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Abstract

The applicability of computer vision to real paintings

and artworks has been rarely investigated, even though a

vast heritage would greatly benefit from techniques which

can understand and process data from the artistic domain.

This is partially due to the small amount of annotated artis-

tic data, which is not even comparable to that of natu-

ral images captured by cameras. In this paper, we pro-

pose a semantic-aware architecture which can translate art-

works to photo-realistic visualizations, thus reducing the

gap between visual features of artistic and realistic data.

Our architecture can generate natural images by retrieving

and learning details from real photos through a similarity

matching strategy which leverages a weakly-supervised se-

mantic understanding of the scene. Experimental results

show that the proposed technique leads to increased real-

ism and to a reduction in domain shift, which improves the

performance of pre-trained architectures for classification,

detection, and segmentation. Code is publicly available at:

https://github.com/aimagelab/art2real.

1. Introduction

Our society has inherited a huge legacy of cultural arti-

facts from past generations: buildings, monuments, books,

and exceptional works of art. While this heritage would

benefit from algorithms which can automatically under-

stand its content, computer vision techniques have been

rarely adapted to work in this domain.

One of the reasons is that applying state of the art tech-

niques to artworks is rather difficult, and often brings poor

performance. This can be motivated by the fact that the vi-

sual appearance of artworks is different from that of photo-

realistic images, due to the presence of brush strokes, the

creativity of the artist and the specific artistic style at hand.

As current vision pipelines exploit large datasets consist-

ing of natural images, learned models are largely biased to-

wards them. The result is a gap between high-level con-
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Figure 1: We present Art2Real, an architecture which can

reduce the gap between the distributions of visual features

from artistic and realistic images, by translating paintings

to photo-realistic images.

volutional features of the two domains, which leads to a

decrease in performance in the target tasks, such as classifi-

cation, detection or segmentation.

This paper proposes a solution to the aforementioned

problem that avoids the need for re-training neural archi-

tectures on large-scale datasets containing artistic images.

In particular, we propose an architecture which can reduce

the shift between the feature distributions from the two

domains, by translating artworks to photo-realistic images

which preserve the original content. A sample of this set-

ting is depicted in Fig. 1.

As paired training data is not available for this task,

we revert to an unpaired image-to-image translation set-

ting [56], in which images can be translated between dif-

ferent domains while preserving some underlying charac-

teristics. In our art-to-real scenario, the first domain is that

of paintings while the second one is that of natural images.

The shared characteristic is that they are two different vi-

sualizations of the same class of objects, for example, they
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both represent landscapes.

In the translation architecture that we propose, new

photo-realistic images are obtained by retrieving and learn-

ing from existing details of natural images and exploiting a

weakly-supervised semantic understanding of the artwork.

To this aim, a number of memory banks of realistic patches

is built from the set of photos, each containing patches from

a single semantic class in a memory-efficient representa-

tion. By comparing generated and real images at the patch

level, in a multi-scale manner, we can then drive the train-

ing of a generator network which learns to generate photo-

realistic details, while preserving the semantics of the orig-

inal painting. As performing a semantic understanding of

the original painting would create a chicken-egg problem,

in which unreliable data is used to drive the training and

the generation, we propose a strategy to update the seman-

tic masks during the training, leveraging the partial conver-

gence of a cycle-consistent framework.

We apply our model to a wide range of artworks which

include paintings from different artists and styles, land-

scapes and portraits. Through experimental evaluation, we

show that our architecture can improve the realism of trans-

lated images when compared to state of the art unpaired

translation techniques. This is evaluated both qualitatively

and quantitatively, by setting up a user study. Furthermore,

we demonstrate that the proposed architecture can reduce

the domain shift when applying pre-trained state of the art

models on the generated images.

Contributions. To sum up, our contributions are as follows:

• We address the domain gap between real images and

artworks, which prevents the understanding of data

from the artistic domain. To this aim, we propose a net-

work which can translate paintings to photo-realistic

generated images.

• The proposed architecture is based on the construction

of efficient memory banks, from which realistic details

can be recovered at the patch level. Retrieved patches

are employed to drive the training of a cycle-consistent

framework and to increase the realism of generated im-

ages. This is done in a semantically aware manner,

exploiting segmentation masks computed on artworks

and generated images during the training.

• We show, through experimental results in different set-

tings, improved realism with respect to state of the art

approaches for image translation, and an increase in

the performance of pre-trained models on generated

data.

2. Related work

Image-to-image translation. Generative adversarial net-

works have been applied to several conditional image gen-

eration problems, ranging from image inpainting [35, 53,

54, 51] and super-resolution [23] to video prediction [33,

47, 48, 28] and text to image synthesis [36, 37, 55, 50].

Recently, a line of work on image-to-image translation

has emerged, in both paired [16, 40] and unpaired set-

tings [56, 20, 29, 43]. Our task belongs to the second cate-

gory, as the translation of artistic paintings to photo-realistic

images cannot be solved by exploiting supervised methods.

Zhu et al. [56] proposed the Cycle-GAN framework,

which learns a translation between domains by exploiting a

cycle-consistent constraint that guarantees the consistency

of generated images with respect to original ones. On a

similar line, Kim et al. [20] introduced a method for pre-

serving the key attributes between the input and the trans-

lated image, while preserving a cycle-consistency criterion.

On the contrary, Liu et al. [29] used a combination of gen-

erative adversarial networks, based on CoGAN [30], and

variational auto-encoders. While all these methods have

achieved successful results on a wide range of translation

tasks, none of them has been specifically designed, nor ap-

plied, to recover photo-realism from artworks.

A different line of work is multi-domain image-to-image

translation [5, 2, 52]: here, the same model can be used for

translating images according to multiple attributes (i.e., hair

color, gender or age). Other methods, instead, focus on di-

verse image-to-image translation, in which an image can be

translated in multiple ways by encoding different style prop-

erties of the target distribution [57, 15, 24]. However, since

these methods typically depend on domain-specific proper-

ties, they are not suitable for our setting as realism is more

important than diversity.

Neural style transfer. Another way of performing image-

to-image translation is that of neural style transfer meth-

ods [7, 8, 18, 14, 39], in which a novel image is synthe-

sized by combining the content of one image with the style

of another, typically a painting. In this context, the sem-

inal work by Gatys et al. [7, 8] proposed to jointly mini-

mize a content loss to preserve the original content, and a

style reconstruction loss to transfer the style of a target artis-

tic image. The style component is encoded by exploiting

the Gram matrix of activations coming from a pre-trained

CNN. Subsequent methods have been proposed to address

and improve different aspects of style transfer, including the

reduction of the computational overhead [18, 25, 44], the

improvement of the generation quality [9, 4, 49, 17, 39] and

diversity [26, 45]. Other works have concentrated on the

combination of different styles [3], and the generalization

to previously unseen styles [27, 10, 41]. All these methods,

while being effective on transferring artistic styles, show

poor performance in the opposite direction.

3. Proposed approach

Our goal is to obtain a photo-realistic representation of a

painting. The proposed approach explicitly guarantees the

realism of the generation and a semantic binding between
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Figure 2: Overview of our Art2Real approach. A painting is translated to a photo-realistic visualization by forcing a matching

with patches from real photos. This is done in a semantically-aware manner, by building class-specific memory banks of

real patches B
c, and pairing generated and real patches through affinity matrices A

c, according to their semantic classes.

Segmentation maps are computed either from the original painting or the generated image as the training proceeds.

the original artwork and the generated picture. To increase

the realism, we build a network which can copy from the de-

tails of real images at the patch level. Further, to reinforce

the semantic consistency before and after the translation,

we make use of a semantic similarity constraint: each patch

of the generated image is paired up with similar patches of

the same semantic class extracted from a memory bank of

realistic images. The training of the network aims at max-

imizing this similarity score, in order to reproduce realistic

details and preserve the original scene. An overview of our

model is presented in Fig. 2.

3.1. Patch memory banks

Given a semantic segmentation model, we define a pre-

processing step with the aim of building the memory banks

of patches which will drive the generation. Each memory

bank B
c is tied to a specific semantic class c, in that it can

contain only patches which belong to its semantic class. To

define the set of classes, and semantically understand the

content of an image, we adopt the weakly-supervised seg-

mentation model from Hu et al. [13]: in this approach, a net-

work is trained to predict semantic masks from a large set

of categories, by leveraging the partial supervision given by

detections. We also define an additional background mem-

ory bank, to store all patches which do not belong to any

semantic class.

Following a sliding-window policy, we extract fixed-size

RGB patches from the set of real images and put them in

a specific memory B
c, according to the class label c of

the mask in which they are located. Since a patch might

contain pixels which belong to a second class label or the

background class, we store in B
c only patches containing

at least 20% pixels from class c.
Therefore, we obtain a number of memory banks equal

to the number of different semantic classes found in the

dataset, plus the background class, where patches belong-

ing to the same class are placed together (Fig. 3). Also, se-

mantic information from generated images is needed: since

images generated at the beginning of the training are less

informative, we first extract segmentation masks from the

original paintings. As soon as the model starts to gener-

ate meaningful images, we employ the segmentation masks

obtained on generated images.

3.2. Semanticallyaware generation

The unpaired image-to-image translation model that we

propose maps images belonging to a domain X (that of art-

works) to images belonging to a different domain Y (that of

natural images), preserving the overall content. Suppose we

have a generated realistic image G(x) at each training step,

produced by a mapping function G which starts from an in-

put painting x. We adopt the previously obtained memory

banks of realistic patches and the segmentation masks of the

paintings in order to both enhance the realism of the gener-

ated details and keep the semantic content of the painting.

Pairing similar patches in a meaningful way. At each

training step, G(x) is split in patches as well, maintain-

ing the same stride and patch size used for the memory

banks. Reminding that we have the masks for all the paint-

ings, we denote a mask of the painting x with class label c
as M

c
x. We retrieve all masks Mx of the painting x from

which G(x) originates, and assign each generated patch to

the class label c of the mask M
c
x in which it falls. If a

patch belongs to different masks, it is also assigned to mul-

tiple classes. Then, generated patches assigned to a spe-

cific class c are paired with similar realistic patches in the

memory bank B
c, i.e. the bank containing realistic patches

with class label c. Given realistic patches belonging to B
c,
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Figure 3: Memory banks building. A segmentation

model [13] computes segmentation masks for each realis-

tic image in the dataset, then RGB patches belonging to the

same semantic class are placed in the same memory bank.

B
c = {bcj} and the set of generated patches with class label

c, Kc = {kci }, we center both sets with respect to the mean

of patches in B
c, and we compute pairwise cosine distances

as follows:

dcij =

(

1−
(kci − µc

b) · (b
c
j − µc

b)

‖kci − µc
b‖2
∥

∥bcj − µc
b

∥

∥

2

)

(1)

where µc
b = 1

Nc

∑

j b
c
j , being Nc the number of patches

in memory bank B
c. We compute a number of distance

matrices equal to the number of semantic classes found in

the original painting x. Pairwise distances are subsequently

normalized as follows:

d̃cij =
dcij

minl dcil + ǫ
, where ǫ = 1e− 5 (2)

and pairwise affinity matrices are computed by applying a

row-wise softmax normalization:

A
c
ij =

exp(1− d̃cij/h)
∑

l exp(1− d̃cil/h)
=

{

≈ 1 if d̃cij ≪ d̃cil ∀ l 6= j

≈ 0 otherwise

(3)

where h > 0 is a bandwidth parameter. Thanks to the

softmax normalization, each generated patch kci will have

a high-affinity degree with the nearest real patch and with

other not negligible near patches. Moreover, affinities are

computed only between generated and artistic patches be-

longing to the same semantic class.

Approximate affinity matrix. Computing the entire affin-

ity matrix would require an intractable computational over-

head, especially for classes with a memory bank containing

millions of patches. In fact matrix A
c has as many rows as

the number of patches of class c extracted from G(x) and

as many columns as the number of patches contained in the

memory bank B
c.

To speed up the computation, we build a suboptimal

Nearest Neighbors index I
c for each memory bank. When

the affinity matrix for a class c has to be computed, we con-

duct a k-NN search through I
c to get the k nearest samples

of each generated patch kci . In this way, Ac will be a sparse

matrix with at most as many columns as k times the num-

ber of generated patches of class c. The Softmax in Eq. 3

ensures that the approximated version of the affinity matrix

is very close to the exact one if the k-NN searches through

the indices are reliable. We adopt inverted indexes with ex-

act post-verification, implemented in the Faiss library [19].

Patches are stored with their RGB values when memory

banks have less than one million vectors; otherwise, we use

a PCA pre-processing step to reduce their dimensionality,

and scalar quantization to limit the memory requirements

of the index.

Maximizing the similarity. A contextual loss [34] for each

semantic class in Mx aims to maximize the similarity be-

tween couples of patches with high affinity value:

Lc
CX(Kc,Bc) = − log

(

1

N c
K

(

∑

i

max
j

A
c
ij

))

(4)

where N c
K is the cardinality of the set of generated patches

with class label c. Our objective is the sum of the previously

computed single-class contextual losses over the different

classes found in Mx:

LCX(K,B) =
∑

c

− log

(

1

N c
K

(

∑

i

max
j

A
c
ij

))

(5)

where c assumes all the class label values of masks in Mx.

Note that masks in Mx are not constant during training: at

the beginning, they are computed on paintings, then they

are regularly extracted from G(x).

Multi-scale variant. To enhance the realism of generated

images, we adopt a multi-scale variant of the approach,

which considers different sizes and strides in the patch ex-

traction process. The set of memory banks is therefore

replicated for each scale, and G(x) is split at multiple scales

accordingly. Our loss function is given by the sum of the

values from Eq. 5 computed at each scale, as follows:

LCXMS(K,B) =
∑

s

Ls
CX(K,B) (6)

where each scale s implies a specific patch size and stride.

3.3. Unpaired imagetoimage translation baseline

Our objective assumes the availability of a generated im-

age G(x) which is, in our task, the representation of a paint-

ing in the photo-realistic domain. In our work, we adopt

a cycle-consistent adversarial framework [56] between the

domain of paintings from a specific artist X and the do-

main of realistic images Y . The data distributions are

x ∼ pdata(x) and y ∼ pdata(y), while G : X → Y and

F : Y → X are the mapping functions between the two
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domains. The two discriminators are denoted as DY and

DX . The full cycle-consistent adversarial loss [56] is the

following:

Lcca(G,F,DX , DY ) = LGAN (G,DY , X, Y )

+ LGAN (F,DX , Y,X)

+ Lcyc(G,F )

(7)

where the two adversarial losses are:

LGAN (G,DY , X, Y ) = Ey∼pdata(y)[logDY (y)]

+ Ex∼pdata(x)[log(1−DY (G(x)))]

(8)

LGAN (F,DX , Y,X) = Ex∼pdata(x)[logDX(x)]

+ Ey∼pdata(y)[log(1−DX(F (y)))]

(9)

and the cycle consistency loss, which requires the original

images x and y to be the same as the reconstructed ones,

F (G(x)) and G(F (y)) respectively, is:

Lcyc(G,F ) = Ex∼pdata(x)[‖F (G(x))− x‖]

+ Ey∼pdata(y)[‖G(F (y))− y‖].
(10)

3.4. Full objective

Our full semantically-aware translation loss is given by

the sum of the baseline objective, i.e. Eq. 7, and our patch-

level similarity loss, i.e. Eq. 6:

L(G,F,DX , DY ,K,B) = Lcca(G,F,DX , DY )

+ λLCXMS(K,B)
(11)

where λ controls our multi-scale contextual loss weight

with respect to the baseline objective.

4. Experimental results

Datasets. In order to evaluate our approach, different sets

of images, both from artistic and realistic domains, are used.

Our tests involve both sets of paintings from specific artists

and sets of artworks representing a given subject from dif-

ferent authors. We use paintings from Monet, Cezanne, Van

Gogh, Ukiyo-e style and landscapes from different artists

along with real photos of landscapes, keeping an underly-

ing relationship between artistic and realistic domains. We

also show results using portraits and real people photos. All

artworks are taken from Wikiart.org, while landscape pho-

tos are downloaded from Flickr through the combination

of tags landscape and landscapephotography. To

obtain people photos, images are extracted from the CelebA

dataset [31]. All the images are scaled to 256× 256 pixels,

and only RGB pictures are used. The size of each train-

ing set is, respectively, Monet: 1072, Cezanne: 583, Van

Gogh: 400, Ukiyo-e: 825, landscape paintings: 2044, por-

traits: 1714, real landscape photographs: 2048, real people

photographs: 2048.

Architecture and training details. To build generators and

discriminators, we adapt generative networks from Johnson

et al. [18], with two stride-2 convolutions to downsample

the input, several residual blocks and two stride-1/2 convo-

lutional layers for upsampling. Discriminative networks are

PatchGANs [16, 23, 25] which classify each square patch

of an image as real or fake.

Memory banks of real patches are built using all the

available real images, i.e. 2048 images both for landscapes

and for people faces, and are kept constant during training.

Masks of the paintings, after epoch 40, are regularly up-

dated every 20 epochs with those from the generated im-

ages. Patches are extracted at three different scales: 4 × 4,

8×8 and 16×16, using three different stride values: 4, 5 and

6 respectively. The same patch sizes and strides are adopted

when splitting the generated image, in order to compute

affinities and the contextual loss. We use a multi-scale con-

textual loss weight λ, in Eq. 11, equal to 0.1.

We train the model for 300 epochs through the Adam op-

timizer [21] and using mini-batches with a single sample.

A learning rate of 0.0002 is kept constant for the first 100
epochs, making it linearly decay to zero over the next 200
epochs. An early stopping technique is used to reduce train-

ing times. In particular, at each epoch the Fréchet Inception

Distance (FID) [12] is computed between our generated im-

ages and the set of real photos: if it does not decrease for

30 consecutive epochs, the training is stopped. We initialize

the weights of the model from a Gaussian distribution with

0 mean and standard deviation 0.02.

Competitors. To compare our results with those from state

of the art techniques, we train Cycle-GAN [56], UNIT [29]

and DRIT [24] approaches on the previously described

datasets. The adopted code comes from the authors’ im-

plementations and can be found in their GitHub reposito-

ries. The number of epochs and other training parameters

are those suggested by the authors, except for DRIT [24]:

to enhance the quality of the results generated by this com-

petitor, after contacting the authors we employed spectral

normalization and manually chose the best epoch through

visual inspection and by computing the FID [12] measure.

Moreover, being DRIT [24] a diverse image-to-image trans-

lation framework, its performance depends on the choice of

an attribute from the attribute space of the realistic domain.

For fairness of comparison, we generate a single realistic

image using a randomly sampled attribute. We also show

quantitative results of applying the style transfer approach

from Gatys et al. [7], with content images taken from the

realistic datasets and style images randomly sampled from

the paintings, for each set.
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Method Monet Cezanne Van Gogh Ukiyo-e Landscapes Portraits Mean

Original paintings 69.14 169.43 159.82 177.52 59.07 72.95 117.99

Style-transferred reals 74.43 114.39 137.06 147.94 70.25 62.35 101.07

DRIT [24] 68.32 109.36 108.92 117.07 59.84 44.33 84.64

UNIT [29] 56.18 97.91 98.12 89.15 47.87 43.47 72.12

Cycle-GAN [56] 49.70 85.11 85.10 98.13 44.79 30.60 65.57

Art2Real 44.71 68.00 78.60 80.48 35.03 34.03 56.81

Table 1: Evaluation in terms of Fréchet Inception Distance [12].

Art2Real Cycle-GAN [56] UNIT [29] DRIT [24] Style-transferred reals
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d
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Figure 4: Distribution of ResNet-152 features extracted from landscape and portrait images. Each row shows the results of

our method and competitors on a specific setting.

4.1. Visual quality evaluation

We evaluate the visual quality of our generated images

using both automatic evaluation metrics and user studies.

Fréchet Inception Distance. To numerically assess the

quality of our generated images, we employ the Fréchet

Inception Distance [12]. It measures the difference of

two Gaussians, and it is also known as Wasserstein-2 dis-

tance [46]. The FID d between a Gaussian G1 with mean

and covariance (m1, C1) and a Gaussian G2 with mean and

covariance (m2, C2) is given by:

d2(G1, G2) = ‖m1 −m2‖
2
2+Tr(C1+C2−2(C1C2)

1/2)
(12)

For our evaluation purposes, the two Gaussians are fitted on

Inception-v3 [42] activations of real and generated images,

respectively. The lower the Fréchet Inception Distance be-

tween these Gaussians, the more generated and real data

distributions overlap, i.e. the realism of generated images

increases when the FID decreases. Table 1 shows FID val-

ues for our model and a number of competitors. As it can

be observed, the proposed approach produces a lower FID

on all settings, except for portraits, in which we rank sec-

ond after Cycle-GAN. Results thus confirm the capabilities

of our method in producing images which looks realistic to

pre-trained CNNs.

Cycle-GAN [56] UNIT [29] DRIT [24]

Realism 36.5% 27.9% 14.2%

Coherence 48.4% 25.5% 7.3%

Table 2: User study results. We report the percentage of

times an image from a competitor was preferred against

ours. Our method is always preferred more than 50% of

the times.

Human judgment. In order to evaluate the visual quality

of our generated images, we conducted a user study on the

Figure Eight crowd-sourcing platform. In particular, we as-

sessed both the realism of our results and their coherence

with the original painting. To this aim, we conducted two

different evaluation processes, which are detailed as fol-

lows:

• In the Realism evaluation, we asked the user to select

the most realistic image between the two shown, both

obtained from the same painting, one from our method

and the other from a competitor;

• In the Coherence evaluation, we presented the user

the original painting and two generated images which

originate from it, asking to select the most faithful to

the artwork. Again, generated images come from our

method and a competitor.
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Original Painting Art2Real Cycle-GAN [56] UNIT [29] DRIT [24]

Figure 5: Qualitative results on portraits. Our method can preserve facial expressions and reduce the amount of artifacts with

respect to Cycle-GAN [56], UNIT [29], and DRIT [24].

Method Classification Segmentation Detection

Real Photos 3.99 0.63 2.03

Original paintings 4.81 0.67 2.58

Style-transferred reals 5.39 0.70 2.89

DRIT [24] 5.14 0.67 2.56

UNIT [29] 4.88 0.69 2.54

Cycle-GAN [56] 4.81 0.67 2.50

Art2Real 4.50 0.66 2.42

Table 3: Mean entropy values for classification, segmenta-

tion, and detection of images generated through our method

and through competitor methods.

Each test involved our method and one competitor at a time

leading to six different tests, considering three competitors:

Cycle-GAN [56], UNIT [29], and DRIT [24]. A set of 650

images were randomly sampled for each test, and each im-

age pair was evaluated from three different users. Each user,

to start the test, was asked to successfully evaluate eight ex-

ample pairs where one of the two images was definitely bet-

ter than the other. A total of 685 evaluators were involved

in our tests. Results are presented in Table 2, showing that

our generated images are always chosen more than 50% of

the times.

4.2. Reducing the domain shift

We evaluate the capabilities of our model to reduce the

domain shift between artistic and real data, by analyzing the

performance of pre-trained convolutional models and visu-

alizing the distributions of CNN features.

Entropy analysis. Pre-trained architectures show increased

performances on images synthesized by our approach, in

comparison with original paintings and images generated

by other approaches. We visualize this by computing the en-

tropy of the output of state of the art architectures: the lower

the entropy, the lower the uncertainty of the model about its

result. We evaluate the entropy on classification, seman-

tic segmentation, and detection tasks, adopting a ResNet-

152 [11] trained on ImageNet [6], Hu et al. [13]’s model and

Faster R-CNN [38] trained on the Visual Genome [22, 1],

respectively. Table 3 shows the average image entropy for

classification, the average pixel entropy for segmentation

and the average bounding-box entropy for detection, com-

puted on all the artistic, realistic and generated images avail-

able. Our approach is able to generate images which lower

the entropy, on average, for each considered task with re-

spect to paintings and images generated by the competitors.

Feature distributions visualization. To further validate the

domain shift reduction between real images and generated
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Original Painting Art2Real Cycle-GAN [56] UNIT [29] DRIT [24]

Figure 6: Qualitative results on landscape paintings. Results generated by our approach show increased realism and reduced

blur when compared with those from Cycle-GAN [56], UNIT [29], and DRIT [24].

ones, we visualize the distributions of features extracted

from a CNN. In particular, for each image, we extract a vi-

sual feature vector coming from the average pooling layer

of a ResNet-152 [11], and we project it into a 2-dimensional

space by using the t-SNE algorithm [32]. Fig. 4 shows the

feature distributions on two different sets of paintings (i.e.,

landscapes and portraits) comparing our results with those

of competitors. Each plot represents the distribution of vi-

sual features extracted from paintings belonging to a spe-

cific set, from the corresponding images generated by our

model or by one of the competitors, and from the real pho-

tographs depicting landscapes or, in the case of portraits,

human faces. As it can be seen, the distributions of our gen-

erated images are in general closer to the distributions of

real images than to those of paintings, thus confirming the

effectiveness of our model in the domain shift reduction.

4.3. Qualitative results

Besides showing numerical improvements with respect

to state of the art approaches, we present some qualitative

results coming from our method, compared to those from

Cycle-GAN [56], UNIT [29], and DRIT [24]. We show ex-

amples of landscape and portrait translations in Fig. 5 and

6. Many other samples from all settings can be found in

the Supplementary material. We observe increased realism

in our generated images, due to more detailed elements and

fewer blurred areas, especially in the landscape results. Por-

trait samples reveal that brush strokes disappear completely,

leading to a photo-realistic visualization. Our results con-

tain fewer artifacts and are more faithful to the paintings,

more often preserving the original facial expression.

5. Conclusion

We have presented Art2Real, an approach to translate

paintings to photo-realistic visualizations. Our research is

motivated by the need of reducing the domain gap between

artistic and real data, which prevents the application of re-

cent techniques to art. The proposed approach generates

realistic images by copying from sets of real images, in a

semantically aware manner and through efficient memory

banks. This is paired with an image-to-image translation ar-

chitecture, which ultimately leads to the final result. Quanti-

tative and qualitative evaluations, conducted on artworks of

different artists and styles, have shown the effectiveness of

our method in comparison with image-to-image translation

algorithms. Finally, we also showed how generated images

can enhance the performance of pre-trained architectures.
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