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Abstract

Deep convolutional neural networks trained end-to-end

are the state-of-the-art methods to regress dense disparity

maps from stereo pairs. These models, however, suffer from

a notable decrease in accuracy when exposed to scenarios

significantly different from the training set (e.g., real vs syn-

thetic images, etc.). We argue that it is extremely unlikely to

gather enough samples to achieve effective training/tuning

in any target domain, thus making this setup impractical for

many applications. Instead, we propose to perform unsu-

pervised and continuous online adaptation of a deep stereo

network, which allows for preserving its accuracy in any en-

vironment. However, this strategy is extremely computation-

ally demanding and thus prevents real-time inference. We

address this issue introducing a new lightweight, yet effec-

tive, deep stereo architecture, Modularly ADaptive Network

(MADNet), and developing a Modular ADaptation (MAD)

algorithm, which independently trains sub-portions of

the network. By deploying MADNet together with

MAD we introduce the first real-time self-adaptive

deep stereo system enabling competitive performance

on heterogeneous datasets. Our code is publicly

available at https://github.com/CVLAB-Unibo/

Real-time-self-adaptive-deep-stereo.

1. Introduction

Many key tasks in computer vision rely on the availabil-

ity of dense and reliable 3D reconstructions of the sensed

environment. Due to high precision, low latency and afford-

able costs, passive stereo has proven particularly amenable

to depth estimation in both indoor and outdoor set-ups. Fol-

lowing the groundbreaking work by Mayer et al [21], cur-

rent state-of-the-art stereo methods rely on deep convolu-

tional neural networks (CNNs) that take as input a pair of

left-right frames and directly regress a dense disparity map.

In challenging real-world scenarios, like the popular KITTI

benchmarks [8, 23], these networks turn out to be more ef-

fective, and sometimes faster, than traditional algorithms.

As recently highlighted in [40, 25], learnable models suf-

fer from loss in performance when tested on unseen scenar-

ios due to the domain shift between training and testing data

- often synthetic and real, respectively. Good performance

can be regained by fine-tuning on few annotated samples

from the target domain. Yet, obtaining groundtruth labels

requires the use of costly active sensors (e.g., LIDAR) and

noise removal by expensive manual intervention or post-

processing [43]. Recent works [40, 25, 46, 10, 45] pro-

posed to overcome the need for labels with unsupervised

losses that require only stereo pairs from the target domain.

Although effective, these techniques are inherently limited

by the number of samples available at training time. Un-

fortunately, for many tasks, like autonomous driving, it is

unfeasible to acquire, in advance, samples from all possi-

ble deployment domains (e.g., every possible road and/or

weather condition).

We propose to address the domain shift issue by cast-

ing adaptation as a continuous learning process whereby

a stereo network can evolve online based on the images

gathered by the camera during its real deployment. We

believe that the ability to continually adapt itself in real-

time is key to any deep learning machinery intended to

work in real scenarios. We achieve continuous online adap-

tation by: deploying one of the unsupervised losses pro-

posed in literature (i.e., [6, 10, 40, 45]); computing error

signals on the current frames; updating the whole network

by back-propagation (from now on shortened as back-prop);

and moving to the next pair of input frames. However,

such adaptation reduces inference speed greatly. There-

fore, to keep a high enough frame rate we propose a novel

Modularly ADaptive Network (MADNet) architecture de-

signed to be lightweight, fast and modular. This architec-

ture exhibits accuracy comparable to DispNetC [21] using

one-tenth parameters, runs at around 40 FPS for disparity

inference and performs an online adaptation of the whole

network at around 15 FPS. Moreover, to achieve an even

higher frame rate during adaptation, at the cost of a slight

loss in accuracy, we develop a Modular ADaptation (MAD)

algorithm that leverages the modular architecture of MAD-
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Figure 1. Disparity maps predicted by MADNet on a KITTI sequence [7]. Left images (a), no adaptation (b), online adaptation of the whole

network (c), online adaptation by MAD (d). Green pixel values indicate larger disparities (i.e., closer objects).

Net in order to train sub-portions of the whole network inde-

pendently. Using MADNet together with MAD we can adapt

our network to unseen environments without supervision at

approximately 25 FPS.

Fig. 1 shows the disparity maps predicted by MADNet

on three successive frames of a video sequence from the

KITTI dataset [7]: without undergoing any adaptation - row

(b); by adapting online the whole network - row (c); and

by our computationally efficient MAD approach - row (d).

Rows (c) and (d) show how online adaptation can improve

the quality of the predicted disparity maps significantly in

as few as 150 frames (i.e., a latency of about 10 seconds

for complete online adaptation and 6 seconds for MAD).

Extensive experimental results support our three main novel

contributions:

• We cast adaptation as an online task instead of a

phase prior to deployment, as previously proposed in

[40, 25]. We prove that, despite a transition phase, per-

formance of popular networks [21] with adaptation are

comparable to extensive offline fine-tuning.

• We propose an extremely fast, yet accurate network

for stereo matching, MADNet. Compared to the fastest

model in literature [18], MADNet ranks higher on the

online KITTI leader-board [23] and runs faster on the

low power NVIDIA Jetson TX2. Moreover, compared

to DispNetC, MADNet adapts better to unseen environ-

ments.

• We propose MAD, a novel training paradigm suited to

MADNet that trades accuracy for speed and allows for

significantly faster online adaptation (i.e., 25FPS). De-

spite this, given sufficiently long sequences, we can

achieve comparable accuracy while keeping the speed

advantage.

To the best of our knowledge, the synergy between

MADNet and MAD realizes the first-ever real-time, self-

adapting, deep stereo system.

2. Related work

Machine learning for stereo. Early attempts to leverage

machine learning for stereo matching concerned estimat-

ing confidence measures [31], by random forest classifiers

[12, 38, 26, 28] and – later – by CNNs [29, 36, 42], typically

plugged into conventional pipelines to improve accuracy.

CNN based matching cost functions [44, 5, 20] achieved

state-of-the-art on both KITTI and Middlebury v3 by re-

placing conventional cost functions [14] within the SGM

pipeline [13]. Eventually, Shaked and Wolf [37] proposed

to rely on deep learning for both matching cost computa-

tion and disparity selection, while Gidaris and Komodakis

[9] for refinement. Mayer et al [21] proposed the first end-

to-end stereo architecture. Although not achieving state-of-

the-art accuracy, this seminal work turned out quite disrup-

tive compared to the traditional stereo paradigm outlined in

[35], highlighting the potential for a totally new approach.

Thereby, [21] ignited the spread of end-to-end stereo archi-

tectures [17, 24, 19, 4, 16, 11] that quickly outmatched any

other technique on the KITTI benchmarks by leveraging on

a peculiar training protocol. In particular, the deep network

is initially trained on a large amount of synthetic data with

groundtruth labels [21] and then fine-tuned on the target do-

main (e.g., KITTI) based on stereo pairs with groundtruth.

All these contributions focused on accuracy, only recently

Khamis et al [18] proposed a deep stereo model with a high

enough frame rate to qualify for online usage at the cost of

sacrificing accuracy. We will show how in our MADNet this

tradeoff is more favourable. Unfortunately, all those mod-

els are particularly data dependent and their performance

dramatically decay when running in environments different
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Figure 2. Sketch of MADNet architecture (a), each circle between an Fk and Dk represents a warp and correlation layer (c). Each pair

(Fi,Di) composes a module Mi, adaptable independently by MAD,blue arrow in (b), faster than full back-prop, red arrow in (a).

from those observed at training time, as shown in [40]. Bat-

sos et al [2] soften this effect by combining traditional func-

tions and confidence measures [15, 31] within a random

forest framework, proving better generalization compared

to CNN-based method [44]. Finally, guiding end-to-end

CNNs with external depth measurements (e.g.Lidar) allows

for reducing the domain-shift effect, as reported in [30].

Image reconstruction for unsupervised learning. A

recent trend to train depth estimation networks in an unsu-

pervised manner relies on image reconstruction losses. In

particular, for monocular depth estimation this is achieved

by warping different views, coming from stereo pairs or

image sequences, and minimizing the reconstruction error

[6, 47, 10, 45, 27, 32, 41]. This principle has also been used

for optical flow [22] and stereo [46]. For the latter task,

alternative unsupervised learning approaches consist in de-

ploying traditional stereo algorithms and confidences [40]

or combining by iterative optimization the predictions ob-

tained at multiple resolutions [25]. However, we point out

that both works have addressed offline training only, while

we propose to solve the very same problem casting it as an

online (thus fast) adaptation to unseen environments.

3. Online Domain Adaptation

Modern machine learning models reduce their accuracy

when tested on data significantly different from the training

set, an issue commonly referred to as domain shift. Despite

all the research work to soften this issue, the most effective

practice still relies on additional offline training on samples

from the target environments. The domain shift curse is

inherently present in deep stereo networks since most train-

ing iterations are performed on synthetic images quite dif-

ferent from real ones. Then, adaptation can be effectively

achieved by fine-tuning the model offline on samples from

the target domain by relying on expensive annotations or

unsupervised loss functions [6, 10, 40, 45].

In this paper we move one step further arguing that adap-

tation can be effectively performed online as soon as new

frames are available, thereby obtaining a deep stereo system

capable of adapting itself dynamically. For our online adap-

tation strategy we do not rely on the availability of ground-

truth annotations and, instead, use one of the proposed un-

supervised losses. To adapt the model we perform on-the-

fly a single train iteration (forward and backward pass) for

each incoming stereo pair. Therefore, our model is always

in training mode and continuously fine-tuning to the sensed

environment.

3.1. MADNet  Modularly ADaptive Network

One of the main limitations that have prevented explo-

ration of online adaptation is the computational cost of per-

forming a full train iteration for each incoming frame. In-

deed, we will show experimentally how it roughly corre-

sponds to a reduction of the inference rate of the system to

roughly one third, a price far too high to be paid with most

modern architectures. To address this issue, we have de-

veloped Modularly ADaptive Network (MADNet), a novel

lightweight model for depth estimation inspired by fast, yet

accurate, architectures proposed for optical flow [33, 39].

We deploy a pyramidal strategy for dense disparity re-

gression for two key purposes: i) maximizing speed and ii)

obtaining a modular architecture as depicted in Fig. 2. Two

pyramidal towers extract features from the left and right

frames through a cascade of independent modules sharing

the same weights. Each module consists of convolutional

blocks aimed at reducing the input resolution by two 3 × 3
convolutional layers, respectively with stride 2 and 1, fol-

lowed by Leaky ReLU non-linearities. According to Fig. 2,

we count 6 blocks providing us with feature F from half

resolution to 1/64, namely F1 to F6, respectively. These

blocks extract 16, 32, 64, 96, 128 and 192 features.

At the lowest resolution (i.e., F6), we forward features

from left and right images into a correlation layer [21] to

get the raw matching costs. Then, we deploy a disparity

decoder D6 consisting of 5 additional 3 × 3 convolutional

layers, with 128, 128, 96, 64, and 1 output channels. Again,

each layer is followed by Leaky ReLU, except the last one,

which provides the disparity map at the lowest resolution.

Then, D6 is up-sampled to level 5 by bilinear inter-

polation and used both for warping right features towards

left ones before computing correlations and as input to D5.

Thanks to our design, from D5 onward, the aim of the dis-

parity decoders Dk is to refine and correct the up-scaled
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disparities coming from the lower resolution. In our de-

sign, the correlation scores computed between the original

left and right features aligned according to the lower resolu-

tion disparity prediction guide the network in the refinement

process. We compute all correlations inside our network

along a [-2,2] range of possible shifts.

This process is repeated up to quarter resolution (i.e.,

D2), where we add a further refinement module consisting

of 3 × 3 dilated convolutions [39], with, respectively 128,

128, 128, 96, 64, 32, 1 output channels and 1, 2, 4, 8, 16, 1,

1 dilation factors, before bilinearly upsampling to full res-

olution. Additional details on the MADNet architecture are

provided in the supplementary material.

MADNet has a smaller memory footprint and delivers

disparity maps much more rapidly than other more complex

networks such as [17, 4, 19] with a small loss in accuracy.

Concerning efficiency, working at decimated resolutions al-

lows for computing correlations on a small horizontal win-

dow [39], while warping features and forwarding disparity

predictions across the different resolutions enables to main-

tain a small search range and look for residual displace-

ments only. With a 1080Ti GPU, MADNet runs at about 40

FPS at KITTI resolution and can perform online adaptation

with full back-prop at 15 FPS.

3.2. MAD  Modular ADaptation

As we will show, MADNet is remarkably accurate with

full online adaptation at 15 FPS. However, for some ap-

plications, it might be desirable to achieve a higher frame

rate without losing the adaptation ability. Most of the

time needed to perform online adaptation is spent executing

back-prop and weights update across all the network layers.

A naive way to speed up the process will be to freeze the

initial part of the network and fine tune only a subset of k
final layers, thus realizing a shorter back-prop that would

yield a higher frame rate. However, there is no guarantee

that these last k layers are indeed those that would bene-

fit most from online fine-tuning. For example, the initial

layers of the network should be probably adapted alike, as

they directly interact with the images from a new, unseen,

domain. In Sec. 4.5 we will provide experimental results

to show that training only the final layers is not enough for

handling the drastic domain changes that typically occur in

practical applications.

Following the key intuition that to keep up with fast in-

ference we should pursue a partial, though effective, on-

line adaptation, we developed Modular ADaptation (MAD)

an online adaptation algorithm tailored to MADNet, though

possibly extendable to any multi-scale inference network.

Our method takes a network N and subdivides it into p
non-overlapping portions, each referred to as module Mi,

i ∈ [1, p], such that N = [M1,M2, ..Mp]. Each Mi

ends with a final layer able to output a disparity estima-
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Figure 3. Example of reward/punishment mechanism. X axis

shows time while Y histogram values. At time t, the most proba-

ble module selected for adaptation is M3. After two steps (t+2),

its probability gets demoted in favour of M4.

tion yi. Thanks to its design, decomposing our network is

straightforward by grouping layers working at the same res-

olution i from both Fi and Di into a single module Mi, e.g.,

M3 = (F3,D3). At each training iteration, thus, we can

optimize one of the modules independently from the others

by using the prediction yi to compute a loss function and

then executing the shorter back-prop only across the lay-

ers of Mi. For instance to optimize M3 we would use y3
to compute a loss function and back-prop only through D3

and F3 following the blue path in Fig. 2 (b). Conversely,

full back-prop would follow the much longer red path in

Fig. 2 (a). This paradigm allows for

• Interleaved optimization of different Mi, thereby ap-

proximating full back-prop over time while gaining

considerable speed-up.

• Fast adaptation of single modules, which instantly pro-

vides benefits to the overall accuracy of the whole net-

work thanks to its cascade architecture.

At deployment time, for each incoming stereo pair, we

run a forward pass to obtain all estimates [y1, . . . , yp] at

each resolution, then we choose a portion θ ∈ [1, . . . , p]
of the network to train according to some heuristic and fi-

nally update Mθ according to a loss computed on yθ. We

consider a valid heuristic any function that outputs a prob-

ability distribution among the p modules of N from which

we could perform sampling.

3.3. Reward/punishment selection

Among different functions, we obtained good results us-

ing a reward/punishment mechanism. We start by creating a

histogram H with p bins (i.e., one per module) all initialized

to 0. For each stereo pair we perform a forward pass to get

the disparity predictions yi and measure the performance of

the model by computing a loss Lt using the full resolution

disparity y and the input frames x (e.g., reprojection error

between left and warped right frames as in [10]). Then, we

sample the portion to train θ ∈ [1, . . . , p] from a probability
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distribution obtained applying the softmax function to the

value of the bins in (H):

θt ∼ softmax(H). (1)

We can compute one optimization step for layers of Mθt

with respect to the loss L
θt
t computed on the lower scale

prediction yθt . We have now partially adapted the network

to the current environment. At the following iteration, we

update H before choosing the new θt, increasing the prob-

ability of being sampled for the Mθt−1
that have proven

effective. To do so we compute a noisy expected value for

Lt by linear extrapolation of the losses at the previous two-

time steps

Lexp = 2 · Lt−1 − Lt−2, (2)

and quantify the effectiveness of the last module optimized

as

γ = Lexp − Lt. (3)

Finally, we can change the value of H[θt] according to γ,

i.e. effective adaptation will have Lexp > Lt, thus γ > 0.

We found out that adding a temporal decay to H increases

the stability of the system, leading to the following update

rule

H = 0.99 · H

H[θt−1] = H[θt−1] + 0.01 · γ
(4)

Additional pseudo code to detail this heuristic is available

in the supplementary material.

Fig. 3 shows an example of histogram H at generic time

frames t and t + 2, highlighting the transition from M3 to

M4 as most probable module thanks to the aforementioned

mechanism.

4. Experimental results

4.1. Evaluation protocol and implementation

To properly address practical deployment scenarios in

which there are no ground-truth data available for fine-

tuning in the actual testing environments, we train our stereo

network using synthetic data only [21]. More details regard-

ing the training process can be found in the supplementary

material.

To test the online adaptation we use those weights as

a common initialization and carry out an extensive evalu-

ation on the large and heterogeneous KITTI raw dataset [7]

with depth labels [43] converted into disparities by know-

ing the camera parameters. Overall, we assess the effective-

ness of our proposal on 43k images. Specifically, according

to the KITTI classification, we evaluate our framework in

four heterogeneous environments, namely Road, Residen-

tial, Campus and City, obtained by concatenation of the

available video sequences and resulting in 5674, 28067,

1149 and 8027 frames respectively. Although these se-

quences are all concerned with driving scenarios, each has

peculiar traits that would lead deep stereo model to gross

errors without suitable fine-tuning in the target domain. For

example, City and Residential often depict road surrounded

by buildings, while Road concerns mostly highways and

country roads, where the most common objects are cars and

vegetation.

By processing stereo pairs within sequences, we can

measure how well the network adapts, by either full back-

prop or MAD, to the target domain compared to a model

trained offline. For all experiments, we analyze both av-

erage End Point Error (EPE) and the percentage of pixels

with disparity error larger than 3 (D1-all). Due to the image

format being different for each sequence, we extract a cen-

tral crop of size 320 × 1216 from each frame, which suits

to the downsampling factor of our architecture and allows

for validating almost all pixels with available ground-truth

disparities.

Finally, we highlight that for both full back-prop and

MAD, we compute the error rate on each frame before ap-

plying the model adaptation step. That is, we measure

performances achieved by the current model on the stereo

frame at time t and then adapt it according to the current

prediction. Therefore, the model update carried out at time t
will affect the prediction only from frame t+1 and so on. As

unsupervised loss for online adaptation, we rely on the pho-

tometric consistency between the left frame and the right

one reprojected according to the predicted disparity. Fol-

lowing [10], to compute the reprojection error between the

two images we combine the Structural Similarity Measure

(SSIM) and the L1 distance, weighted by 0.85 and 0.15, re-

spectively. We selected this unsupervised loss function as it

is the fastest to compute among those proposed in literature

[40, 25, 46] and does not require any additional information

besides a pair of stereo images. Further details are available

in the supplementary material.

4.2. MADNet performance

Before assessing the performance obtainable through on-

line adaptation, we test the effectiveness of MADNet by fol-

lowing the canonic two-phase training using synthetic [21]

and real data. Thus, after training on synthetic data, we

perform fine-tuning on the training sets of KITTI 2012 and

KITTI 2015 and submit to the KITTI 2015 online bench-

mark. Additional details on the fine-tuning protocol are

provided in the supplementary material. On Tab. 1 we

report our result compared to other (published) fast infer-

ence architectures on the leaderboard (runtime measured on

NVIDIA 1080Ti) as well as with a slower and more accu-

rate one, GWCNet [11]. At the time of writing, our method

ranks 90th. Despite the mid-rank achieved in terms of ab-
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GWCNet [11] DispNetC [21] StereoNet [18] MADNet

D1-all 2.11 4.34 4.83 4.66

Time 0.32 0.06 0.02 0.02

Table 1. Comparison between stereo architectures on the KITTI

2015 test set without adaptation. Detailed results available in the

KITTI online leader-board.

solute accuracy, MADNet compares favorably to StereoNet

[18] ranked 92nd, the only other high frame rate proposal

on the KITTI leaderboard. Moreover, we get close to the

performance of the original DispNetC [21] while using 1

10

of the parameters and running more than twice faster.

4.3. Online adaptation

We will now show how online adaptation is an effec-

tive paradigm, comparable, or better, to offline fine-tuning.

Tab. 2 reports extensive experiments on the four different

KITTI environments. We report results achieved by i) Disp-

NetC [21] implemented in our framework and trained, from

top to bottom, on synthetic data following authors’ guide-

lines, using online adaptation or fine-tuned on groundtruth

and ii) MADNet trained with the same modalities and, also,

using MAD. These experiments, together to Sec. 4.2, sup-

port the three-fold claim of this work.

DispNetC: Full adaptation. On top of Tab. 2, focusing

on the D1-all metric, we can notice how running full back-

prop online to adapt DispNetC [21] decimates the number

of outliers on all scenarios compared to the model trained

on the synthetic dataset only. In particular, this approach

can consistently halve D1-all on Campus, Residential and

City and nearly reduce it to one third on Road. Alike, the

average EPE drops significantly across the four considered

environments, with improvement as high as a nearly 40%
relative improvement on the Road sequences. These mas-

sive gains in accuracy, though, come at the price of slow-

ing the network down significantly to about one-third of the

original inference rate, i.e. from nearly 16 to 5.22 FPS. As

mentioned above, the Table also reports the performance

of the models fine-tuned offline on the 400 stereo pairs

with groundtruth disparities from the KITTI 2012 and 2015

training dataset [23, 8]. It is worth pointing out how online

adaptation by full back-prop turns out competitive to fine-

tuning offline by groundtruth, and even more accurate in the

Residential environment. This fact may hint at training usu-

pervisedly by a more considerable amount of data possibly

delivering better models than supervision by fewer data.

MADNet: Full adaptation. On bottom of Tab. 2 we

repeat the aforementioned experiments for MADNet. Due

to the much higher errors yielded by the model trained on

synthetic data only, full online adaptation turns out even

more beneficial with MADNet, leading to a model which

is more accurate than DispNetC with Full adaptation in all

sequences but Campus and can run nearly three times faster

(i.e. at 14.26 FPS compared to the 5.22 FPS of DispNetC-

Full). These results also highlight the inherent effective-

ness of the proposed MADNet. Indeed, as vouched by the

rows dealing with MADNet-GT and DispNetC-GT, using

for both our implementations and training them following

the same standard procedure in the field (i.e., pretraining

on synthetic data and fine-tuning on KITTI training sets),

MADNet yields better accuracy than DispNetC while run-

ning about 2.5 times faster.

MADNet: MAD. Once proved that online adaptation is

feasible and beneficial, we show that MADNet employing

MAD for adaptation (marked as MAD in column Adapt.)

allows for effective and efficient adaptation. Since the pro-

posed heuristic has a non-deterministic sampling step, we

have run the tests regarding MAD five times each and re-

ported here the average performance. We refer the reader to

Sec. 4.5 for analysis on the standard deviation across differ-

ent runs. Indeed, MAD provides a significant improvement

in all the performance figures reported in the table compared

to the corresponding models trained by synthetic data only.

Using MAD, MADNet can be adapted paying a relatively

small computational overhead which results in a remark-

ably fast inference rate of about 25 FPS. Overall, these re-

sults highlight how, whenever one has no access to training

data from the target domain beforehand, online adaptation

is feasible and worth. Moreover, if speed is a concern MAD-

Net combined with MAD provides a favourable trade-off be-

tween accuracy and efficiency.

Short-term Adaptation. Tab. 2 also shows how all

adapted models perform significantly worse on Campus

compared the other sequences. We ascribe this mainly to

Campus featuring fewer frames (1149) compared the other

sequences (5674, 28067, 8027), which implies a corre-

spondingly lower number of adaptation steps executed on-

line. Indeed, a key trait of online adaptation is the capabil-

ity to improve performance as more and more frames are

sensed from the environment. This favourable behaviour,

not captured by the average error metrics reported in Tab. 2,

is highlighted in Fig. 4, which plots the D1-all error rate

over time for MADNet models in the four modalities. While

without adaptation the error keeps being always large, mod-

els adapted online clearly improve over time such that, af-

ter a certain delay, they become as accurate as the model

that could have been obtained by offline fine-tuning had

groundtruth disparities been available. In particular, full

online adaptation achieves performance comparable to fine-

tuning by the groundtruth after 900 frames (i.e., about 1

minute) while for MAD it takes about 1600 frames (i.e., 64

seconds) to reach an almost equivalent performance level

while providing a substantially higher inference rate (∼ 25
vs ∼ 15).

Long-term Adaptation. As Fig. 4 hints, online adapta-

tion delivers better performance processing a higher number
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City Residential Campus Road

Model Adapt. D1-all(%) EPE D1-all(%) EPE D1-all(%) EPE D1-all(%) EPE FPS

DispNetC No 8.31 1.49 8.72 1.55 15.63 2.14 10.76 1.75 15.85

DispNetC Full 4.34 1.16 3.60 1.04 8.66 1.53 3.83 1.08 5.22

DispNetC-GT No 3.78 1.19 4.71 1.23 8.42 1.62 3.25 1.07 15.85

MADNet No 37.42 9.96 37.41 11.34 51.98 11.94 47.45 15.71 39.48

MADNet Full 2.63 1.03 2.44 0.96 8.91 1.76 2.33 1.03 14.26

MADNet MAD 5.82 1.51 3.96 1.31 23.40 4.89 7.02 2.03 25.43

MADNet-GT No 2.21 0.80 2.80 0.91 6.77 1.32 1.75 0.83 39.48

Table 2. Performance on the City, Residential, Campus and Road sequences from KITTI [7]. Experiments with DispNetC [21] (top) and

MADNet (bottom) with and without online adaptations. -GT variants are fine-tuned on KITTI training set groundtruth.

Model Adapt. D1-all(%) EPE FPS

DispNetC No 9.09 1.58 15.85

DispNetC Full 3.45 1.04 5.22

DispNetC-GT No 4.40 1.21 15.85

MADNet No 38.84 11.65 39.48

MADNet Full 2.17 0.91 14.26

MADNet MAD 3.37 1.11 25.43

MADNet-GT No 2.67 0.89 39.48

Table 3. Results on the full KITTI raw dataset [7] (Campus → City

→ Residential → Road).

of frames. In Tab. 3 we report additional results obtained by

concatenating together the four environments without net-

work resets to simulate a stereo camera traveling across dif-

ferent scenarios for ∼ 43000 frames. Firstly, Tab. 3 shows

how both DispNetC and MADNet models adapted online

by full back-prop yield much smaller average errors than in

Tab. 2, as small, indeed, as to outperform the corresponding

models fine-tuned offline by groundtruth labels. Hence, per-

forming online adaptation through long enough sequences,

even across different environments, can lead to more accu-

rate models than offline fine-tuning on few samples with

groundtruth, which further highlights the great potential

of our proposed continuous learning formulation. More-

over, when leveraging on MAD for the sake of run-time

efficiency, MADNet attains larger accuracy gains through

continuous learning than before (Tab. 3 vs. Tab. 2) shrink-

ing the performance gap between MAD and Full back-prop.

We believe that this observation confirms the results plotted

in Fig. 4: MAD needs more frame to adapt the network to a

new environment, but given sequences long enough can suc-

cessfully approximate full back propagation over time (i.e.,

0.20 EPE difference and 1.2 D1-all between the two adapta-

tion modalities on Tab. 3) while granting nearly twice FPS.

On long term (e.g., beyond 1500 frames on Fig. 4) running

MAD, full adaptation or offline tuning on groundtruth grants

equivalent performance. Besides Fig. 1, we report qualita-

tive results in the supplementary material as two video se-

quences regarding outdoor [7] and indoor [1] environments.

4.4. Additional results

Here we show the generality of MAD on environments

different from those depicted in the KITTI dataset. To this

Adaptation Mode D1-all(%) EPE FPS

No 38.84 11.65 39.48

Last layer 38.33 11.45 38.25

Refinement 31.89 6.55 29.82

D2+Refinement 18.84 2.87 25.85

MAD-SEQ 3.62 1.15 25.74

MAD-RAND 3.56 (±0.05) 1.13 (±0.01) 25.77

MAD-FULL 3.37 (±0.1) 1.11 (±0.01) 25.43

Table 4. Results on the KITTI raw dataset [7] using MADNet

trained on synthetic data and different fast adaptation strategies

purpose, we run aimed experiments on the Sintel [3] and

Middlebury [34] datasets and plot EPE trends for both Full

and Mad adaptation on Fig. 5. This evaluation allows for

measuring the performance on a short sequence concate-

nated multiple times (i.e., Sintel) or when adapting on the

same stereo pair (i.e., Middlebury) over and over.

On Middlebury (top) we perform 300 steps of adaptation

on the Motorcycle stereo pair. The plots clearly show how

MAD converges to the same accuracy of Full after around

300 steps while maintaining real-time processing (25.6 FPS

on image scaled to a quarter of the original resolution). On

Sintel (bottom), we adapt to the Alley-2 sequence looped

over 10 times. We can notice how the very few, i.e. 50,

frames of the sequence are not enough to achieve good per-

formance with MAD, since it performs the best on long-term

adaptation as highlighted before. However, by looping over

the same sequence, we can perceive how MAD gets closer

to full adaptation, confirming the behavior already experi-

mented on the KITTI environments.

4.5. Different online adaptation strategies

We carried out additional tests on the whole KITTI RAW

dataset [7] and compared performance obtainable deploying

different fast adaptation strategies for MADNet. Results are

reported on Tab. 4 together with those concerning a network

that does not perform any adaptation.

First, we compared MAD keeping the weights of the

initial portions of the network frozen and training only:

the last layer, the Refinement module or both D2 and Re-

finement modules. Then, since MAD consists in splitting

the network into independent portions and choosing which

one to train, we compare our full proposal (MAD-FULL)
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Figure 4. MADNet: error across frames in the 2011 09 30 drive 0028 sync sequence (KITTI dataset, Residential environment).
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Figure 5. End-Point Error (EPE) on Middlebury Motorcycle pair

(top) and Sintel Alley-2 sequence (bottom) looped over 10 times.

to keeping the split and choosing the portion to train ei-

ther randomly (MAD-RAND) or using a round-robin sched-

ule (MAD-SEQ). Since MAD-FULL and MAD-RAND fea-

ture non-deterministic sampling steps, we report their aver-

age performance obtained across 5 independent runs on the

whole dataset with the corresponding standard deviations

between brackets.

By comparing the first four entries with the ones featur-

ing MAD we can see how training only the final layers is

not enough to successfully perform online adaptation. Even

training as many as 13 last layers (i.e., D2+Refinement),
at a computational cost comparable with MAD, we are at

most able to halve the initial error rate, with performance

still far from optimal. The three variants of MAD by train-

ing the whole network can successfully reduce the D1-all

to 1

10
of the original. Among the three options, our pro-

posed layer selection heuristic provides the best overall per-

formance even taking into account the slightly higher stan-

dard deviation caused by our sampling strategy. Moreover,

the computational cost to pay to deploy our heuristic is neg-

ligible losing only 0.3 FPS compared to the other two op-

tions.

4.6. Deployment on embedded platforms

All the tests reported so far have been executed on a PC

equipped with an NVIDIA 1080 Ti GPU. Unfortunately, for

many application like robotics or autonomous vehicles, it

is unrealistic to rely on such high end and power-hungry

hardware. However, one of the key benefits of MADNet

is its lightweight architecture conducive to easy deploy-

ment on low-power embedded platforms. Thus, we eval-

uated MADNet on an NVIDIA Jetson TX2 when process-

ing stereo pairs at the full KITTI resolution and compared it

to StereoNet [18] implemented using the same framework

(i.e., the same level of optimization). We measured 0.26s
for a single forward of MADNet versus 0.76-0.96s required

by StereoNet, with 1 or 3 refinement modules respectively.

Thus, for embedded applications MADNet is an appealing

alternative to [18] since it is both faster and more accurate.

5. Conclusions and future work

The proposed online unsupervised fine-tuning approach

can successfully tackle the domain adaptation issue for deep

end-to-end disparity regression networks. We believe this to

be key to practical deployment of these potentially ground-

breaking deep learning systems in many relevant scenarios.

For applications in which inference time is critical, we have

proposed MADNet, a novel network architecture, and MAD,

a strategy to effectively adapt it online very efficiently. We

have shown how MADNet together with MAD can adapt to

new environments by keeping a high prediction frame rate

(i.e., 25FPS) and yielding better accuracy than popular al-

ternatives like DispNetC. As main topic for future work,

we plan to test and possibly extend MAD to any end-to-end

stereo system. We would also like to investigate alterna-

tive approaches to select the portion of the network to be

updated online at each step.
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