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Abstract

We present a unified framework for understanding 3D

hand and object interactions in raw image sequences from

egocentric RGB cameras. Given a single RGB image, our

model jointly estimates the 3D hand and object poses, mod-

els their interactions, and recognizes the object and action

classes with a single feed-forward pass through a neural

network. We propose a single architecture that does not

rely on external detection algorithms but rather is trained

end-to-end on single images. We further merge and prop-

agate information in the temporal domain to infer interac-

tions between hand and object trajectories and recognize

actions. The complete model takes as input a sequence of

frames and outputs per-frame 3D hand and object pose pre-

dictions along with the estimates of object and action cate-

gories for the entire sequence. We demonstrate state-of-the-

art performance of our algorithm even in comparison to the

approaches that work on depth data and ground-truth an-

notations.

1. Introduction

Human behavior can be characterized by the individual

actions a person takes in interaction with the surrounding

objects and the environment. A significant amount of re-

search has focused on visual understanding of humans [8,

25, 36, 40, 59, 65, 70, 74] and objects [4, 28, 64, 66], in

isolation from each other. However, the problem of jointly

understanding humans and objects, although crucial for a

semantically meaningful interpretation of the visual scene,

has received far less attention. In this work, we propose,

for the first time, a unified method to jointly recognize 3D

hand and object poses, and their interactions from egocen-

tric monocular color images. Our method jointly estimates

the hand and object poses in 3D, models their interactions

and recognizes the object and activity classes. An example

result is shown in Fig. 1. Our unified framework is highly

relevant for augmented and virtual reality [62], fine-grained

recognition of people’s actions, robotics and telepresence.

Figure 1: Unified reasoning on first-person views. Our method

takes as input color images and produces a comprehensive ego-

centric scene interpretation. We estimate simultaneously 3D hand

and object poses (shown as skeletons and 3D bounding boxes),

object class (e.g. juice bottle) and action category (e.g. pouring).

Capturing hands in action while taking into account the

objects in contact is an extremely challenging problem.

Jointly reasoning about hands and objects from moving,

egocentric cameras is even more challenging as this would

require understanding of the complex and often subtle inter-

actions that take place in cluttered real-world scenes where

the hand is often occluded by the object or the viewpoint.

Recent research in computer vision has successfully ad-

dressed some of the challenges in joint understanding of

hands and objects for depth and multi-camera input. Srid-

har et al. [60] have demonstrated that accounting jointly for

hands and objects helps predict the 3D pose more accu-

rately than models that ignore interaction. Pioneering works

by [21, 37, 41, 68] have proposed ways to model hand-

object interactions to increase robustness and accuracy in

recovering the hand motion.

Most of these works, however, are limited by the follow-

ing factors: Firstly, they either rely on active depth sensors

or multi-camera systems. Depth sensors are power hungry

and less prevalent than regular RGB cameras. On the other

hand, multi-camera systems are impractical due to the cost

and effort in setting up a calibrated and synchronous system

of sensors. Secondly, they do not reason about the action

the subject is performing. While estimating the 3D hand

pose is crucial for many applications in robotics and graph-

ics, the sole knowledge of the pose lacks semantic meaning

about the actions of the subject. Thirdly, they focus mostly
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on only capturing hand motion without recovering the ob-

ject pose in 3D [21, 37], and, therefore, lack environmental

understanding.

Our method aims at tackling all these issues. To this

end, we propose an approach for predicting simultaneously

3D hand and object poses, object classes and action cate-

gories through a novel data-driven architecture. Our model

jointly produces 3D hand and object pose estimates, action

and object classes from a single image and requires neither

external region proposals nor pre-computed detections. Our

method further models the temporal nature of 3D hand and

object motions to recognize actions and infer interactions.

Our contributions can be summarized as follows:

• We propose a unified framework for recognizing 3D

hand and object interactions by simultaneously solv-

ing four tasks in a feed-forward pass through a neural

network: 3D hand pose estimation, object pose estima-

tion, object recognition and activity classification. Our

method operates on monocular color images and relies

on joint features that are shared among all the tasks.

• We introduce a novel single-shot neural network

framework that jointly solves for the 3D articulated

and rigid pose estimation problems within the same

architecture. Our scheme relies on a common out-

put representation for both hands and objects that

parametrizes their pose with 3D control points. Our

network directly predicts the control points in 3D

rather than in 2D, in contrast to the common single-

shot neural network paradigm [48, 66], dispenses with

the need to solve a 2D-to-3D correspondence prob-

lem [32] and yields large improvements in accuracy.

• We present a temporal model to merge and propagate

information in the temporal domain, explicitly model

interactions and infer relations between hand and ob-

jects, directly in 3D.

In Section 4, we show quantitatively that these contri-

butions allow us to achieve better overall performance in

targeted tasks, while running at real-time speed and not re-

quiring detailed 3D hand and object models. Our approach,

which we call Hand + Object (H+O), achieves state-of-the-

art results on challenging sequences, and outperforms ex-

isting approaches that rely on the ground-truth pose annota-

tions and depth data.

2. Related Work

We now review existing work on 3D hand and object

pose estimation – both jointly and in isolation – and action

recognition, with a focus on egocentric scenarios.

Hands and Objects. Many approaches in the literature

tackle the problem of estimating either hand or object pose

in isolation.

Brachman et al. [4] recover 6D object pose from single

RGB images using a multi-stage approach, based on regres-

sion forests. More recent approaches [28, 46] rely on Con-

volutional Neural Networks (CNNs). BB8 [46] uses CNNs

to roughly segment the object and then predict the 2D loca-

tions of the object’s 3D bounding box, projected in image

space. 6D pose is then computed from these estimates via

PnP [32]. SSD-6D [28] predicts 2D bounding boxes to-

gether with an estimate of the object pose. These methods

need a detailed textured 3D object model as input, and re-

quire a further pose refinement step to improve accuracy.

Tekin et al. [66] overcome these limitations by introducing

a single-shot architecture which predicts 2D projections of

the object’s 3D bounding box in a single forward pass, at

real-time speed. All these approaches do not address the

problem of estimating object pose in hand-object interac-

tion scenarios, where objects might be largely occluded.

3D hand pose and shape estimation in egocentric views

has started receiving attention recently [7, 22, 37, 51, 70,

72, 73]. The problem is challenging with respect to third-

person scenarios [58, 74], due to self-occlusions and the

limited amount of training data available [37, 39, 51, 70].

Mueller et al. [37] train CNNs on synthetic data and com-

bine them with a generative hand model to track hands in-

teracting with objects from egocentric RGB-D videos. This

hybrid approach has then been extended to work with RGB

videos [36]. Iqbal et al. [25] estimate 3D hand pose from

single RGB images, from both first- and third-person views,

regressing 2.5D heatmaps via CNNs. These methods focus

on hand pose estimation and try to be robust in the presence

of objects, but do not attempt to model hand and objects

together.

While reasoning about hands in action, object interac-

tions can be exploited as additional constraints [41, 49, 51,

53]. By observing that different object shapes induce differ-

ent hand grasps, the approaches in [7, 51] discriminatively

estimate 3D hand pose from depth input. Model-based ap-

proaches [54] have also been proposed to jointly estimate

hand and object parameters at a finer level of detail. How-

ever, most approaches focus on third-view scenarios, taking

depth as input [41, 43, 67, 68].

To our knowledge, no approach in the literature jointly

estimates 3D hand and object pose from RGB video only.

Action Recognition. While action recognition is a long-

standing problem in computer vision [3, 10, 18, 26, 31,

38, 69], first-person action recognition started to emerge

as an active field only recently, largely due to the advent

of consumer-level wearable sensors and large egocentric

datasets [9, 20, 44, 52]. First-person views bring upon
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unique challenges to action recognition due to fast camera

motion, large occlusions and background clutter [33].

Early approaches for egocentric action recognition rely

on motion cues [29, 50, 55]. In particular, [29] uses opti-

cal flow-based global motion descriptors to categorize “ego-

actions” across sports genres. [45] feeds sparse optical flow

to 3D CNNs to index egocentric videos. Motion and ap-

pearance cues are used in conjunction with depth in [63]. In

addition to motion, features based on gaze information [13],

head motion [33], and, recently, CNN-learned features [35]

have been proposed by a number of studies. Another line of

work has focused specifically on hand and object cues for

first person action recognition [12, 16, 27, 57, 61]. Pirsi-

avash and Ramanan [44] explore active object detection as

an auxiliary task for activity recognition. Koppula et al. [30]

learn a model of object affordances to understand activities

from RGB-D videos. EgoNet [2] detects “action objects”,

i.e. objects linked to visual or tactile interactions, from first-

person RGB-D images. Fathi et al. [12, 14] use motion cues

to segment hands and objects, and then extract features from

these foreground regions. All these approaches, however,

focus on 2D without explicitly modeling hand-object inter-

actions in 3D. Recently, Garcia-Hernando et al. [17] demon-

strate that 3D heuristics are beneficial to first person action

recognition. However, they work on depth input and rely on

ground-truth object poses.

Similarly to us, Cai et al. [34] propose a structured ap-

proach where grasp types, object attributes and their con-

textual relationships are analyzed together. However, their

single-image framework does not consider the temporal di-

mension. Object Relation Network [1] models contextual

relationships between detected semantic object instances,

through space and time. All these approaches aim at un-

derstanding the scene only in 2D. Here, we model more

complex hand and object attributes in 3D, as well as their

temporal interaction.

3. Method

Our goal is to construct comprehensive interpretations of

egocentric scenes from raw image sequences to understand

human activities. To this end, we propose a unified frame-

work to jointly estimate 3D hand and object poses and rec-

ognize object and action classes.

3.1. Overview

The general overview of our Hand+Object model is

given in Fig. 2. Our model takes as input a sequence of

color frames It (1 ≤ t ≤ N ) and predicts per-frame 3D

hand and object poses, object classes and action categories,

along with per-sequence interaction classes. Here, we de-

fine actions as verbs, e.g. “pour”, and interactions as (verb,

noun) pairs, e.g. “pour juice”. We represent hand and ob-

ject poses with Nc 3D control points. Details about control

point definitions are provided in Sec. 3.2. We denote the

number of object classes by No, the number of actions by

Na and the number of interactions by Nia.

Our model first processes each frame, It, of a sequence

with a fully convolutional network (Fig. 2a) and divides the

input image into a regular grid Gt containing H ×W ×D

cells that span the 3D scene in front of the camera (Fig. 2b).

We keep the target values of our network for hands and

objects in tensor Gt (Fig. 2c-d). Namely, the target val-

ues for a hand or an object at a specific cell location,

i ∈ H×W×D, are placed in the i-th cell of Gt in the form

of a multi-dimensional vector, vi. To be able to jointly esti-

mate the pose of a hand and an object potentially occluding

each other, we allow each cell to store two separate sets of

values, one for the hand, denoted by vh
i , and one for the

object, denoted by vo
i (Fig. 2e). Vector vh

i stores the con-

trol points for hand pose, yh
i ∈ R

3Nc , action probabilities,

pa
i ∈ R

Na , and an overall confidence value for the hand

pose estimation, chi ∈ [0, 1]. Vector vo
i stores the control

points for object pose, yo
i ∈ R

3Nc , object class probabil-

ities, po
i ∈ R

No , and an overall confidence value for the

object pose estimation, coi ∈ [0, 1].

We train our single pass network based on [48] to be able

to predict these target values. At test time, predictions at

cells with low confidence values, i.e. where the hands or ob-

jects of interest are not present, are pruned. All these predic-

tions are obtained with a single forward pass in the network.

While very efficient, this step works on each frame indepen-

dently, thus ignoring the temporal dimension. Therefore,

we add a recurrent module to integrate information across

frames and model the interaction between hands and ob-

jects (Fig. 2a). This module takes as input hand and object

predictions with high confidence values, and outputs a prob-

ability vector, pia ∈ R
Nia , over interaction classes. In the

following sections, we describe each of these components

in more detail.

3.2. Joint 3D HandObject Pose Estimation

In the context of rigid object pose estimation, [46, 66]

regress the 2D locations of 8 keypoints – namely, the pro-

jections of the 8 corners of the object’s 3D bounding box.

The object’s 6D pose is then estimated using a PnP algo-

rithm [32]. Adopting a similar approach would not work in

our case, since we aim at estimating also the articulated 3D

pose of the hand. To tackle this problem and jointly esti-

mate 3D articulated and rigid pose within the same archi-

tecture, we propose to use a common output representation

for both hands and objects. To this end, we parametrize

both hand and object poses jointly with 3D control points,

corresponding to 21 skeleton joints for the hand pose and

3D locations of object keypoints, corresponding to the lo-

cations on the 3D object bounding box. For simplicity, we

choose Nc = 21, and define 8 keypoints for the objects as
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(a) (b) (c) (d) (e)
Figure 2: Overview of our Hand+Object approach. (a) The proposed network architecture. Each frame I

t is passed through a fully-

convolutional network to produce a 3D regular fixed grid G
t. (b) The H ×W ×D grid showing cells responsible for recognizing hands

and objects. (c) Each cell predicts the 3D hand pose and object bounding box coordinates in a 3D grid. (d) The output tensor from our

network, in which the target values for hands and objects are stored. (e) Cells are associated with a vector that contains target values for

hand and object pose, object and action categories and an overall confidence value. Predictions with high confidence values are then passed

through the interaction RNN to propagate information in the temporal domain and model interactions in 3D between hands and objects.

proposed in [46, 66], along with the 12 edge midpoints and

the centroid of the 3D bounding box.

Adopting a coherent parameterization for hand and ob-

ject simplifies the regression task. We subdivide the input

image into a grid of H × W cells, and further discretize

depth into D cells. Note that discretization is defined in

pixel space for the first two dimensions, and in metric space

for depth. Therefore each cell has a size of Cu × Cv pix-

els, ×Cz meters. Within each cell, we predict offsets ∆u,

∆v, ∆z for the locations corresponding to the control points

with respect to the top-left corner of the cell that is closer

to the camera, (u, v, z). For the hand root joint and the ob-

ject centroid, we constrain the offset to lie between 0 and 1,

where a size of 1 corresponds to the full extent of an individ-

ual cell within grid dimensions. For other control points, we

do not constrain the network’s output as those points should

be allowed to fall outside the cell. The predicted location of

the control point (ŵu, ŵv, ŵz) is then computed as:

ŵu = g(∆u) + u (1)

ŵv = g(∆v) + v (2)

ŵz = g(∆z) + z (3)

where g(·) is chosen to be a 1D sigmoid function for the root

joint and the object centroid, and the identity function for

other control points. Here, (u, v, z) are indices for the cell

in grid dimensions. Given the camera intrinsics matrix K,

and the prediction for the grid location, (ŵu, ŵv, ŵz), the

3D location ŷ of the control point in the camera coordinate

system is then computed as:

ŷ = ŵz · Cz ·K
−1[ŵu · Cu, ŵv · Cv, 1]

T . (4)

3D joint predictions already define the hand pose. Given the

control point predictions on the 3D bounding box, 6D object

pose could also be computed efficiently by aligning the pre-

diction to the reference 3D bounding box with a rigid trans-

formation. This dispenses with the need to solve for a 2D-

to-3D correspondence problem using PnP as in [46, 66] and

recovers the 6D pose via Procrustes transformation [19].

Such a formulation also reduces depth ambiguities caused

by projection from 3D to 2D. We show in Sec. 4 that this

results in an improved object pose estimation accuracy.

In addition to hand and object control point locations,

our network also predicts high confidence values for cells

where the hand (or the object) is present, and low con-

fidence where they are not present. Computing reliable

confidence values is key for obtaining accurate predictions

at test time. We define the confidence of a prediction as

a function of the distance of the prediction to the ground

truth, inspired by [66]. Namely, given a predicted 2D loca-

tion (ŵu, ŵv) and its Euclidean distance DT (ŵu, ŵv) from

the ground truth, measured in image space, the confidence

value cuv(ŵu, ŵv) is computed as an exponential function

with cut-off value dth and sharpness parameter α:

cuv(ŵu, ŵv) = e
α
(

1−
DT (ŵu,ŵv)

dth

)

(5)

if DT (ŵu, ŵv) < dth, and cuv(ŵu, ŵv) = 0 otherwise.

However, in contrast to [66] that computes a confidence

value for 2D prediction, we need to also consider the depth

dimension. Therefore, for a given depth prediction, ŵz , we

compute an additional confidence value, cz(ŵz), measur-

ing the distance (in metric space) between prediction and

ground truth as in Eq. 5. We then compute the final confi-

dence value c = 0.5 · cuv(ŵu, ŵv) + 0.5 · cz(ŵz).

3.3. Object and Action Recognition

In addition to the 3D control locations and the confidence

value, our model also predicts the object and action classes

(i.e. nouns and verbs, as defined in Sec. 3.1). Intuitively,

features learned to predict hand and object pose could also
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help recognize actions and object classes. In order to predict

actions, at each cell i we store into vector vh
i , together with

hand pose yh
i and the corresponding confidence value chi ,

the target action class probabilities pa
i . Similarly, to be able

to predict object classes, we store into vector vo
i , together

with object pose yo
i and the corresponding confidence value

coi , the target object class probabilities po
i .

In total, vh
i stores 3 ·Nc +Na + 1 values and vo

i stores

3 · Nc + No + 1 values. We train our network to be able

to predict vh
i and vo

i for each cell i of the 3D grid Gt,

for each t. Given verb and noun predictions, our model

is able to recognize interactions from only a single image.

Ultimately, our network learns to jointly predict 3D hand

and object poses along with object, action and interaction

classes – with a single forward pass.

3.4. Temporal Reasoning and Interaction Modeling

While simple actions can be recognized by looking at

single frames, more complex activities require to model

longer-term dependencies across sequential frames. To rea-

son along the temporal dimension, we add a RNN module

to our architecture. We choose to use a Long Short-Term

Memory (LSTM) [23], given its popularity in the action

recognition literature [17]. We also experimented with dif-

ferent modules (e.g. Gated Recurrent Units [6]), without ob-

serving substantial differences in our results.

A straightforward approach would be to consider the

highest confidence predictions for hand and object poses at

each frame, and give them as input to the RNN module, as

in [17]. The RNN output is then processed by a softmax

layer to predict the activity class. However, we can improve

upon this baseline by explicitly reasoning about interactions

between hands and objects. For example, in the context of

visual reasoning, [1] proposes to model relational depen-

dencies between objects in the scene and demonstrates that

such object-level reasoning improves accuracy in targeted

visual recognition tasks. In a similar manner, we aim to ex-

plicitly model interactions – in this case, however, of hands

and objects, and directly in 3D. Co-training of 3D hand and

object pose estimation networks already implicitly accounts

for interactions in a data-driven manner. We further propose

to model hand-object interactions at the structured output

level with an interaction RNN. To do so, instead of directly

feeding the hand and object poses as input to the temporal

module, inspired by [1, 56], we model dependencies be-

tween hands and objects with a composite learned function

and only then give the resulting mapping as input to RNN:

fφ(gθ(ŷ
h, ŷo)) (6)

where fφ is an LSTM and gθ is an MLP, parameterized by

φ and θ, respectively. Ultimately this mapping learns the

explicit dependencies between hand and object poses and

models interactions. We analyze and quantitatively evaluate

the benefits of this approach in Sec. 4.

3.5. Training

The final layer of our single-shot network produces, for

each cell i, hand and object pose predictions, ŷh
i and ŷo

i ,

with their overall confidence values, ĉhi and ĉoi , as well as

probabilities for actions, p̂a
i , and object classes, p̂o

i . For

each frame t, the loss function to train our network is de-

fined as follows:

L = λpose

∑

i∈Gt

(||ŷh
i − yh

i ||
2

2
+ ||ŷo

i − yo
i ||

2

2
)+ (7)

λconf

∑

i∈Gt

((ĉhi − chi )
2 + (ĉoi − coi )

2)− (8)

λactcls

∑

i∈Gt

p̂a
i logp

a
i− (9)

λobjcls

∑

i∈Gt

p̂o
i logp

o
i . (10)

Here, the regularization parameters for the pose and clas-

sification losses, λpose, λactcls and λobjcls are simply set to

1. As suggested by [48], for cells that contain a hand or

an object, we set λconf to 5 and for cells that do not con-

tain any of them, we set it to 0.1 to increase model stability.

We feed the highest confidence predictions of our network

to the recurrent module and define an additional loss based

on cross entropy for the action recognition over the entire

sequence. In principle, it is straightforward to merge and

train the single-image and temporal models jointly with a

softargmax operation [5, 71]. However, as backpropagation

requires to keep all the activations in memory, which is not

possible for a batch of image sequences, we found it ef-

fective to train our complete model in two stages. We first

train on single frames to jointly predict 3D hand and object

poses, object classes and action categories. We then keep

the weights of the initial model fixed and train our recurrent

network to propagate information in the temporal domain

and model interactions. The complete model takes as input

a sequence of images and outputs per-frame 3D hand-object

pose predictions, object and action classes along with the

estimates of interactions for the entire sequence.

4. Evaluation
In this section, we first describe the datasets and the

corresponding evaluation protocols. We then compare our

Hand+Object approach against the state-of-the-art methods

and provide a detailed analysis of our general framework.

4.1. Datasets

We evaluate our framework for recognizing 3D hand-

object poses and interactions on the recently introduced

First-Person Hand Action (FPHA) dataset [17]. It is the

only publicly available dataset for 3D hand-object interac-

tion recognition that contains labels for 3D hand pose, 6D

object pose and action categories. FPHA is a large and di-

verse dataset including 1175 videos belonging to 45 dif-
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ferent activity categories performed by 6 actors. A total

of 105,459 frames are annotated with accurate hand poses

and action categories. The subjects carry out complex mo-

tions corresponding to daily human activities. A subset of

the dataset contains annotations for objects’ 6-dimensional

poses along with corresponding mesh models for 4 objects

involving 10 different action categories. We denote this sub-

set of the dataset as FPHA-HO.

As there are no other egocentric datasets containing la-

bels for both 3D hand pose and 6D object pose, we fur-

ther annotate 6D object poses on a part of the EgoDexter

hand pose estimation dataset [37], on which we validate our

joint hand-object pose estimation framework. To this end,

we annotate the Desk sequence between frames 350 and

500 which features a cuboid object. We use training data

from the SynthHands 3D hand pose estimation dataset [37].

We augment this dataset by randomly superimposing on the

image synthetic cuboid objects that we generate and ob-

ject segmentation masks from the third-person view dataset

of [60] which features the same object. To gain robustness

against background changes, we further replace the back-

grounds using random images from [11].

4.2. Evaluation Metrics

We evaluate our unified framework on a diverse set of

tasks: egocentric activity recognition, 3D hand pose estima-

tion and 6D object pose estimation, and use standard met-

rics and official train/test splits to evaluate our performance

in comparison to the state of the art. We use the percentage

of correct video classifications, percentage of correct key-

point estimates (3D PCK) and percentage of correct poses to

measure accuracy on activity recognition, 3D hand pose es-

timation and 6D object pose estimation, respectively. When

using the 3D PCK metric for hand pose estimation, we con-

sider a pose estimate to be correct when the mean distance

between the predicted and ground-truth joint positions is

less than a certain threshold. When using the percentage

of correct poses to evaluate 6D object pose estimation ac-

curacy, we take a pose estimate to be correct if the 2D pro-

jection error or the average 3D distance of model vertices is

less than a certain threshold (the latter being also referred to

as the ADD metric).

4.3. Implementation Details

We initialize the parameters of our single-image network

based on [48] with weights pretrained on ImageNet. The in-

put to our model is a 416 × 416 image. The output grid,

Gt, has the following dimensions: H = 13, W = 13
and D = 5. We set the grid size in image dimensions to

Cu = Cv = 32 pixels as in [48] and in depth dimension to

Cz = 15 cm. Further details about the architecture can be

found in the supplemental material. We set the sharpness

of the confidence function, α, to 2, and the distance thresh-

old to 75 pixels for the spatial dimension and 75 mm for

the depth dimension. We use a 2-layer LSTM with a hidden

layer size of 512. The nonlinearity, gθ, is implemented as an

MLP with 1 hidden layer with ReLU activation consisting

of 512 units. We use stochastic gradient descent for opti-

mization. We start with a learning rate of 0.0001 and divide

the learning rate by 10 at the 80th and 160th epoch. All

models are trained with a batch size of 16 for 200 epochs.

We use extensive data augmentation to prevent overfitting.

We randomly change the hue, saturation and exposure of the

image by up to a factor of 50%. We also randomly translate

the image by up to a factor of 10%. Our implementation is

based on PyTorch.

4.4. Experimental Results

We first report activity recognition accuracy on the

FPHA-HO dataset and compare our results to the state-of-

the-art results of [17] in Table 1. We further use the follow-

ing baselines and versions of our approach in the evaluation:

• SINGLE-IMAGE - Our single pass network that pre-

dicts the action (i.e. verb), and object class (i.e. noun).

The individual predictions for action (pa
i , e.g. open)

and object (po
i , e.g. bottle) class are combined to pre-

dict the interaction type (e.g. open bottle), i.e. (verb,

noun) pair. This version of our model does not use a

temporal model.

• HAND POSE - A temporal model that uses the hand

pose predictions of our approach as input to the RNN

to recognize activities.

• OBJECT POSE - similar to the previous baseline, but

trained to predict activities based on the predicted key-

points on the 3D object bounding box.

• HAND + OBJECT POSE - A version of our model

that combines 3D hand-object pose predictions to feed

them as input to the RNN.

• HAND POSE + OBJECT POSE + INTERACT - A com-

plete version of our model with temporal reasoning

and interaction modeling.

Method Model Action Accuracy (%)

[17]

Ground-truth Hand Pose 87.45

Ground-truth Object Pose 74.45

Ground-truth Hand + Object Pose 91.97

OURS

SINGLE-IMAGE 85.56

HAND POSE 89.47

OBJECT POSE 85.71

HAND + OBJECT POSE 94.73

HAND + OBJECT POSE + INTERACT 96.99

Table 1: Action recognition results on FPHA-HO. We evaluate

the impact of hand and object poses for action recognition. We

demonstrate that hand-object predictions of our unified network

yield more accurate results than [17] which relies on ground-truth

pose as input. Furthermore, explicitly modeling interactions of

hand-object poses results in a clear improvement in accuracy.
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Figure 3: The impact of each finger (left) and each hand part

(right) in recognizing interactions. The impact is measured by the

normalized magnitude of neural network weights tied to the corre-

sponding hand joint positions and compared for a standard RNN

and an interaction RNN. MCP, PIP and DIP denote the 3 consec-

utive joints located inbetween wrist and fingertip (TIP) on each

finger, in their respective order.

Recognizing Interactions. Our model achieves state-of-

the-art performance for recognizing egocentric activities

and 3D hand-object interactions even without ground-truth

3D hand and object poses. Our SINGLE-IMAGE baseline

already achieves close results to the state of the art. We

demonstrate that temporal reasoning on 3D hand and object

poses individually improves activity recognition accuracy.

The combination of hand and object poses further boosts

the overall scores. With interaction modeling, performance

improvements are even more noticeable. To analyze the

importance of interaction modeling further, in Fig. 3, we

quantify the importance of each input to the RNN by mea-

suring the magnitude of the network weights tied to the in-

puts, both for a standard RNN and our interaction RNN.

We demonstrate that, in contrast to a standard RNN, our

temporal model attributes more importance to the index fin-

gers and fingertips that interact more commonly with ob-

jects and learns which joints are relevant in interaction. In

Fig. 5, we provide some visual results, 3D hand and object

poses along with action and object labels that are produced

by our HAND + OBJECT + INTERACT model.

We further evaluate the performance of our approach for

the task of egocentric activity and interaction recognition on

the full FPHA dataset. On the full dataset, object poses are

not available for all the action categories, therefore, we train

our models only using 3D hand poses. Here, however, to in-

crease the descriptive power, we further leverage the object

class and action category predictions produced by our sin-

gle pass network in our temporal model. To this end we

augment the 3D hand pose input (HP) with the output ob-

ject class (OC) and action category (AC) probabilities. In

Table 2, we demonstrate that these additional features yield

improved action recognition accuracy. Overall, our method

consistently outperforms the baselines by a large margin,

including the ones that rely on depth data.

3D Hand Pose Prediction. We further compare the accu-

racy of our 3D hand pose predictions to the state-of-the-art

results on FPHA in Fig. 4. Even though we only use color

images, in contrast to [17] that uses depth input, we achieve

Figure 4: Comparison of the hand pose estimation results of our

approach with those of Garcia-Hernando et al. [17] using different

thresholds for the 3D pose error.

Model Input modality Accuracy

Two-stream-color [15] Color 61.56

Two-stream-flow [15] Color 69.91

Two-stream-all [15] Color 75.30

Joule-color [24] Color 66.78

HON4D [42] Depth 70.61

Novel View [47] Depth 69.21

Joule-depth [24] Depth 60.17

[17] + Gram Matrix Depth 32.22

[17] + Lie Group Depth 69.22

[17] + LSTM Depth 72.06

OURS - HP Color 62.54

OURS - HP + AC Color 74.20

OURS - HP + AC + OC Color 82.43

Table 2: Action recognition results on the full FPHA dataset [17].

Our method significantly improves upon the baselines, including

the ones that rely on depth data. We further provide action-specific

recognition accuracies in the supplemental material.

competitive 3D hand pose estimation accuracy. Further-

more, we do not assume knowledge of the hand bounding

box as in [17]; our model takes as input a single full color

image. Note also that the method of [17] is specifically

trained for 3D hand pose estimation, whereas this is a sub-

task of our method which simultaneously tackles multiple

tasks within a unified architecture.

6D Object Pose Prediction. To evaluate our object pose

accuracy, we compare our approach to the state-of-the-art

results of [66] in Fig. 6. To this end, we run their approach

on FPHA with their publicly available code. We demon-

strate that explicitly reasoning about 6D object pose in 3D,

in contrast to [66] that relies on solving 2D-to-3D corre-

spondences, yields improved pose estimation accuracy. We

conjecture that posing the 6D pose estimation problem in

2D is prone to depth ambiguities and our approach brings

in robustness against it by directly reasoning in 3D.

Unified Framework. We analyze the influence of simul-

taneously training hand and object pose estimation tasks

within the same single pass network on individual pose es-

timation accuracies. We compare the results of our Hand

+ Object network to those of the networks trained only for

hand pose estimation and only for object pose estimation in

Table 3. While we obtain similar accuracies for hand pose

estimation with co-training and individual training, object

pose estimation accuracy for the unified network is signifi-

cantly better than that of the individual pose estimation net-
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Figure 5: Qualitative results on the FPHA and EgoDexter dataset. We visualize the 3D hand pose estimates, 3D object bounding boxes

which are transformed with the learned 6D object poses, and activity labels. The proposed approach can handle motion blur, self-occlusions,

occlusions by viewpoints, clutter and complex articulations. We provide further qualitative results in our supplemental material.

Figure 6: Comparison of the object pose estimation results of our

approach with those of Tekin et al. [66] using different thresholds

for the 2D projection (left) and ADD metric (right).

work by a large margin of 9.65%. This indicates that having

a joint representation which is shared across multiple tasks

leads to an improvement in combined pose estimation ac-

curacy. The results suggest that 3D hand pose highly con-

strains the 6D object pose, while the effect of rigid object

pose on the articulated hand pose is not as pronounced. We

further show that the prediction of the interaction class im-

proves the hand and object pose estimation accuracy. This

further validates that our unified framework allows us to

achieve better overall performance in targeted tasks.

Network HP error OP error

HAND ONLY 16.15 -

OBJECT ONLY - 28.27

HAND + OBJECT 16.87 25.54

HAND + OBJECT + INTERACT 15.81 24.89

Table 3: Comparison of the pose estimation results of our unified

network to those of the networks trained only for hand and object

pose estimation. Error metric is the mean 3D distance in mm.

Generalization. To demonstrate the generalization power

of our joint hand-object pose estimation framework, we

annotate a part of the EgoDexter hand pose estimation

dataset [37] with 6D object poses, as explained in Sec. 4.1,

and report quantitative results in Table 4. We demonstrate

Part Error (in cm)

Fingertips 4.84

Object coordinates 2.37

Table 4: Results on the augmented EgoDexter dataset. Even when

trained on synthetic data, our approach yields accurate poses.

that even when trained on synthetic data, our approach gen-

eralizes well to unconstrained environments and results in

reliable and accurate joint 3D hand-object pose estimates.

We provide visual results on this dataset in Fig. 5.

Runtime. Our single pass network that produces per-

frame predictions simultaneously for 3D hand poses, 6D

object poses, object classes and action categories runs at

real-time speed of 25 fps on an NVIDIA Tesla M40. With-

out action and object recognition, when estimating only the

poses of hands and objects, our method runs at a greater

speed of 33 fps. Given hand and object poses, the interac-

tion RNN module further processes a sequence with virtu-

ally no time overhead, at an average of 0.003 seconds.

5. Conclusion

In this paper, we propose the first method to jointly rec-

ognize 3D hand and object poses from monocular color im-

age sequences. Our unified Hand+Object model simultane-

ously predicts per-frame 3D hand poses, 6D object poses,

object classes and action categories, while being able to

run at real-time speeds. Our framework jointly solves 3D

articulated and rigid pose estimation problems within the

same single-pass architecture and models the interactions

between hands and objects in 3D to recognize actions from

first-person views. Future work will apply the proposed

framework to explicitly capture interactions between two

hands and with other people in the scene.

4518



References

[1] F. Baradel, N. Neverova, C. Wolf, J. Mille, and G. Mori.

Object level Visual Reasoning in Videos. In ECCV, 2018.

[2] G. Bertasius, H. S. Park, S. X. Yu, and J. Shi. First-Person

Action-Object Detection with EgoNet. In Robotics: Science

and Systems, 2017.

[3] A. Bobick and J. Davis. The Recognition of Human Move-

ment Using Temporal Templates. PAMI, 23(3):257–267,

2001.

[4] E. Brachmann, F. Michel, A. Krull, M. Y. Yang, S. Gumhold,

and C. Rother. Uncertainty-Driven 6D Pose Estimation of

Objects and Scenes from a Single RGB Image. In CVPR,

2016.

[5] O. Chapelle and M. Wu. Gradient Descent Optimization of

Smoothed Information Retrieval Metrics. Information Re-

trieval, 13(3):216–235, 2009.

[6] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau,

F. Bougares, H. Schwenk, and Y. Bengio. Learning Phrase

Representations using RNN Encoder–Decoder for Statistical

Machine Translation. In EMNLP, 2014.

[7] C. Choi, S. H. Yoon, C. Chen, and K. Ramani. Robust Hand

Pose Estimation during the Interaction with an Unknown Ob-

ject. In ICCV, 2017.

[8] V. Choutas, P. Weinzaepfel, J. Revaud, and C. Schmid. Po-

Tion: Pose MoTion Representation for Action Recognition.

In CVPR, 2018.

[9] D. Damen, H. Doughty, G. M. Farinella, S. Fidler,

A. Furnari, E. K. D. Moltisanti, J. Munro, T. Perrett,

W. Price, and M. Wray. Scaling Egocentric Vision: The

EPIC-KITCHENS Dataset. In ECCV, 2018.

[10] P. Dollar, V. Rabaud, G. Cottrell, and S. Belongie. Behav-

ior Recognition via Sparse Spatio-temporal Features. In VS-

PETS, 2005.

[11] M. Everingham, L. V. Gool, C. K. I. Williams, J. Winn, and

A. Zisserman. The PASCAL Visual Object Classes (VOC)

Challenge. IJCV, 88(2):303–338, 2010.

[12] A. Fathi, A. Farhadi, and J. Rehg. Understanding Egocentric

Activities. In ICCV, 2011.

[13] A. Fathi, Y. Li, and J. Rehg. Learning to Recognize Daily

Actions Using Gaze. In ECCV, 2012.

[14] A. Fathi, X. Ren, and J. Rehg. Learning to Recognize Ob-

jects in Egocentric Activities. In CVPR, 2011.

[15] C. Feichtenhofer, A. Pinz, and A. Zisserman. Convolutional

Two-Stream Network Fusion for Video Action Recognition.

In CVPR, 2016.

[16] D. Fouhey, W. Kuo, A. Efros, and J. Malik. From Lifestyle

VLOGs to Everyday Interaction. In CVPR, 2018.

[17] G. Garcia-Hernando, S. Yuan, S. Baek, and T.-K. Kim. First-

Person Hand Action Benchmark with RGB-D Videos and 3D

Hand Pose Annotations. In CVPR, 2018.

[18] G. Gkioxari, R. Girshick, P. Dollar, and K. He. Detecting and

Recognizing Human-Object Interactions. In CVPR, 2018.

[19] J. C. Gower. Generalized Procrustes Analysis. Psychome-

trika, 40(1):33–51, 1975.

[20] R. Goyal, S. E. Kahou, V. Michalski, J. Materzynska,

S. Westphal, H. Kim, V. Haenel, I. Fruend, P. Yianilos,

M. Mueller-Freitag, F. Hoppe, C. Thurau, I. Bax, and

R. Memisevic. The “Something Something” Video Database

for Learning and Evaluating Visual Common Sense. In

ICCV, 2017.

[21] H. Hamer, K. Schindler, E. Koller-Meier, and L. V. Gool.

Tracking a Hand Manipulating an Object. In ICCV, 2009.

[22] Y. Hasson, G. Varol, D. Tzionas, I. Kalevatykh, M. J. Black,

I. Laptev, and C. Schmid. Learning Joint Reconstruction of

Hands and Manipulated Objects. In CVPR, 2019.

[23] S. Hochreiter and J. Schmidhuber. Long Short-Term Mem-

ory. Neural Computation, 9(8):1735–1780, 1997.

[24] J.-F. Hu, W.-S. Zheng, J. Lai, and J. Zhang. Jointly Learning

Heterogeneous Features for RGB-D Activity Recognition. In

CVPR, 2015.

[25] U. Iqbal, P. Molchanov, T. Breuel, J. Gall, and J. Kautz. Hand

Pose Estimation via Latent 2.5D Heatmap Regression. In

ECCV, 2018.

[26] H. Jhuang, T. Serre, L. Wolf, and T. Poggio. A Biologically

Inspired System for Action Recognition. In ICCV, 2007.

[27] V. Kalogeiton, P. Weinzaepfel, V. Ferrari, and C. Schmid.

Joint Learning of Object and Action Detectors. In ICCV,

2017.

[28] W. Kehl, F. Manhardt, F. Tombari, S. Ilic, and N. Navab.

SSD-6D: Making RGB-based 3D Detection and 6D Pose Es-

timation Great Again. In ICCV, 2017.

[29] K. Kitani, T. Okabe, Y. Sato, and A. Sugimoto. Fast Unsu-

pervised Ego-action Learning for First-person Sports Videos.

In CVPR, 2011.

[30] H. Koppula, R. Gupta, and A. Saxena. Learning Human Ac-

tivities and Object Affordances from RGB-D Videos. IJRR,

32(8):951–970, 2013.

[31] I. Laptev and T. Lindeberg. Space-time Interest Points. In

ICCV, 2003.

[32] V. Lepetit, F. Moreno-Noguer, and P. Fua. EPnP: An Accu-

rate O(n) Solution to the PnP Problem. IJCV, 81(2):155–166,

2009.

[33] Y. Li, Z. Ye, and J. Rehg. Delving into Egocentric Actions.

In CVPR, 2015.

[34] Y. S. M. Cai, K. M. Kitani. Understanding Hand-Object

Manipulation with Grasp Types and Object Attributes. In

Robotics: Science and Systems, 2016.

[35] M. Ma, H. Fan, and K. Kitani. Going Deeper into First-

Person Activity Recognition. In CVPR, 2016.

[36] F. Mueller, F. Bernard, O. Sotnychenko, D. Mehta, S. Srid-

har, D. Casas, and C. Theobalt. GANerated Hands for Real-

Time 3D Hand Tracking from Monocular RGB. In CVPR,

2018.

[37] F. Mueller, D. Mehta, O. Sotnychenko, S. Sridhar, D. Casas,

and C. Theobalt. Real-time Hand Tracking under Occlusion

from an Egocentric RGB-D Sensor. In ICCV, 2017.

[38] J. C. Niebles, H. Wang, and L. Fei-Fei. Unsupervised Learn-

ing of Human Action Categories Using Spatio-temporal

Words. In BMVC, 2006.

[39] M. Oberweger, G. Riegler, P. Wohlhart, and V. Lepetit. Effi-

ciently Creating 3D Training Data for Fine Hand Pose Esti-

mation. In CVPR, 2016.

4519



[40] M. Oberweger, P. Wohlhart, and V. Lepetit. Training a Feed-

back Loop for Hand Pose Estimation. In ICCV, 2015.

[41] I. Oikonomidis, N. Kyriazis, and A. Argyros. Full DOF

Tracking of a Hand Interacting with an Object by Modeling

Occlusions and Physical Constraints. In ICCV, 2011.

[42] O. Oreifej and Z. Liu. HON4D: Histogram of Oriented 4D

Normals for Activity Recognition from Depth Sequences. In

CVPR, 2013.

[43] P. Panteleris, N. Kyriazis, and A. Argyros. 3D Tracking

of Human Hands in Interaction with Unknown Objects. In

BMVC, 2015.

[44] H. Pirsiavash and D. Ramanan. Detecting Activities of Daily

Living in First-Person Camera Views. In CVPR, 2012.

[45] Y. Poleg, E. Phrat, S. Peleg, and C. Arora. Compact CNN

for Indexing Egocentric Videos. In WACV, 2016.

[46] M. Rad and V. Lepetit. BB8: A Scalable, Accurate, Robust

to Partial Occlusion Method for Predicting the 3D Poses of

Challenging Objects without Using Depth. In ICCV, 2017.

[47] H. Rahmani and A. Mian. 3D Action Recognition from

Novel Viewpoints. In CVPR, 2016.

[48] J. Redmon and A. Farhadi. YOLO9000: Better, Faster,

Stronger. In CVPR, 2017.

[49] X. Ren and C. Gu. Figure-ground Segmentation Improves

Handled Object Recognition in Egocentric Video. In CVPR,

2010.

[50] X. Ren and C. Gu. First-Person Activity Recognition: What

Are They Doing to Me? In CVPR, 2013.

[51] G. Rogez, J. Supancic, and D. Ramanan. First-Person Pose

Recognition Using Egocentric Workspaces. In CVPR, 2015.

[52] G. Rogez, J. Supancic, and D. Ramanan. Understanding

Everyday Hands in Action from RGB-D Images. In ICCV,

2015.

[53] J. Romero, H. Kjellström, and D. Kragic. Hands in Action:

Real-Time 3D Reconstruction of Hands in Interaction with

Objects. In ICRA, 2010.

[54] J. Romero, D. Tzionas, and M. J. Black. Embodied Hands:

Modeling and Capturing Hands and Bodies Together. ACM

Transactions on Graphics, (Proc. SIGGRAPH Asia), 36(6),

2017.

[55] M. Ryoo, B. Rothrock, and L. Matthies. Pooled Motion Fea-

tures for First-Person Videos. In CVPR, 2015.

[56] A. Santoro, D. Raposo, D. G. Barrett, M. Malinowski,

R. Pascanu, P. Battaglia, and T. Lillicrap. A Simple Neural

Network Model for Relational Reasoning. In NIPS, 2017.

[57] G. Sigurdsson, A. Gupta, C. Schmid, A. Farhadi, and K. Ala-

hari. Actor and Observer: Joint Modeling of First and Third-

Person Videos. In CVPR, 2018.

[58] A. Spurr, J. Song, S. Park, and O. Hilliges. Cross-modal

Deep Variational Hand Pose Estimation. In CVPR, 2018.

[59] S. Sridhar, F. Mueller, A. Oulasvirta, and C. Theobalt. Fast

and Robust Hand Tracking Using Detection-Guided Opti-

mization. In CVPR, 2015.

[60] S. Sridhar, F. Mueller, M. Zollhoefer, D. Casas,

A. Oulasvirta, and C. Theobalt. Real-time Joint Tracking

of a Hand Manipulating an Object from RGB-D Input. In

ECCV, 2016.

[61] S. Sundaram and W. Mayol-Cuevas. High Level Action

Recognition Using Low Resolution Wearable Vision. In

CVPR Workshops, 2009.

[62] D. Surie, T. Pederson, F. Lagriffoul, L. Janlert, and D. Sjölie.
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