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Figure 1. We propose multi-frame self-supervised training of a deep network based on in-the-wild video data for jointly learning a face

model and 3D face reconstruction. Our approach successfully disentangles facial shape, appearance, expression, and scene illumination.

Abstract

Monocular image-based 3D reconstruction of faces is

a long-standing problem in computer vision. Since image

data is a 2D projection of a 3D face, the resulting depth am-

biguity makes the problem ill-posed. Most existing methods

rely on data-driven priors that are built from limited 3D face

scans. In contrast, we propose multi-frame video-based

self-supervised training of a deep network that (i) learns

a face identity model both in shape and appearance while

(ii) jointly learning to reconstruct 3D faces. Our face model

is learned using only corpora of in-the-wild video clips col-

lected from the Internet. This virtually endless source of

training data enables learning of a highly general 3D face

model. In order to achieve this, we propose a novel multi-

frame consistency loss that ensures consistent shape and

appearance across multiple frames of a subject’s face, thus

minimizing depth ambiguity. At test time we can use an

arbitrary number of frames, so that we can perform both

monocular as well as multi-frame reconstruction.

1. Introduction

The reconstruction of faces from visual data has a wide

range of applications in vision and graphics, including face

tracking, emotion recognition, and interactive image/video

editing tasks relevant in multimedia. Facial images and

videos are ubiquitous, as smart devices as well as consumer

and professional cameras provide a continuous and virtually

endless source thereof. When such data is captured with-

out controlled scene location, lighting, or intrusive equip-

ment (e.g. egocentric cameras or markers on actors), one

speaks of “in-the-wild” images. Usually in-the-wild data is

of low resolution, noisy, or contains motion and focal blur,

making the reconstruction problem much harder than in a

controlled setup. 3D face reconstruction from in-the-wild

monocular 2D image and video data [71] deals with disen-

tangling facial shape identity (neutral geometry), skin ap-

pearance (or albedo) and expression, as well as estimating

the scene lighting and camera parameters. Some of these

attributes, e.g. albedo and lighting, are not easily separable

in monocular images. Besides, poor scene lighting, depth

ambiguity, and occlusions due to facial hair, sunglasses and

large head rotations complicates 3D face reconstruction.

In order to tackle the difficult monocular 3D face re-

construction problem, most existing methods rely on the

availability of strong prior models that serve as regulariz-

ers for an otherwise ill-posed problem [6, 20, 68]. Although

such approaches achieve impressive facial shape and albedo

reconstruction, they introduce an inherent bias due to the

used face model. For instance, the 3D Morphable Model

(3DMM) by Blanz et al. [6] is based on a comparably small

set of 3D laser scans of Caucasian actors, thus limiting gen-

eralization to general real-world identities and ethnicities.

With the rise of CNN-based deep learning, various tech-

niques have been proposed, which in addition to 3D recon-

struction also perform face model learning from monocular

images [63, 62, 59, 55]. However, these methods heavily

rely on a pre-existing 3DMM to resolve the inherent depth

ambiguities of the monocular reconstruction setting. An-

other line of work, where 3DMM-like face models are not

required, are based on photo-collections [30, 37, 57]. How-

ever, these methods need a very large number (e.g. ≈100)

of facial images of the same subject, and thus they impose

strong demands on the training corpus.

In this paper, we introduce an approach that learns a

comprehensive face identity model using clips crawled from

in-the-wild Internet videos [19]. This face identity model
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comprises two components: One component to represent

the geometry of the facial identity (modulo expressions),

and another to represent the facial appearance in terms of

the albedo. As we have only weak requirements on the

training data (cf. Sec. 3.1), our approach can employ a vir-

tually endless amount of community data and thus obtain a

model with better generalization; laser scanning a similarly

large group of people for model building would be nearly

impossible. Unlike most previous approaches, we do not

require a pre-existing shape identity and albedo model as

initialization, but instead learn their variations from scratch.

As such, our methodology is applicable in scenarios when

no existing model is available, or if it is difficult to create

such a model from 3D scans (e.g. for faces of babies).

From a technical point of view, one of our main contribu-

tions is a novel multi-frame consistency loss, which ensures

that the face identity and albedo reconstruction is consistent

across frames of the same subject. This way we can avoid

depth ambiguities present in many monocular approaches

and obtain a more accurate and robust model of facial ge-

ometry and albedo. Moreover, by imposing orthogonality

between our learned face identity model and an existing

blendshape expression model, our approach automatically

disentangles facial expressions from identity based geom-

etry variations, without resorting to a large set of hand-

crafted priors. In summary, our approach is based on the

following technical contributions:

1. A deep neural network that learns a facial shape and

appearance space from a big dataset of unconstrained

images that contains multiple images of each subject,

e.g. multi-view sequences, or even monocular videos.

2. Explicit blendshape and identity separation by a pro-

jection onto the blendshapes’ nullspace that enables a

multi-frame consistency loss.

3. A novel multi-frame identity consistency loss based

on a Siamese network [67], with the ability to handle

monocular and multi-frame reconstruction.

2. Related Work

The literature on 3D model learning is quite vast and we

mainly review methods for reconstructing 3D face models

from scanner data, monocular video data, photo-collections

and a single 2D image. An overview of the state-of-the-art

in model-based face reconstruction is given in [71].

Morphable Models from High-quality Scans:

3DMMs represent deformations in a low-dimensional

subspace and are often built from scanner data [7, 8, 36].

Traditional 3DMMs model geometry/appearance variation

from limited data via PCA [7, 6, 26]. Recently, richer

PCA models have been obtained from large-scale datasets

[13, 44]. Multilinear models generalize statistical models

by capturing a set of mutually orthogonal variation modes

(e.g., global and local deformations) via a tensor decompo-

sition [68, 9, 10]. However, unstructured subspaces or even

tensor generalizations are incapable of modeling localized

deformations from limited data. In this respect, Neumann

et al. [41] and Bernard et al. [5] devise methods for com-

puting sparse localized deformation components directly

from mesh data. Lüthi et al. [38] propose the so-called

Gaussian Process morphable models (GPMMs), which are

modeled with arbitrary non-linear kernels, to handle strong

non-linear shape deformations. Ranjan et al. [46] learn a

non-linear model using a deep mesh autoencoder with fast

spectral convolution kernels. Garrido et al. [25] train radial

basis functions networks to learn a corrective 3D lip model

from multiview data. In an orthogonal direction, Li et al.

[36] learn a hybrid model that combines a linear shape

space with articulated motions and semantic blendshapes.

All these methods mainly model shape deformations and

are limited to the availability of scanner data.

Parametric Models from Monocular Data: Here,

we distinguish between personalized, corrective, and mor-

phable model learning. Personalized face models have been

extracted from monocular video by first refining a para-

metric model in a coarse-to-fine manner (e.g., as in [49])

and then learning a mapping from coarse semantic defor-

mations to finer non-semantic detail layers [28, 24]. Cor-

rective models represent out-of-space deformations (e.g., in

shape or appearance) which are not modeled by the under-

lying parametric model. Examples are adaptive linear mod-

els customized over a video sequence [15, 27] or non-linear

models learned from a training corpus [48, 59]. A num-

ber of works have been proposed for in-the-wild 3DMM

learning [53, 63, 4, 12]. Such solutions decompose the face

into its intrinsic components through encoder-decoder ar-

chitectures that exploit weak supervision. Tran et al. [63]

employ two separate convolutional decoders to learn a non-

linear model that disentangles shape from appearance. Sim-

ilarly, Sengupta et al. [53] propose residual blocks to pro-

duce a complete separation of surface normal and albedo

features. There also exist approaches that learn 3DMMs of

rigid [65] or articulated objects [29] by leveraging image

collections. These methods predict an instance of a 3DMM

directly from an image [29] or use additional cues (e.g., seg-

mentation and shading) to fit and refine a 3DMM [65].

Monocular 3D Reconstruction: Optimization-based

reconstruction algorithms rely on a personalized model

[18, 21, 23, 69] or a parametric prior [2, 15, 35, 24, 54]

to estimate 3D geometry from a 2D video. Learning-based

approaches regress 3D face geometry from a single image

by learning an image-to-parameter or image-to-geometry

mapping [42, 48, 60, 59, 52, 64, 32]. These methods re-

quire ground truth face geometry [64, 34], a morphable

model from which synthetic training images are generated

[47, 48, 52, 32], or a mixture of both [39, 33]. Recently,

Tewari et al. [60] trained fully unsupervised through an
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inverse rendering-based loss. However, color and shape

variations lie in the subspace of a parametric face prior.

Only very recent methods for monocular face reconstruc-

tion [59, 63, 62, 12] allow for out-of-space model general-

ization while training from in-the-wild data.

3D Reconstruction via Photo-collections: Face recon-

struction is also possible by fitting a template model to

photo-collections. In [31], an average shape and appear-

ance model is reconstructed from a person-specific photo-

collection via low-rank matrix factorization. Suwajanakorn

et al. [57] use this model to track detailed facial motion from

unconstrained video. Kemelmacher-Shlizerman [30] learns

a 3DMM from a large photo-collection of people, grouped

into a fixed set of semantic labels. Also, Liang et al. [37]

leverage multi-view person-specific photo-collections to re-

construct the full head. In a different line of research, Thies

et al. [61] fit a coarse parametric model to user-selected

views to recover personalized face shape and albedo. Roth

et al. [49] personalize an existing morphable model to

an image collection by using a coarse-to-fine photometric

stereo formulation. Note that most of these methods do not

learn a general face model, e.g. a shape basis that spans

the range of facial shapes of an entire population, but in-

stead they obtain a single person-specific 3D face instance.

Besides, these methods require curated photo-collections.

We, on the contrary, build a 3DMM representation that gen-

eralizes across multiple face identities and impose weaker

assumptions on the training data.

Multi-frame 3D Reconstruction: Multi-frame recon-

struction techniques exploit either temporal information or

multiple views to better estimate 3D geometry. Shi et al.

[54] globally fit a multilinear model to 3D landmarks at

multiple keyframes and enforce temporal consistency of in-

between frames via interpolation. In [24], person-specific

facial shape is obtained by averaging per-frame estimates

of a parametric face model. Ichim et al. [28] employ a

multi-view bundle adjustment approach to reconstruct facial

shape and refine expressions using actor-specific sequences.

Piotraschke et al. [43] combine region-wise reconstructions

of a 3DMM from many images using a normal distance

function. Garg et al. [22] propose a model-free approach

that globally optimizes for dense 3D geometry in a non-

rigid structure from motion framework. Beyond faces, Tul-

sian et al. [66] train a CNN to predict single-view 3D shape

(represented as voxels) using multi-view ray consistency.

3. Face Model Learning

Our novel face model learning approach solves two

tasks: it jointly learns (i) a parametric face geometry and

appearance model, and (ii) an estimator for facial shape,

expression, albedo, rigid pose and incident illumination pa-

rameters. An overview of our approach is shown in Fig. 2.

Training: Our network is trained in a self-supervised

fashion based on a training set of multi-frame images, i.e.,

multiple images of the same person sampled from a video

clip, see Section 3.1. The network jointly learns an appear-

ance and shape identity model (Section 3.2). It also esti-

mates per-frame parameters for the rigid head pose, illu-

mination, and expression parameters, as well as shape and

appearance identity parameters that are shared among all

frames. We train the network based on a differentiable ren-

derer that incorporates a per-vertex appearance model and

a graph-based shape deformation model (Section 3.3). To

this end, we propose a set of training losses that account

for geometry smoothness, photo-consistency, sparse feature

alignment and appearance sparsity, see Section 3.4.

Testing: At test time, our network jointly reconstructs

shape, expression, albedo, pose and illumination from an

arbitrary number of face images of the same person. Hence,

the same trained network is usable both for monocular and

multi-frame face reconstruction.

3.1. Dataset

We train our approach using the VoxCeleb2 multi-frame

video dataset [19]. This dataset contains over 140k videos

of over 6000 celebrities crawled from Youtube. We sample

a total of N = 404k multi-frame images F1, . . . ,FN from

this dataset. The ℓ-th multi-frame image Fℓ = {F
[f ]
ℓ }Mf=1

comprises M = 4 frames F
[1]
ℓ , . . . , F

[M ]
ℓ of the same per-

son ℓ extracted from the same video clip to avoid unwanted

variations, e.g., due to aging or accessories. The same per-

son can appear multiple times in the dataset. To obtain these

images, we perform several sequential steps. First, the face

region is cropped based on automatically detected facial

landmarks [50, 51]. Afterwards, we discard images whose

cropped region is smaller than a threshold (i.e., 200 pixels)

and that have low landmark detection confidence, as pro-

vided by the landmark tracker [50, 51]. The remaining

crops are re-scaled to 240×240 pixels. When sampling

the M frames in Fℓ, we ensure sufficient diversity in head

pose based on the head orientation obtained by the land-

mark tracker. We split our multi-frame dataset F1, . . . ,FN

into a training (383k images) and test set (21k images).

3.2. Graphbased Face Representation

We propose a multi-level face representation that is

based on both a coarse shape deformation graph and a high-

resolution surface mesh, where each vertex has a color value

that encodes the facial appearance. This representation en-

ables our approach to learn a face model of geometry and

appearance based on multi-frame consistency. In the fol-

lowing, we explain the components in detail.

Learnable Graph-based Identity Model: Rather than

learning the identity model on the high-res mesh V with

|V| = 60k vertices, we simplify this task by considering

a lower-dimensional parametrization based on deformation
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Figure 2. Pipeline overview. Given multi-frame input that shows a person under different facial expression, head pose, and illumination,

our approach first estimates these parameters per frame. In addition, it jointly obtains the shared identity parameters that control facial

shape and appearance, while at the same time learning a graph-based geometry and a per-vertex appearance model. We use a differentiable

mesh deformation layer in combination with a differentiable face renderer to implement a model-based face autoencoder.

graphs [56]. We obtain our (coarse) deformation graph G
by downsampling the mesh to |G| = 521 nodes, see Fig. 3.

The network now learns a deformation on G that is then

transferred to the mesh V via linear blend skinning. The

vector g ∈ R
3|G| of the |G| stacked node positions of the

3D graph is defined as

g = ḡ +Θsα , (1)

where ḡ ∈ R
3|G| denotes the mean graph node positions.

We obtain ḡ by downsampling a face mesh with slightly

open mouth (to avoid connecting the upper and lower lips).

The columns of the learnable matrix Θs ∈ R
3|G|×g span

the g-dimensional (g = 500) graph deformation subspace,

and α ∈ R
g represents the graph deformation parameters.

The vertex positions v ∈ R
3|V| of the high-resolution

mesh V that encode the shape identity are then given as

v(Θs,α) = v̄ + SΘsα . (2)

Here, v̄ ∈ R
3|V| is fixed to the neutral mean face shape

as defined in the 3DMM [7]. The skinning matrix S ∈
R

3|V|×3|G| is obtained based on the mean shape v̄ and mean

graph nodes ḡ.

To sum up, our identity model is represented by a de-

formation graph G, where the deformation parameter α is

regressed by the network while learning the deformation

subspace basis Θs. We regularize this ill-posed learning

problem by exploiting multi-frame consistency.

Blendshape Expression Model: For capturing facial

expressions, we use a linear blendshape model that com-

bines the facial expression models from [3] and [16]. This

model is fixed, i.e. not learned. Hence, the expression de-

formations are directly applied to the high-res mesh. The

vertex positions of the high-res mesh that account for shape

identity as well as the facial expression are given by

v(Θs,α, δ) = v̄ + S ·OCL(Θs)α+Bδ , (3)

where B ∈ R
3|V|×b is the fixed blendshape basis, δ ∈ R

b

is the vector of b = 80 blendshape parameters, and OCL is

explained next.

Separating Shape and Expression: We ensure a sepa-

ration of shape identity from facial expressions by imposing

orthogonality between our learned shape identity basis and

the fixed blendshape basis. To this end, we first represent

the blendshape basis B ∈ R
3|V|×b with respect to the defor-

mation graph domain by solving B = SBG for the graph-

domain blendshape basis BG ∈ R
3|G|×bG in a least-squares

sense. Here, bG = 80 is fixed. Then, we orthogonalize the

columns of BG . We propose the Orthogonal Complement

Layer (OCL) to ensure that our learned OCL(Θs) fulfills

the orthogonality constraint BT
G OCL(Θs) = 0. Our layer

is defined in terms of the projection of Θs onto the orthog-

onal complement B⊥
G of BG , i.e.,

OCL(Θs) = proj
B⊥

G
(Θs) = Θs − proj

BG
(Θs) (4)

= Θs −BG(B
T
GBG)

−1BT
GΘs . (5)

The property BT
G OCL(Θs) = 0 can easily be verified.

Learnable Per-vertex Appearance Model: The facial

appearance is encoded in the 3|V|-dimensional vector

r(β) = r̄+Θaβ (6)

that stacks all |V| per-vertex colors represented as RGB

triplets. The mean facial appearance r̄ ∈ R
3|V| and the
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Figure 3. Neutral face shape and appearance (left), and the coarse

deformation graph of the face mesh (right).

appearance basis Θa ∈ R
3|V|×|β| are learnable, while the

facial appearance parameters β are regressed. Note that we

initialize the mean appearance r̄ to a constant skin tone and

define the reflectance directly on the high-res mesh V .

3.3. Differentiable Image Formation

To enable end-to-end self-supervised training, we em-

ploy a differentiable image formation model that maps 3D

model space coordinates v ∈ R
3 onto 2D screen space

coordinates u ∈ R
2. The mapping is implemented as

u = Π(Φ(v)), where Φ and Π denote the rigid head pose

and camera projection, respectively. We also apply a differ-

entiable illumination model that transforms illumination pa-

rameters γ as well as per-vertex appearance ri and normal

ni into shaded per-vertex color ci(ri,ni,γ). We explain

these two models in the following.

Camera Model: We assume w.l.o.g. that the camera

space corresponds to world space. We model the head pose

via a rigid mapping Φ(v) = Rv + t, defined by the global

rotation R ∈ SO(3) and the translation t ∈ R
3. After

mapping a vertex from model space v onto camera space

v̂ = Φ(v), the full perspective camera model Π : R3 → R
2

projects the points v̂ into screen space u = Π(v̂) ∈ R
2.

Illumination Model: Under the assumption of distant

smooth illumination and purely Lambertian surface proper-

ties, we employ Spherical Harmonics (SH) [45] to represent

the incident radiance at a vertex vi with normal ni and ap-

pearance ri as

ci(ri,ni,γ) = ri ·
B2
∑

b=1

γb ·Hb(ni) . (7)

The illumination parameters γ ∈ R
27 stack B2 = 9 weights

per color channel. Each γb ∈ R
3 controls the illumination

w.r.t. the red, green and blue channel.

3.4. Multiframe Consistent Face Model Learning

We propose a novel network for consistent multi-frame

face model learning. It consists of M Siamese towers that

simultaneously process M frames of the multi-frame image

in different streams, see Fig. 2. Each tower consists of an

encoder that estimates frame-specific parameters and iden-

tity feature maps. Note that the jointly learned geometric

identity Θs and appearance model (Θa, r̄), which are com-

mon to all faces, are shared across streams.

Regressed Parameters: We train our network in a

self-supervised manner based on the multi-frame images

{Fℓ}
N
ℓ=1. For each frame F

[f ]
ℓ , ∀f = 1 : M of the

multi-frame image Fℓ, we stack the frame-specific param-

eters regressed by a Siamese tower (see Parameter Esti-

mation in Fig. 2) in a vector p[f ]=(R[f ], t[f ],γ[f ], δ[f ])
that parametrizes rigid pose, illumination and expression.

The frame-independent person-specific identity parameters

p̂=(α,β) for the multi-frame image Fℓ are pooled from

all the towers. We use p=(p̂,p[1], . . . ,p[M ]) to denote all

regressed frame-independent and frame-specific parameters

of Fℓ.

Per-frame Parameter Estimation Network: We em-

ploy a convolutional network to extract low-level features.

We then apply a series of convolutions, ReLU, and fully

connected layers to regress the per-frame parameters p[f ].

We refer to the supplemental document for further details.

Multi-frame Identity Estimation Network: As ex-

plained in Section 3.1, each frame of our multi-frame in-

put exhibits the same face identity under different head

poses and expression. We exploit this information and use

a single identity estimation network (see Fig. 2) to impose

the estimation of common identity parameters p̂ (shape α,

appearance β) for all M frames. This way, we model a

hard constraint on p̂ by design. More precisely, given the

frame-specific low-level features obtained by the Siamese

networks we apply two additional convolution layers to ex-

tract medium-level features. The resulting M medium-level

feature maps are fused into a single multi-frame feature map

via average pooling. Note that the average pooling opera-

tion allows us to handle a variable number of inputs. As

such, we can perform monocular or multi-view reconstruc-

tion at test time, as demonstrated in Sec. 4. This pooled fea-

ture map is then fed to an identity parameter estimation net-

work that is based on convolution layers, ReLU, and fully

connected layers. For details, we refer to the supplemental.

3.5. Loss Functions

Let x = (p,Θ) denote the regressed parameters p as

well as the learnable network weights Θ = (Θs,Θa, r̄).
Note, x is fully learned during training, whereas the net-

work infers only p at test time. Here, p is parameterized

by the trainable weights of the network. To measure the re-

construction quality during mini-batch gradient descent, we

employ the following loss function:

L(x) = λpho·Lpho(x) + λlan·Llan(x)+ (8)

λsmo·Lsmo(x) + λspa·Lspa(x) + λble·Lble(x) , (9)

which is based on two data terms (8) and three regulariza-

tion terms (9). We found the weights λ• empirically and
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kept them fixed in all experiments, see supplemental docu-

ment for details.

Multi-frame Photometric Consistency: One of the key

contributions of our approach is to enforce multi-frame con-

sistency of the shared identity parameters p̂. This can

be thought of as solving model-based non-rigid structure-

from-motion (NSfM) on each of the multi-frame inputs dur-

ing training. We do this by imposing the following photo-

metric consistency loss with respect to the frame F [f ]:

Lpho(x) =
M
∑

f=1

|V̂|
∑

i=1

∣

∣

∣

∣F [f ](ui(p
[f ], p̂))− ci(p

[f ], p̂)
∣

∣

∣

∣

2

2
.

Here, with abuse of notation, we use ui to denote the pro-

jection of the i-th vertex into screen space, ci is its rendered

color, and V̂ is the set of all visible vertices, as determined

by back-face culling in the forward pass. Note that the iden-

tity related parameters p̂ are shared across all frames in F .

This enables a better disentanglement of illumination and

appearance, since only the illumination and head pose are

allowed to change across the frames.

Multi-frame Landmark Consistency: To better con-

strain the problem, we also employ a sparse 2D landmark

alignment constraint. This is based on a set of 66 automat-

ically detected 2D feature points s
[f ]
i ∈ R

2 [50, 51] in each

frame F [f ]. Each feature point s
[f ]
i comes with a confidence

c
[f ]
i , so that we use the loss

Llan(x) =
M
∑

f=1

66
∑

i=1

c
[f ]
i ·

∣

∣

∣

∣s
[f ]
i − usi

(p[f ], p̂)
∣

∣

∣

∣

2

2
.

Here, usi
∈ R

2 is the 2D position of the i-th mesh fea-

ture point in screen space. We use sliding correspondences,

akin to [59]. Note, the position of the mesh landmarks de-

pends both on the predicted per-frame parameters p[f ] and

the shared identity parameters p̂.

Geometry Smoothness on Graph-level: We employ

a linearized membrane energy [14] to define a first-order

geometric smoothness prior on the displacements ti(p̂) =
gi(p̂)− ḡi of the deformation graph nodes

Lsmo(x) =

|G|
∑

i=1

∑

j∈Ni

∣

∣

∣

∣ti(p̂)− tj(p̂)
∣

∣

∣

∣

2

2
, (10)

where Ni is the set of nodes that have a skinned vertex in

common with the i-th node. Note, the graph parameterizes

the geometric identity, i.e., it only depends on the shared

identity parameters p̂. This term enforces smooth defor-

mations of the parametric shape and leads to higher quality

reconstruction results.

Appearance Sparsity: In our learned face model, skin

appearance is parameterized on a per-vertex basis. To fur-

Figure 4. Our approach produces high-quality monocular recon-

structions of facial geometry, reflectance and illumination by

learning an optimal model from in-the-wild data. This enables

us to also reconstruct facial hair and makeup.

ther constrain the underlying intrinsic decomposition prob-

lem, we employ a local per-vertex spatial reflectance spar-

sity prior as in [40, 11], defined as follows

Lspa(x) =

|V|
∑

i=1

∑

j∈Ni

wij ·
∣

∣

∣

∣ri(p̂)− rj(p̂)
∣

∣

∣

∣

p

2
. (11)

The per-edge weights wij model the similarity of neighbor-

ing vertices in terms of chroma and are defined as

wij = exp
[

− η · ||hi(p̂old)− hj(p̂old)||2
]

.

Here, hi is the chroma of ci and p̂old denotes the parameters

predicted in the last forward pass. We fix η = 80 and p =
0.9 for training.

Expression Regularization: To prevent over-fitting and

enable a better learning of the identity basis, we regularize

the magnitude of the expression parameters δ:

Lble(x) =
M
∑

f=1

|δ[f]|
∑

u=1

(δ[f ]u

σδu

)2

. (12)

Here, δ[f ]u is the u-th expression parameter of frame f ,

and σδu is the corresponding standard deviation computed

based on Principal Component Analysis (PCA).

4. Results

We show qualitative results reconstructing geometry, re-

flectance and scene illumination from monocular images

in Fig. 4. As our model is trained on a large corpus of

multi-view images, it generalizes well to different ethnic-

ities, even in the presence of facial hair and makeup. We
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Figure 5. Monocular vs. multi-frame reconstruction. For clarity,

all results are shown with a frontal pose and neutral expression.

Multi-view reconstruction improves consistency and quality espe-

cially in regions which are occluded in one of the images.

Figure 6. Comparison to Tewari et al. [59]. Multi-frame based

training improves illumination estimation. Our approach also out-

performs that of Tewari et al. under large poses.

implement and train our networks in TensorFlow [1]. We

pre-train the expression model and then train the full net-

work end-to-end. After convergence, the network is fine-

tuned using a larger learning rate for reflectance. We empir-

ically found that this training strategy improves the capture

of facial hair, makeup and eyelids, and thus the model’s gen-

eralization. Our method can also be applied to multi-frame

reconstruction at test time. Fig. 5 shows that feeding two

images simultaneously improves the consistency and qual-

ity of the obtained 3D reconstructions when compared to the

monocular case. Please note that we can successfully sep-

arate identity and reflectance due to our novel Orthogonal

Complement Layer (OCL). For the experiments shown in

the following sections, we trained our network on M = 4
multi-frame images and used only one input image at test

time, unless stated otherwise. Our networks take around

30 hours to train. Inference takes only 5.2 ms on a Titan Xp.

More details, results, and experiments can also be found in

the supplemental document and video1.

1http://gvv.mpi-inf.mpg.de/projects/FML19

Figure 7. Comparison to [48, 52, 60]. These approaches are con-

strained by the (synthetic) training corpus and/or underlying 3D

face model. Our optimal learned model produces more accurate

results, since it is learned from a large corpus of real images.

Figure 8. In contrast to Tran et al. [62], we estimate better geome-

try and separate reflectance from illumination. Note, the approach

of Tran et al. does not disentangle reflectance and shading.

Figure 9. In contrast to the texture model of Booth et al. [12] that

contains shading, our approach estimates a reflectance model.

4.1. Comparisons to Monocular Approaches

State-of-the-art monocular reconstruction approaches

that rely on an existing face model [60] or synthetically gen-

erated data [52, 48] during training, do not generalize well

to faces outside the span of the model. As such, they can

not handle facial hair, makeup, and unmodeled expressions,

see Fig. 7. Since we train our models on in-the-wild videos,
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Table 1. Geometric reconstruction error on the BU-3DFE dataset [70]. Our approach produces higher quality results than the current state

of the art. The approach of Tewari et al. [60] does not generalize to the ±45 degree head poses contained in this dataset.

Ours [59] Fine [59] Coarse [60]

Train M = 1 M = 2 M = 4 M = 2 M = 4

Test M = 1 M = 1 M = 1 M = 2 M = 2

Mean 1.92 mm 1.82 mm 1.76 mm 1.80 mm 1.74 mm 1.83 mm 1.81 mm 3.22 mm

SD 0.48 mm 0.45 mm 0.44 mm 0.46 mm 0.43 mm 0.39 mm 0.47 mm 0.77 mm

Table 2. Geometric error on FaceWarehouse [17]. Our approach competes with [59] and [58], and outperforms [60] and [32]. Note, in

contrast to these approaches, ours does not require a precomputed face model during training, but learns it from scratch. It comes close to

the off-line high-quality approach of [24], while being orders of magnitude faster and not requiring feature detection.

Ours Others

Learning Learning Optimization Hybrid

[59] Fine [59] Coarse [60] [32] [24] [58]

Mean 1.90 mm 1.84 mm 2.03 mm 2.19 mm 2.11 mm 1.59 mm 1.87 mm

SD 0.40 mm 0.38 mm 0.52 mm 0.54 mm 0.46 mm 0.30 mm 0.42 mm

Time 5.2 ms 4 ms 4 ms 4 ms 4 ms 120 s 110 ms

we can capture these variations and thus generalize better in

such challenging cases. We also compare to the refinement

based approaches of [59, 62]. Tran et al. [62] (see Fig 8) re-

fine a 3DMM [7] based on in-the-wild data. Our approach

produces better geometry without requiring a 3DMM and,

contrary to [62], it also separates albedo from illumination.

The approach of Tewari et al. [59] (see Fig 6) requires a

3DMM [7] as input and only learns shape and reflectance

correctives. Since they learn from monocular data, their

correctives are prone to artifacts, especially when occlu-

sions or extreme head poses exist. In contrast, our approach

learns a complete model from scratch based on multi-view

supervision, thus improving robustness and reconstruction

quality. We also compare to [12], which only learns a tex-

ture model, see Fig. 9. In contrast, our approach learns

a model that separates albedo from illumination. Besides,

their method needs a 3DMM [7] as initialization, while we

start from a single constantly colored mesh and learn all

variation modes (geometry and reflectance) from scratch.

4.2. Quantitative Results

We also evaluate our reconstructions quantitatively on a

subset of the BU-3DFE dataset [70], see Tab. 1. This dataset

contains images and corresponding ground truth geometry

of multiple people performing a variety of expressions. It

includes two different viewpoints. We evaluate the impor-

tance of multi-frame training in the case of monocular re-

construction using per-vertex root mean squared error based

on a pre-computed dense correspondence map. The lowest

error is achieved with multi-view supervision during train-

ing, in comparison to monocular input data. Multi-view su-

pervision can better resolve depth ambiguity and thus learn

a more accurate model. In addition, the multi-view super-

vision also leads to a better disentanglement of reflectance

and shading. We also evaluate the advantage of multi-frame

input at test time. When both images corresponding to a

shape are given, we consistently obtain better results. Fur-

ther, our estimates are better than the state-of-the-art ap-

proach of [59]. Since [59] refine an existing 3DMM only

using monocular images during training, it cannot resolve

depth ambiguity well. Thus, it does not improve the per-

formance compared to their coarse model on the ±45 de-

gree poses of BU-3DFE [70]. Similar to previous work, we

also evaluate monocular reconstruction on 180 meshes of

FaceWarehouse [17], see Tab. 2. We perform similar to the

3DMM-based state-of-the-art. Note that we do not use a

precomputed 3DMM, but learn a model from scratch dur-

ing training, unlike all other approaches in this comparison.

For this test, we employ a model learned starting from an

asian mean face, as FaceWarehouse mainly contains asians.

Our approach is agnostic to the mean face chosen and thus

allows us this freedom.

5. Conclusion & Discussion

We have proposed a self-supervised approach for joint

multi-frame learning of a face model and a 3D face recon-

struction network. Our model is learned from scratch based

on a large corpus of in-the-wild video clips without avail-

able ground truth. Although we have demonstrated com-

pelling results by learning from in-the-wild data, such data

is often of low resolution, noisy, or blurred, which imposes

a bound on the achievable quality. Nevertheless, our ap-

proach already matches or outperforms the state-of-the-art

in learning-based face reconstruction. We hope that it will

inspire follow-up work and that multi-view supervision for

learning 3D face reconstruction will receive more attention.
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