-ASMK⋆ results on the RPar-

Hard dataset. Regional search enables 2.5% mAP improve-

ment at 3.9 regions/image. Note that our D2R approach

is effective even if the landmarks in the Google Landmark

Boxes dataset present much larger variability than the land-

marks encountered in the ROxf/RPar datasets.

5.2.2 Regional Aggregated Match Kernels

In this section, we evaluate the proposed regional aggregated

match kernels. In this experiment, region selection is used

to produce an improved image representation, with no in-

crease in the aggregated descriptor dimensionality. Fig. 4b

compares different aggregation methods and region selection

approaches, on the ROxf-Hard dataset. Both our proposed

D2R-R-ASMK and D2R-R-ASMK⋆ variants achieve sub-

stantial improvements compared to their baselines which do

not use boxes for aggregation: 3.85% and 3.65% absolute

mAP improvements, respectively. We also compare our D2R

approach against other region selection methods. RMACB

and SS improve upon the baseline, however with limited

gain of at most 1.5% mAP.

More interestingly, our proposed kernels outperform even

the regional search configuration where each region is in-

dexed separately in the database. Tab. 1 compiles experi-

mental results on ROxf-Hard and RPar-Hard. Our D2R-R-

ASMK⋆ method outperforms the best regional search variant

on both datasets, respectively by 1.3% and 0.1% absolute

mAP, with storage savings of 4.1× and 3.9×.

In another ablation experiment, we assess the perfor-

mance of simpler regional aggregation methods: R-VLAD

and Naive-R-ASMK. We use the trained detector to select re-

gions. For R-VLAD, mAP on ROxf improves from 30.17%
(single-image) to 30.91% when using 2.4 regions per image,

but degrades quickly as more regions are considered. In

particular, when setting a very low detection threshold (0.01)

to obtain 10.2 regions per image, performance degenerates

to 16.46% mAP – this agrees with the intuition that a large

number of regions is detrimental to R-VLAD. For Naive-R-

ASMK, no improvement is obtained when detected regions

are used: mAP drops from 39.72% to 31.42% when 1.96 re-

gions per image are used, and similarly degenerates to 9.2%
when using 10.2 regions per image. In comparison, using the

same detection threshold of 0.01, R-ASMK⋆ obtains 41.6%
mAP, i.e., performance is high even if using a large number

of regions, due to the improved aggregation technique.

5.2.3 Comparison Against State-of-the-Art

We compare our D2R-R-ASMK⋆ technique against state-

of-the-art image retrieval systems. To make our system

comparable with previously published results [28], for this

experiment we use a codebook with 65k visual words. We

also further experiment with re-training the DELF local fea-

ture on the Google Landmarks dataset (denoted as DELF-

GLD). Spatial verification (SP) is used to re-rank the top 100
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Query ASMK* D2R-ASMK* D2R-R-ASMK* Query ASMK* D2R-ASMK* D2R-R-ASMK*

AP: 28.2% AP: 29.2% AP: 35.4% 

AP: 9.9% AP: 9.1% AP: 22.8% 

AP: 51.4% AP: 38.7% AP: 56.7% 

AP: 14.8% AP: 23.2% AP: 16.3% 

Figure 5: Qualitative results for ASMK⋆ (baseline single-image method), D2R-ASMK⋆ (regional search) and D2R-R-ASMK⋆ (regional aggregation) on

ROxf-Hard. Four queries are presented, with their regions-of-interest highlighted. For each method, we show the first ranked image where the methods

disagree. Red borders indicate incorrect results, and green borders indicate correct results. For D2R-ASMK⋆, we box the region used for the result (or leave

unboxed if the region corresponds to the entire image). For D2R-R-ASMK⋆, we box all regions used for aggregation. We also present average precision (AP)

for each method and query.

database images (we use RANSAC with an Affine model).

Table 2 presents experimental results on ROxf and RPar,

using the Medium and Hard protocols, also including the

large-scale setup with R1M. Our proposed D2R-R-ASMK⋆

representation by itself, without spatial verification, already

improves mAP when comparing against all previously pub-

lished results. SP further boosts performance by about 3%
mAP on ROxf; surprisingly, it slightly degrades perfor-

mance on the RPar dataset. Re-training DELF on GLD

improves performance by around 4%. Our best results im-

prove upon the previous state-of-the-art by 8.2% mAP on

ROxf-Medium, 1.8% mAP on RPar-Medium, 9.3% mAP

on ROxf-Hard and 1.9% in RPar-Hard (with similar gains

in the large-scale setup).

Memory. Our DELF-D2R-R-ASMK⋆ descriptors have the

exact same dimensionality as DELF-ASMK⋆. However,

DELF-ASMK⋆ is sparser and consumes less memory in

practice: 10.3GB, compared to 27.6GB for DELF-D2R-R-

ASMK⋆, in the large-scale ROxf+R1M dataset. This is still

much less than other local feature based approaches; e.g.

HesAff-rSIFT-ASMK⋆ requires 62GB [28], and HesAffNet-

HardNet++-ASMK⋆ [24] requires approximately 86.8GB.

5.2.4 Discussion

Our experiments demonstrate that selecting relevant image

regions can help boost image retrieval performance signif-

icantly. In our regional aggregation method, the detected

regions allow for effective re-weighting of local feature con-

tributions, emphasizing relevant visual patterns in the final

image representation. Note, however, that it is crucial to

perform both region selection and regional aggregation in

a suitable manner. If the selected regions are not relevant

to the objects of interest, regional aggregation cannot be

very effective, as shown in Fig. 4b. Also, our experiments

with naive versions of regional aggregation indicate that the

aggregation needs to be performed in the right way: this is

related to the poor R-VLAD and Naive-R-ASMK results.

It may initially seem unintuitive that the regional search

method underperforms when compared to our regional ag-

gregation technique. However, this can be understood by

observing some retrieval result patterns, which are presented

in Fig. 5. The addition of separate regional representations

to the database may help retrieval of relevant small objects

in cluttered scenes, as illustrated with the successful bottom-

right D2R-ASMK⋆ retrieved image. However, it also in-

creases the chances of finding localized regions which are

similar but do not correspond to the same landmark, as illus-

trated with the top two cases.

Regional aggregation, on the other hand, can help re-

trieval by re-balancing the visual information presented in

an image. The top-right D2R-R-ASMK⋆ result shows a

database image where the detected boxes do not precisely

cover the query object; instead, several selected regions

cover it, and consequently its features are boosted. A simi-

lar case is illustrated in the bottom-left example, where the

main detected region in the database image does not cover

the object of interest entirely. The features inside the main

box are boosted but those outside are also used, generating a

more suitable representation for image retrieval.

6. Conclusions

In this paper, we present an efficient regional aggregation

method for image retrieval. We first introduce a dataset of

landmark bounding boxes, and show that landmark detectors

can be trained and leveraged for extracting regional repre-

sentations. Regional search using our detectors not only

provides superior retrieval performance but also much better

efficiency than existing regional methods. In addition, we

propose a novel regional aggregated match kernel framework

that further boosts the retrieval accuracy. Our full system

achieves state-of-the-art performance by a large margin on

two image retrieval datasets.
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