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Abstract

Automated digital histopathology image segmentation

is an important task to help pathologists diagnose tumors

and cancer subtypes. For pathological diagnosis of can-

cer subtypes, pathologists usually change the magnifica-

tion of whole-slide images (WSI) viewers. A key assump-

tion is that the importance of the magnifications depends

on the characteristics of the input image, such as cancer

subtypes. In this paper, we propose a novel semantic seg-

mentation method, called Adaptive-Weighting-Multi-Field-

of-View-CNN (AWMF-CNN), that can adaptively use image

features from images with different magnifications to seg-

ment multiple cancer subtype regions in the input image.

The proposed method aggregates several expert CNNs for

images of different magnifications by adaptively changing

the weight of each expert depending on the input image. It

leverages information in the images with different magni-

fications that might be useful for identifying the subtypes.

It outperformed other state-of-the-art methods in experi-

ments.

1. Introduction

Automated digital pathology image analysis is an im-

portant task to help pathologists diagnose tumors and can-

cer subtypes. In particular, many segmentation methods,

such as for segmenting tumor regions, have been proposed.

The state-of-the-art methods accurately distinguish regions

(normal and tumor) in digital pathology images [7][42][43].

Recent progress in medicine has emphasized, the impor-

tance of cancer subtype analysis in histology. For example,

Yoshizawa et al. [45] showed that knowledge of lung adeno-

carcinoma subtypes could be used to predict the prognosis

of a patient who underwent surgical resection statistically.

The development of multiple-subtype segmentation will be

important for pathological image analysis.

Convolutional neural networks (CNN) [28] have been

used for classification and segmentation tasks and they have

been shown to outperform traditional computer vision tech-
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Figure 1. Examples of pathology images at difference magnifica-

tions; Top: 5x, Middle: 10x, Bottom: 20x. The columns indicate

the subtypes: from left to right, Normal, Lepidic, Acinar/Papillary,

Micropapillary, and Solid.

niques in various applications. Whole-slide images (WSI),

which are often used in digital pathology, cannot be inputted

to a CNN because they are so large (e.g., 100,000 × 50,000

pixels) compared with a natural image (i.e., WSI is over

10000 times the size of a natural image). Therefore, most

methods take a patch-based classification approach that first

segments a large image into small patches and then classi-

fies each patch [40]. However, a small patch image has less

context of a wide range of texture patterns that might be

useful for classification. In order to extend the field of view

under the size limit, the input image is usually downsam-

pled. As a result, the spatial resolution is reduced (Figure 1).

This trade-off between the size of the field of view and the

resolution of the input image makes it difficult to segment

cancer subtypes from an input patch image.

On the other hand, to make pathological diagnoses,

pathologists usually check images by changing their mag-

nification in WSI viewers (i.e., they use several different

scaled images). They can check a wide range of texture pat-
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terns in a low-magnification image, whereas they use high-

magnification images to check details, such as the shapes of

individual cells that are too small to be clearly seen in the

low-resolution images (Figure 1). It means that it is impor-

tant for diagnosis to use both of high-resolution images with

the narrow field of view and low-resolution images with the

wide field of view. A key assumption is that the impor-

tance of the magnifications depends on the characteristic of

the input image. For example in Figure 1, images with a

wide field of view (top) have more discriminative features

than the narrow field of view with high-resolution (bottom)

for distinguishing acinar/papillary and lepidic subtypes. On

the other hand, high-resolution images (bottom) have more

discriminative features than the wide field of view (top) for

distinguishing normal and lepidic subtypes. This indicates

that it is important to adaptively use the images with differ-

ent magnification depending on the input image.

In summary, the main contributions of our study are:

• We propose a semantic segmentation method that can

aggregate contextual information from multiple mag-

nification images by adaptively weighting several seg-

mentation networks (expert CNNs) that are trained us-

ing different-magnification images. Our method lever-

ages the contexts from both wide field-of-view and

high-resolution images that might be useful for iden-

tifying the subtypes.

• Our end-to-end learning re-trains the expert CNNs so

that all experts work complementarily to increase the

cases that either expert can predict a correct answer,

and trains an aggregating CNN to be able to adaptively

aggregate the predicted results. This contributes to im-

proving the segmentation performance. We also an-

alyzed the effectiveness of the learning by comparing

the prediction results of experts between the before and

after the end-to-end learning.

• We demonstrate the effectiveness of our method on a

challenging task; segmentation of subtype regions of

lung adenocarcinomas. Our method outperformed the

state-of-art methods, in particular, in a multi-class seg-

mentation task. We also show that our method can be

applied to any type of network.

2. Related works

Many methods have been proposed for pattern recogni-

tion tasks in pathology: Patient-level and WSI-level pN-

stage estimation (CAMELYON 2016 and 2017) [4][5], and

segmentation of tumors. Segmentation methods distinguish

the tumor regions from normal regions in a pathological im-

age (WSI), and they can be roughly classified into patch-

wise classifications and pixel-wise semantic segmentations.

Patch-based approach: The patch-based methods segment

the large WSI into small image patches and then classify

each patch image [2][6][13][33][41][49]. Wang et al. [40]

used a CNN to extract features from each patch and assign

a prediction score. They performed breast metastasis can-

cer detection based on the predicted score map in WSIs of

sentinel lymph node biopsies. Hou et al.[19] proposed an

EM-based classification method with a CNN that automat-

ically identifies discriminative patches by utilizing the spa-

tial relationships of patches. It was used to classify glioma

and non-small-cell lung carcinoma cases into subtypes. As

discussed in the introduction, contextual information from

image features of a fixed patch size is not enough to identify

the cancer type. To address this shortcoming, several meth-

ods that incorporate multi-scale contextual information into

a patch-wise classification have been proposed [1][27][38].

These methods are efficient for rough segmentation (i.e.,

patch-level segmentation). To obtain the pixel-level seg-

mentation, the sliding window strategy is required. One

of the drawbacks is its slowness; the classification process

must be run separately on each pixel, and there is a lot of

redundancy due to overlapping patches.

Semantic Segmentation: To overcome the above short-

coming, FCN produces a segmentation mask image with

high resolution; its architecture consists of downsampling

layers for extracting image features and upsampling lay-

ers for obtaining a segmentation mask [32]. U-net [36] is

widely used for segmentation problems; it introduces skip

connections from downsampling layers to upsampling lay-

ers to preserve the information in high-resolution images.

This network won the ISBI challenge 2015 for segmentation

of neuronal structures in electron microscopy. Many se-

mantic segmentation methods have been proposed for nat-

ural image analysis [18][26][44]. In particular, graphical

model [8][22][48][39], spatial pyramid pooling [8][9][47],

dilated convolution [46] and multi-scale inputs (i.e., image

pyramid) [8][10][17][31][34] exploit contextual informa-

tion for segmentation. These models have shown promis-

ing results on several segmentation benchmarks by aggre-

gating multi-scale information. They assume that an entire

image can be inputted to a single network; the entire im-

age is scaled to change the range of feature extraction. In

this scaling, where the field-of-view of the scaled images

are same. However, as we discussed in the introduction, the

trade-off between spatial resolution and the size of the field

of view remains a problem for semantic segmentation in

pathology because WSIs are huge and the input to a single

network is limited due to the size of the GPU memory size.

In this study, we incorporate multi-field-of-view and multi-

resolution contextual information into a pixel-wise seman-

tic segmentation scheme.

Weighting (Gating): We propose an aggregation method

that can adaptively weight multiple CNNs trained with dif-

ferent field-of-view images. There are several methods that

can adaptively weight the effective channels [20], pixels (lo-
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cation) [30], and scales [15][35] in a single network. Hu

et al. [20] proposed SENet which adaptively weights the

channel-wise feature responses by explicitly modeling in-

terdependencies between channels. Their network improves

state-of-the-art deep learning architectures. Sam et al. [37]

proposed a hard-switch-CNN network that chooses a single

optimal regressor from among several independent regres-

sors. It was used for counting the number of people in patch

images. Kumagai et al. [29] proposed a mixture of counting

CNNs for the regression problem of estimating the number

of people in an image.

The studies most related to ours are follows. Alsubaie

et al. [1] proposed a multi-resolution method that simply

inputs multi-field-of-view images as multi-channels into a

single network. The method has slightly higher accuracy

compared with that of a single scale network. Sirinukun-

wattana et al. [38] systematically compared different archi-

tectures. They trained each CNN on images with different

magnifications, and then fused the results from the CNNs

in several ways, such as CNN, LSTM, to obtain the final re-

sults. These methods are for classifying patch images; they

cannot be directly applied to semantic segmentation CNNs.

In addition, they do not take into account that the impor-

tance of the magnifications depends on an input image.

Unlike these current methods, our novel neural network

architecture and learning algorithm can adaptively use the

features from the multi-field-of-view images depending on

the characteristic of the input image for semantic segmenta-

tion in pathology.

3. Effect of field of view

In this section, we will investigate how the contextual

information (resolution and field-of-view) is related to the

discriminative features for segmenting cancer subtypes. We

compared the outputs from CNNs that were trained individ-

ually using images with different magnifications (20x, 10x,

5x) that have a trade-off between their resolution and the

field-of-view size.

In the experiment, we used lung adenocarcinoma images

annotated by pathologists. We trained expert networks 1, 2

and 3 by using images with the different magnifications as

shown in the top, middle and bottom row in Figure 1 respec-

tively. The details of the dataset and setup are described in

Section 5.

In Figure 2, a circle indicates a set of pixels that an ex-

pert correctly predicted, and the value indicates the ratio of

pixels correctly predicted to all pixels. The overlap region

of the three experts indicates the set of pixels that all ex-

perts correctly predicted. The non-overlap region indicates

the pixels that only one expert correctly predicted. Union

indicates the set of pixels that either expert predicted a cor-

rect class. This Venn diagram shows the similarity of the

predicted results of the expert networks.

Union: 0.951 Union: 0.725

2-class Multi-class

Figure 2. Venn diagrams of correct answer rates for individually

pre-trained expert CNNs on two-class (left) and multi-class (right)

segmentation tasks.

The left figure showing the results of the two-class seg-

mentation task indicates that the experts gave very similar

results. The right figure showing the results of the multi-

class segmentation task indicates that the non-overlap ar-

eas were large, and thus, the union of the experts was much

larger than a single expert (by over 15%). This indicates that

the contextual information from different-magnification im-

ages is effective for multiple subtype semantic segmentation

(i.e., our assumption that the importance of the magnifica-

tions depends on an input image is reasonable.).

These results indicate that if a method can adaptively ag-

gregate experts depending on the characteristic of the in-

put image, the method can outperform the single experts, in

which the accuracy is expected to close to the accuracy of

the union of the experts. In addition, if a method can re-

train the experts so that each expert is specialized to make

the difference large and the size of the union increases, the

method will be able to outperform than the union of the

original individual experts. To achieve this goal, we select

the mixture of experts approach that aggregates the expert

CNNs for different-magnification images while adaptively

changing the weight of each CNN depending on the input

image. The details of this method are presented in the next

section.

4. Proposed method

Figure 3 shows an overview of our Adaptive-Weighting-

Multi-Field-of-View-CNN (AWMF-CNN). To address the

trade-off between the resolution and the size of the field of

view, we use three different-magnification images Xi (X1
i

for 20x, X2
i for 10x, X3

i for 5x) as inputs, where each input

image has different spatial resolutions and fields of view. i

indicates an index of an image data set. Here, X1
i is the

target image patch that will be segmented, which has the

highest spatial resolution with the narrowest field of view.

X2
i and X3

i are low magnification images of X1
i , where

the image center area (red dotted boxes) are the same as

shown in Figure 3. In addition to the target area, the im-
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CNN1
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CNN2

Expert

CNN3

(𝑤𝑤1, 𝑤𝑤2,𝑤𝑤3)

Weighting

CNN

Concatenate

𝑤𝑤1 𝑤𝑤2 𝑤𝑤3

Output of  M-class

Semantic Segmentation

𝑓𝑓𝐸𝐸1 𝑓𝑓𝐸𝐸2 𝑓𝑓𝐸𝐸3
𝑋𝑋𝑖𝑖1 𝑋𝑋𝑖𝑖2 𝑋𝑋𝑖𝑖3

𝑓𝑓A

𝑓𝑓𝑊𝑊

C 3×3 | 64

C 3×3 | 64

C 3×3 | 32

C 3×3 | 32

C 1×1 | M

Softmax

Weighting

Cropping

Upsampling

Figure 3. Overview of Adaptive-Weighting-Multi-Field-of-View-

CNN architecture. Red dotted boxes on the input images are the

target regions of semantic segmentation. After each expert CNN

makes a prediction, the cropped target area is upsampled to the

same size of X1

i .

age features from the peripheral regions, which is the outer

regions of the red box in X2
i , X3

i , are used to segment the

multiple-subtype cancer regions in X1
i . Our network can

adaptively estimate the weights of three different magnifi-

cations depending on an input image and aggregate these

image features by using the estimated weights to segment

cancer-subtypes.

4.1. Network architecture

Our AWMF-CNN consists of three types of network:

expert CNNs (fE1
, fE2

, fE3
), a weighting CNN fW , and

an aggregating CNN fA as shown in Figure 3. We use

the U-net architecture [25][36] for each expert CNN. The

CNNs are trained such that each one becomes specialized

for segmenting images of a particular magnification in pre-

training. Each channel image in the output layer of each

network is a heat map of the likelihood of each subtype in

the target region, where the number of the output channels

equals the number of subtypes to be segmented. Since the

field of views in Xi
2 and Xi

3 are different from that of the

target region Xi
1, the target region (red box) of each output

heat map is cropped and upsampled to the same size as the

output of fE1
. Here, the cropped heat map is estimated also

using the peripheral context i.e., image features from the

outer regions of the target area (outside of the red box). The

outputs of these experts are aggregated on the aggregating

CNN to produce the final results.

Under the assumption that the importance of magnifica-

tion images differ depending on the input image, we devel-

oped a weighting CNN that adaptively estimates the weights

of the expert CNNs by using the input images. We modi-

fied Xception [11] (developed by Google) for classification

by replacing the fully connected (FC) layers with global av-

erage pooling, a 3-class FC layer, and a sigmoid activation

function to output three weights and fine-tuned the network

by using the trained parameters for 1000-class classification

as the initial values. The range of each weight is 0 to 1.

The aggregating CNN concatenates the outputs of expert

CNNs with the estimated weights. This network outputs the

final segmentation result of the target region. It has a sim-

ple architecture consisting of five convolutional layers and a

softmax function as shown in Figure 3. Each convolutional

layer except for the last is followed by a batch normaliza-

tion [21] and an exponential linear unit function [12].

4.2. Training algorithm

Algorithm 1 is an overview of the training proce-

dure. We use two training data sets for the weighting

CNN fW and other CNNs (fE1
, fE2

, fE3
, fA). NX

training image patches {X1
i , X

2
i , X

3
i }

NX

i=1 with a ground-

truth segmentation map {T 1
i,c, T

2
i,c, T

3
i,c|c = 1, ...,M}NX

i=1

are used to train ({fEk
}3k=1, fA), and NX′ training

images {X ′1
i , X

′2
i , X

′3
i }

NX′

i=1 with {T ′1
i,c, T

′2
i,c, T

′3
i,c|c =

1, ...,M}
NX′

i=1 are used to train the weighting CNN fW
where M is the number of classes. The image patches

{X1
i , X

2
i , X

3
i } are different-magnification images that con-

tain the same target regions, as explained above.

(0) Initialization (Pre-train)

The three expert CNNs {fEk
}3k=1 are pre-trained inde-

pendently to estimate the heat maps for each magnification

using different training sets. For the loss function of the ex-

perts, we used the sum of weighted cross-entropy terms for

each spatial position (pixel) in the CNN output map. The

loss functions are defined as follows:

LossEk
=−

NX
∑

i=1

∑

j∈Xk
i

M
∑

c=1

αcT
k
i,c(j) log Y

k
i,c(j), (1)

αc=
Number of all pixels

M × Number of pixels of class c
, (2)

where c is the class index, Xk
i is the input image patch

for the k-th expert, j is the j-th pixel of Xk
i , T k

i,c(j) is th

ground-truth of the j-th pixel of T k
i,c from manually labelled

annotations, Y k
i,c(j) is the prediction of the network, and αc
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Algorithm 1 AWMF-CNN training algorithm

1: Input: NX training image patches {X1
i , X

2
i , X

3
i }

NX

i=1

with ground truth {T k
i,c}i,c,k, and NX′ training images

{X ′1
i , X

′2
i , X

′3
i }

NX′

i=1 with {T ′k
i,c}i,c,k

2: % Initialization: Pre-training for fE1
, fE2

, fE3

3: Backpropagating to train {Θ
(0)
k }3k=1 using {T k

i,c}
3
k=1

respectively

4: % Training for L epochs

5: for l = 1 to L do

6: % Generate training data for fW
7: for i = 1 to NX′ do

8: % Output fEk
with input X ′

i

9: Y ′k
i,c = fEk

(X ′k
i ; Θ

(l−1)
k )

10: wk
i =

2|Y ′k
i,c∩T ′k

i,c|

|Y ′k
i,c

|+|T ′k
i,c

|
, w

(l)
i = [w1

i , w
2
i , w

3
i ]

11: end for

12: Strain = {X′

i,wi}
NX′

i=1

13: % Training fW for 1 epoch

14: Train fW with Strain and update Θ
(l)
W

15: % Train ({fEk
}3k=1, fA) with fW

16: for i = 1 to NX do

17: % Estimate weights wi by fW with current Θ
(l)
W

18: w
(l)
i = fW (Xi; Θ

(l)
W )

19: % Train {Θk}
3
k=1 and ΘA with w

(l)
i

20: Backpropagating to train ({fEk
}3k=1, fA) with

w
(l)
i and update {Θ

(l)
k }3k=1 and Θ

(l)
A

21: end for

22: end for

23: Output: trained parameters {Θk}
3
k=1 for fEk

, ΘA for

fA and ΘW for fW

is the weight for eliminating bias due to the imbalance in

the number of images in different classes. Y k
i,c for k = 2, 3

is the output of the CNN before cropping. The loss is opti-

mized by back-propagating the CNN via the optimizer for

each network and the network parameters {Θk}
3
k=1 are up-

dated. In the initialization training, each expert CNN is spe-

cialized for images of a specific magnification.

Two types of networks: the integrated network consist-

ing of four networks ({fEk
}3k=1, fA) (black dotted box in

Figure 3), and weighting CNN fW , are alternately opti-

mized by iteratively processing the following step. The ini-

tialized parameters are used in the first iteration.

(1-1) Generate Training Data for Weighting CNN

First, to train the weighting CNN fW , the training

data for weight set is generated by using the training data

{{X ′k
i }

3
k=1, {T

′k
i,c}c,k}

NX′

i=1 . The key idea in training the

weighting CNN is that when a magnification of a test image

has more discriminative features than the other magnifica-

tion, the corresponding expert should produce a good esti-

mate for the test image. To estimate the weights, we use

the Dice coefficient between the estimation image Y ′k
i,c and

the ground-truth T ′k
i,c for each class c as the weights of the

experts,

wk
i =

2|Y ′k
i,c ∩ T ′k

i,c|

|Y ′k
i,c|+ |T ′k

i,c|
, w

(l)
i = [w1

i , w
2
i , w

3
i ], (3)

where ∩ means the element-wise product and | · | means the

sum of elements. l is an iteration index.

(1-2) Train Weighting CNN

The weighting CNN fW is trained using a set of training

images and weights Strain = {X′

i ,wi}
NX′

i=1 , and the net-

work parameters ΘW are updated by backpropagating the

CNN via optimizer: the loss function is the mean squared

error (MSE) defined as follows:

LossW =

NX′

∑

i=1

3
∑

k=1

(

wk
i − yki

)2
, (4)

where k is the index of the expert CNNs, and yki is the

weight predicted by the weighting CNN.

(2) End-to-End Learning of the integrated network

The integrated network consisting of {fEk
}3k=1, fA are

trained with weights estimated from the weighting CNN

with the training data {{Xk
i }

3
k=1, {T

k
i,c}

3
k=1}

NX

i=1 in end-to-

end learning. The weights of each expert w
(l)
i are first esti-

mated for a training image Xi by weighting CNN fW with

the current Θ
(l)
W . Using the estimated weights, the integrated

network is trained in an end-to-end manner by backpropa-

gating the CNN via the optimizer using the weighted cross-

entropy loss,

LossA=−

NX
∑

i=1

∑

j∈Xk
i

M
∑

c=1

αcTi,c(j) log Yi,c(j), (5)

Loss = LossA +

3
∑

k=1

LossEk
, (6)

where Yi,c(j) is the estimated score of the j-th pixel in the

output image Yi,c of the aggregating layer. This training

process is iterated for every training data Xi and {Θ
(l)
k }3k=1,

and Θ
(l)
A are updated.

This training algorithm is run until the maximum epoch

or convergence. Through it, each expert CNN becomes spe-

cialized for images in which the magnification is useful for

segmentation. The weighting CNN is trained to estimate

the weights of the specialized experts depending on an input

image. The aggregating CNN is trained to estimate the final

segmentation results of the target area, which aggregates the

experts using the estimated weights. Given a test image, the

trained weighting CNN first estimates the weights, and then

the trained integrated network predicts the final segmenta-

tion result.
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WSI Annotated Image

75,000

50,000

Normal

Tumor

Lepidic

Acinar/Papillary

Micropapillary

Solid

Background

Figure 4. Example of WSI. Left: original WSI (50, 000×75, 000);

Middle: annotated image provided by pathologists; Right: anno-

tation label and corresponding colors.

5. Experiments

We evaluated our method on two segmentation problems

from whole slide images (WSI), including two-class seg-

mentation into tumor and normal, and multi-subtype seg-

mentation in lung adenocarcinoma. For these experiments,

we compared the segmentation accuracy with the following

state-of-the-art methods: U-net [25][36], SegNet [3][24],

Dilated-net [46], DeepLabv3+ [9][23], and Hard-Switch-

CNN (HS) [37] that adaptively selects an expert net-

work (does not aggregate multiple images). For the pro-

posed method, we evaluated two versions: Ours (Adaptive)

is Adaptive-Weighting-Multi-Field-of-View CNN (AWMF-

CNN), and Ours (Fixed) is the Multi-Field-of-View CNN

that uses the fixed weight 1.0 for aggregation, where the

other setup was same as AWMF-CNN.

5.1. Dataset

Images of sliced lung adenocarcinoma stained by hema-

toxylin and eosin (H&E) were captured using a virtual slide

scanner with a maximum magnification of 40x, and 29

WSIs were used in the experiments. All images were taken

from different patients and the sizes of the images were up

to 54, 000×108, 000. To generate the training and test data,

pathologists manually annotated the regions of five cancer

subtypes: 1. Normal, 2. Lepidic, 3. Acinar/Papillary1, 4.

Micropapillary, and 5. Solid, where ‘Normal’ indicates the

region of outside the tumors, and the other four classes are

tumor subtypes. To segment the images into multi-subtype

regions, they were first segmented using the two-class seg-

mentation and the tumor regions were then segmented into

subtype regions. Figure 4 shows a typical WSI and the cor-

responding annotated mask image. Some of the tumor re-

gions cannot be identified with any subtype. These regions

are shown in black, so in total there are six classes (four

subtypes, normal and unclear labeled tumors).

5.2. Training

To train our AWMF-CNN model, we extracted a set

of three different-magnification patches {X1
i , X

2
i , X

3
i }

N
i=1,

corresponding to the same regions, from the WSIs (Fig-

ure 1), where the window size was 256 × 256 pixels, the

1Since it is quite difficult for even pathologists to identify Acinar and

Papillary [45], we put these two classes into one class.

stride size was 256 pixels, and the magnifications were

(20x, 10x, 5x)2. The corresponding scaled annotation mask

images {T k
i,c|k = 1, ..., 3, c = 1, ...,M}Nx

i=1 were used for

the label data. The image patches were randomly flipped

along the horizontal axis and vertical axis for data augmen-

tation. We experimented using five-fold cross-validation;

the 29 WSIs were divided into five sets. After that, each

WSI image was split into image patches. The image patches

of one set were used in the test, and the other patches were

used for training. We used 167,766 image patches for train-

ing the two-class segmentation and 20,848 image patches

for training four-class segmentation.The class ratios of the

training images were [Normal, Tumor] = [0.67, 0.33] and

[Lepidic, Acinar/Papillary, Micro Papillary, Solid] = [0.25,

0.29, 0.23, 0.23] at 20x magnification. Twenty percent of

the randomly selected training data was used as validation

data to prevent overfitting. This validation data was also

used as the training data X
′ for the weighting CNN. In

the weighting CNN, we used the second magnification im-

ages as the inputs in all experiments because this setup was

slightly better than the case when all magnification images

were used. The five-fold data set was used to evaluate all the

compared methods. We used Nadam optimizer [16] with a

learning rate of 10−4. The optimization was performed un-

til 50 epochs or convergence.

5.3. Experimental results

Figure 5 shows examples of the results in comparison.

These were generated by overlaying multi-subtype segmen-

tation results in the tumor region of the two-class seg-

mentation. The results of U-net, SegNet, Dilated-net, and

Hard-Switch-CNN contain many fragmented regions (Fig-

ure 5 (c), (d), (e), and (g)). Of the compared methods,

DeepLabv3+ (f) produced best results. Both of our meth-

ods gave better results than DeepLabv3+. Their results in

the two-class image segmentation task (Figure 5 (h) and (i))

were qualitatively similar, but the adaptive weight version

was better than the fixed weight version in the semantic seg-

mentation task, as shown in the enlarged images of Figure 5.

We also evaluated three metrics; the overall pixel (OP)

accuracy, the mean of the per-class (PC) accuracy, and the

mean of the intersection over the union (mIoU) for two-

class and four-class segmentation tasks. These metrics [14]

are defined as:

OP =

∑

c TPc
∑

c (TPc + FPc)
, PC =

1

M

∑

c

TPc

TPc + FPc

,

mIoU =
1

M

∑

c

TPc

TPc + FPc + FNc

, (7)

210x is the magnification with which pathologists usually check images

for diagnosis.
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(a) (b) (c) (d) (e) (f) (g) (h) (i)

(a) (b) (c) (h) (i)

Figure 5. Examples of segmentation results. (a) original images, segmentation images from (b) manual annotation, (c) U-net [25][36], (d)

SegNet [3][24], (e) Dilated-net [46], (f) DeepLabv3+ [9][23], (g) Hard-Switch-CNN [37], (h) Ours (Fixed), and (i) Ours (Adaptive). The

color of the region indicates the subtype class (see Figure 4).

where M is the number of classes, and TPc, FPc, and FNc

are the numbers of true positives, false positives, and false

negatives for class c, respectively.

The performance metrics of each method are shown in

Table 1 and 2. In the two-class segmentation task, both

of our CNNs had better metrics in all case in comparison

with U-net, SegNet, Dilated-net, and Hard-Switch-CNN.

Their performance and that of the best field of view (5x)

of DeepLabv3+ were not significantly different. As shown

in the left image in Figure 2, each individual expert had high

accuracy by itself, and the results of these experts were very

similar. In this case, we consider that the adaptive weight-

ing strategy was not so effective, but the multi-field-of-view

strategy improved the performance compared with those of

the individual experts. Consequently, we consider that our

methods had similar performance and were better than the

others.

In the multiple-subtypes segmentation tasks, our

AWMF-CNN achieved the best performance and the fixed

version was second best. The improvement was larger than

in the two-class segmentation task. As shown in the right

image in Figure 2, the results of these experts had the dif-

ferent regions and the union of the experts was much larger

than the region identified by a single expert. In this case,

we consider that our AWMF-CNN can adaptively use the

image features from the different-magnification images de-

pending on the input image. This made it more accurate

than the other methods.

5.4. Changing expert CNNs in end­to­end training

Figure 6 shows the change in the correct answer rate

for individually pre-trained expert CNNs (top) and after the

end-to-end learning (bottom). Through end-to-end learn-

ing, the union of the prediction results of the experts be-

came large. In particular, the end-to-end learning more im-

proved the union of micro-papillary that had the smallest

union than the others. Although the circle of each expert

became small on average after the end-to-end learning, it is

considered that performance improved overall because all

experts work complementarily. Overall, the union of the

correct answer rates was 7% higher than that of the union

of the individual experts. We consider that this specializa-

tion of each expert by our model contributed to improving

the performance.

5.5. Varying expert networks

To demonstrate that our AWMF-CNN can be adapted to

any network, we trained it using U-net, SegNet, Dilated-

net, and DeepLabv3+ as the expert networks for the subtype

segmentation task; the training and test data sets were the
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Figure 6. Venn diagrams of the correct answer rates of individually pre-trained expert CNNs (Top) and after end-to-end learning (Bottom).

Each column indicates the accuracy for each subtype; from left to right, average, Lepidic, Acinar/Papillary, Micropapillary, and Solid.

Table 1. Comparison of two-class normal or tumor segmentations.

Network Magnification OP PC mIoU

U-net [25][36] 20x 0.890 0.876 0.774

U-net [25][36] 10x 0.913 0.895 0.813

U-net [25][36] 5x 0.910 0.899 0.810

SegNet [3][24] 20x 0.911 0.898 0.811

SegNet [3][24] 10x 0.909 0.902 0.810

SegNet [3][24] 5x 0.907 0.893 0.804

Dilated-net [46] 20x 0.908 0.888 0.804

Dilated-net [46] 10x 0.900 0.889 0.793

Dilated-net [46] 5x 0.905 0.898 0.802

DeepLabv3+ [9][23] 20x 0.911 0.894 0.811

DeepLabv3+ [9][23] 10x 0.912 0.895 0.812

DeepLabv3+ [9][23] 5x 0.917 0.915 0.825

Hard-Switch-CNN [37] (20x,10x,5x) 0.902 0.890 0.795

Ours (Fixed) (20x,10x,5x) 0.921 0.907 0.831

Ours (Adaptive) (20x,10x,5x) 0.916 0.904 0.821

same as in the above experiments. Table 3 shows that ev-

ery AWMF-CNN trained by every type of expert was 3% to

16% more accurate than the corresponding individual net-

work with the best magnification that produced the highest

performance (Table 2).

6. Conclusion

We proposed a novel Adaptive-Weighting-Multi-Field-

of-View CNN that can adaptively use image features from

different-magnification images depending on the input im-

age to segment multiple cancer subtype regions in pathol-

ogy. Our method mimics that pathologists check images

by changing their magnification adaptively depending on

the characteristic of the target image to make pathologi-

cal diagnoses. In experiments, we analyzed how each ex-

pert was specialized after the end-to-end learning; experts

were re-trained to work complementarily, as a result, it in-

creased the cases that either expert can predict a correct an-

swer. Our method outperformed state-of-the-art segmenta-

Table 2. Comparison of four-class subtypes segmentations.

Network Magnification OP PC mIoU

U-net [25][36] 20x 0.446 0.446 0.300

U-net [25][36] 10x 0.484 0.481 0.331

U-net [25][36] 5x 0.524 0.537 0.379

SegNet [3][24] 20x 0.477 0.477 0.320

SegNet [3][24] 10x 0.547 0.544 0.398

SegNet [3][24] 5x 0.492 0.525 0.326

Dilated-net [46] 20x 0.433 0.422 0.274

Dilated-net [46] 10x 0.445 0.456 0.314

Dilated-net [46] 5x 0.515 0.528 0.378

DeepLabv3+ [9][23] 20x 0.585 0.580 0.438

DeepLabv3+ [9][23] 10x 0.625 0.624 0.474

DeepLabv3+ [9][23] 5x 0.588 0.583 0.433

Hard-Switch-CNN [37] (20x,10x,5x) 0.486 0.484 0.347

Ours (Fixed) (20x,10x,5x) 0.641 0.642 0.505

Ours (Adaptive) (20x,10x,5x) 0.672 0.676 0.536

Table 3. Segmentation accuracy of AWMF-CNN using other ex-

pert networks and improvement over the best individual expert.

Expert network Magnification mIoU improvement

U-net [25][36] (20x,10x,5x) 0.536 0.157

SegNet [3][24] (20x,10x,5x) 0.459 0.061

Dilated-net [46] (20x,10x,5x) 0.537 0.159

DeepLabv3+ [9][23] (20x,10x,5x) 0.510 0.036

tion networks on multiple-subtypes segmentation tasks. We

also showed that it can be applied to any type of network.

In addition to magnifications (experts), the importance of

subtypes (channels) and locations (pixels) may depend on

the characteristics of the input image. In the future work,

we will develop a method that can weight the combination

of magnifications, subtypes, and locations.
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