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Abstract

We present a coordinate-free description of Carlsson-
Weinshall duality between scene points and camera pin-
holes and use it to derive a new characterization of pri-
mal/dual multi-view geometry. In the case of three views,
a particular set of reduced trilinearities provide a novel
parameterization of camera geometry that, unlike existing
ones, is subject only to very simple internal constraints.
These trilinearities lead to new “quasi-linear” algorithms
for primal and dual structure from motion. We include some
preliminary experiments with real and synthetic data.

1. Introduction

The idea of picking a few scene features as anchors to
simplify the solution of structure-from-motion (SFM) prob-
lems dates back to the 1990s, notably with the pioneering
work of Koenderink & van Doorn [13] and Faugeras [4],
among others [10, 16]. This approach involves fewer pa-
rameters than traditional ones [4, 13] and leads to the so-
called Carlsson-Weinshall (in this presentation, CW) dual-
ity [1], where camera pinholes and scene points play sym-
metric roles and can easily be swapped in SFM algorithms.
However, methods based on this type of “relative” multi-
view geometry are reputed to lead to poor-quality recon-
structions, in part because the corresponding algorithms
do not benefit from traditional data preconditioning meth-
ods [8]. We propose to revisit this approach from a geo-
metric perspective, shedding new light on some well-known
problems with a string of new results (Props. 2.3, 2.5, 3.4,
4.3), and dispelling through experiments some of its bad
reputation.

1.1. Background

As shown in [18, 22] for example, point correspondences
across multiple images can be characterized by studying in-
cidence relations among the corresponding visual rays. This
approach has the merit of making explicit the geometric
constraints defining correspondences, which are often hid-
den behind algebra in the traditional multilinear approaches

to structure from motion [1, 5, 6, 7, 11, 14, 15, 20, 24]. In
particular, Ponce, Sturmfels and Trager introduced in [18]
the concurrent lines variety V,, formed by all n-tuples of
lines in P3 that meet at some point, and showed that con-
straining the lines in each tuple to pass through n fixed and
distinct points yields a three-dimensional sub-variety of V,,
isomorphic to Triggs’s joint image [23], that can either be
seen as the set of all possible images taken by n fixed per-
spective cameras (Fig. 1 [a]), or as the set of all possible im-
ages of n fixed points (Fig. 1 [b]), revealing a profound ge-
ometric duality between camera pinholes and scene points.

Unfortunately, this duality collapses when one intro-
duces image measurements, since the retinal plane of a cam-
era (or, equivalently, the line bundle of its pinhole) must be
equipped with a coordinate system for the measurements
to make sense. Contrary to images and the corresponding
bundles (Fig. 1 [c]), however, scene points are not associ-
ated with coordinate systems. It was shown by Carlsson
and Weinshall that this disparity can be addressed by us-
ing four fiducial scene points observed by all cameras, and
by algebraically manipulating the coordinates of pinholes
and scene points before inverting their roles (see [4, 11, 14]
for related work). In particular, as argued in [1, 11], this
implies that any algorithm for solving the structure-from-
motion (SFM) problem from m images of n scene points
also provides a (dual) solution to the SFM problem from
n — 4 images and m + 4 scene points. Carlsson and Wein-
shall’s take on duality is however mainly analytical. Our
point of departure in this presentation is to bridge the gap
between their approach and the geometric viewpoint advo-
cated earlier.

1.2. Objectives and contributions

Our aim in this presentation is threefold:

(1) To explain CW duality [1] which, in its classical text-
book form [11], emerges from seemingly accidental al-
gebraic symmetries like Venus from the sea. Concretely,
we introduce in Sect. 2 a new, coordinate-free derivation
of the duality between scene points and camera pinholes
(Prop. 2.3). Our viewpoint hopefully clarifies the geometry
that underlies CW duality, and also emphasizes that analyt-
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Figure 1. The sub-variety of the concurrent lines variety formed by all concurrent n-tuples of lines passing through n fixed points represents
(a) the set of all perspective images of these points, as well as (b) the set of all images taken by the corresponding pinholes. The introduction
of image (or equivalently, bundle) coordinate systems (c) breaks this duality, but it can be restored by (d)-(e) using four fiducial points
observed by all cameras to define the corresponding image coordinate systems.

ical formulations of duality can be given any scene and im-
age coordinate systems (Prop. 2.5 and Fig. 1[d,e]) [1, 4, 11].
(2) To characterize reduced multi-view geometry. We
present in Sect. 3 a description of multi-view geometry in
terms of the reduced joint image and its dual (Prop. 3.4). We
also introduce a new parametrization of trinocular geometry
in terms of both primal and dual reduced trilinearities. An
interesting feature of these conditions is that, unlike trifocal
tensors [9, 20, 24], they are subject to very simple internal
constraints [6, 7, 11] (Prop. 4.3).

(3) To add to the three-view SFM arsenal. Our re-
duced trilinearities lead to new algorithms for structure from
motion from primal and dual trilinearities, with compet-
itive performance in experiments with real and synthetic
data (Sect. 5).

1.3. Notation and elements of line geometry

Much of our presentation will distinguish purely geo-
metric, coordinate-free properties of point configurations
from analytical properties established in some coordinate
system. To avoid confusion, we will use a teletype font
to designate points in P, e.g., x, y, and a bold italic font
to designate their homogeneous coordinates in some coor-
dinate frame, e.g., , y. Whether we speak of points or
their homogeneous coordinates should thus be clear, and
we will often call both representations points for simplic-
ity. We will call the first n 4+ 1 points of any projective
basis (X1, ..., Xnt1,Xnr2), With coordinates (1,0,...,0)7
to (0,...,0,1)7, the coordinate points. The last one, X, 12,
with coordinates (1,...,1)7, is called the unit point. Let
us also recall here some basic concepts of line geometry.
The join operator associates with two distinct points x and
y the unique line x V y passing through them. Given some
coordinate system for P2, this geometric operator admits

an analytical counterpart, and the line 1 = x V y join-
ing two points with coordinates * = (w1,...,74)7 and
y = (y1,-..,y4)T has homogeneous Pliicker coordinates

TayY1 — T1Y4 T2Y3 — T3Y2
u| .
l= L}} withu = |zay2 — 2ys | ,v = |z3y1 — z1y3| . (1)
T4aY3 — T3Y4 T1Y2 — T2Y1

The vectors w and v in (1) are orthogonal by construction,
and Pliicker coordinates identify the four-dimensional set

of lines in P? with a quadratic hypersurface of P°, known
as the Klein quadric. Two lines with Pliicker coordinates
I = (u;v) and I’ = (u/;v’) intersect (or, equivalently, are
coplanar) if and only if w - v’ + w' - v = 0. The line bun-
dle associated with a point x in P is the set of lines pass-
ing through that point. It corresponds to a two-dimensional
projective subspace of the Klein quadric, (projectively) iso-
morphic to any plane 7 not passing through x, each line in
the bundle being associated with the point where it inter-
sects 7. Finally, the following result from [17] will be used
repeatedly in the sequel.

Proposition 1.1 ([17]). A necessary (and generically suffi-
cient) condition for three lines with Pliicker coordinates 1,
U, 1" to intersect is that the four minors
11,14 151414 AR AR
Ty = |l3l515), To = [ 11 1Y}, Ts = 21515}, Tu = |Is1515)  (2)
A U515 lolglE lolslE

of the 6 x 3 matrix [L,1',1"] all vanish. In addition, the van-
ishing of a single minor Ty, (k = 1,2,3,4) is a necessary
and sufficient condition for these lines to admit a common
transversal through the kth coordinate point.

2. Point configurations and CW duality
2.1. Geometric point of view

Moving together scene points and cameras without
changing their relative positions will not change the images
of the scene recorded by the cameras. This is sometimes re-
ferred to as the projective ambiguity of structure from mo-
tion, but we propose here instead to capture the underlying
“projective rigidity” in terms of projective configurations.

Definition 2.1. Two k-tuples of points in P™ are isomorphic
if they are related by a projective transformation of P". Iso-
morphism is an equivalence relation, and its equivalence
classes are called k-configurations.

The configuration associated with k points x4 to xy is de-
noted by (x4, ..., xg). For k < n+2, generic point configu-
rations are always isomorphic, so we will assume k > n+2
from now on. Given some pinhole c in P? and some retinal
plane 7 not passing through c, the corresponding perspec-
tive projection can be defined in a purely geometric manner
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Figure 2. Image point and viewing ray configurations are isomor-
phic and independent of the retinal plane.

as the mapping that associates with any point x # c in P3
the point y where the viewing ray joining c to x intersects
m. In turn, this mapping induces an isomorphism between
k-configurations of points in different image planes 7 and
7', and a second isomorphism between these and the cor-
responding k-configurations of visual rays through c, seen
as elements of a line bundle (Fig. 2). This is of course just
a retelling of a familiar story in the language of configu-
rations. But it also shows that perspective projection may
be viewed as a mapping between the scene configurations
(%1, ...,%x, c) that determine the visual rays c V x; and
their image counterparts (yi,...,yx). We will sometimes
write a scene configuration as (xi,...,xy|c) instead of
(%1, ..., Xx, c) to emphasize that the last point is viewed as
a pinhole. In this setting, swapping the roles of pinhole and
scene point results in permuting the corresponding elements
of a scene configuration. The effect of permutations on
point configurations can be described in terms of so-called
Cremona transformations of IP3, as explained by Coble in a
paper from 1915 [2] (see also [3] for a more recent account
on this topic). As we will argue in the next section, the an-
alytical map (1,9, 23, 24)7 — (7' 25 25t 2T
that is used in the standard formulation of CW duality is
indeed an example of a Cremona transformation. For the
moment, we can state the following more general geomet-
ric result that follows from Coble’s theory (see [2, Sect. 7]
or [3, Chap. 6]).

Lemma 2.2. If Z = (z4,...,24) is a quadruple of fixed
points of P? in general position, then there exists a family of
birational involutions Ty : x — % (Cremona involutions),
defined on a dense open set of P2, such that for any points x
and y in that set (z1,23,23,24,%,y) = (21, Z2, 23, Z4, ¥, X)
holds (with equality as configurations). Any two such invo-
lutions are related by a projective transformation of P* that
fixes Z.

Note that this statement does not involve pinholes and
scene points. However, we obtain as an immediate corollary
a geometric and coordinate-free formulation of Carlsson-
Weinshall duality, valid for any Cremona involution associ-
ated with a quadruple of points Z.

X J ¢
Figure 3. Geometric Carlsson-Weinshall duality between scene
point and pinhole configurations.

Proposition 2.3 (Figure 3). If x — X is a Cremona
involution relative to a quadruple Z = (zi,...,24),
then any two scene configurations (z,Zo, 23, 24, % | ¢) and
(21,22, 23,24, C | X) are equal, and thus give rise to the
same image configuration (yi, ...,ya,y). Herey can be
thought of as either the projection of x from c or that of ¢
from x.

2.2. Analytical point of view

Let us now introduce a local parameterization of the
space of k-configurations in P", with & > n + 2: we pick
n + 2 of the points and assign them arbitrary but fixed ho-
mogeneous coordinates (it is often convenient, but by no
means necessary, to choose these points as a basis for P™).
Assuming that the points are in general position and the co-
ordinates assigned to any n + 1 of them are linearly inde-
pendent, this uniquely defines a coordinate system for P,
dependent on the choice of the n + 2 points, but intrinsic
to the whole configuration. In particular, the coordinates
of the k£ — n — 2 remaining points can be used to parame-
terize the configuration. In our setting, this translates into
assigning arbitrary coordinates to the four fixed points z;
to z4 in the form of a 4 X 4 matrix Z = [z1, 29, 23, 24],
and assigning to the pinhole arbitrary coordinates c. This
freezes the coordinate system of P2 and provides a parame-
terization of the configurations (z, ..., z4, x| c) using the
coordinates x of the point x. We also pick the four visual
rays 1; to 1, joining the pinhole to the points z; to z4 as
reference points for the corresponding bundle, and assign
them arbitrary coordinates in the form of a 3 x 4 matrix
U = [uj,us,us3,uy]. This freezes the coordinate frame
for the bundle and provides a parameterization for the con-
figurations (14, ...,14,1) of its lines by the coordinates u
of the ray 1. This also provides, of course, a parameteriza-
tion of the configurations (y;, ..., yas,y) of the correspond-
ing image points using the coordinates u of the point y. The
following result follows from some straightforward compu-
tations (see the supplementary material for details).

Proposition 2.4. Given arbitrary general matrices U and
Z, the perspective projection associated with pinhole c can
be represented analytically as the projective map Pe from
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P3 to P? defined by'

|L,22,%23,%4]
|C,Z22,23,24]
[Z1,%,23,%4]
|21,C,Z3,24]
121,22, &,24] |’
|21,22,C,Z4]
[Z1,22,23,Z|
[21,22,23,C|

Pe(x) = [u1, uz, us, u4]

(3)

where we assume wlog that the coordinates vectors u; have
been scaled so w1 + us + uz + uyg = 0.

For Z = 1d4 and U = [Id3, —13], we have that Pe(x) =
(w1/c1,w2/ca,23/c3,24/cs)T, and the projection matrix
associated with Pe is the reduced camera model appearing
in different guises in [1, 4, 11]:

1/c1 0 0 —1/ca z1/er
CCQ/CQ
Pe=| 0 1/ca 0 —1/cyl|, or Pe(z) = z3/cs
0 0 1/ez —1/c T4/ca

(C))

This equation is symmetric in « and ¢, where y — ¢y =
(yfl7 y;l, ygl, y;l)T is the standard Cremona involution.
This is a Cremona transformation in the sense of Lemma 2.2
since one easily sees that two sextuples 21, ...,24,¥Y;, Yy
and z1,...,24,Yy,Y; are always related by a projective
transformation of P3. More generally, we have the follow-
ing result, which can be shown by direct computations (see
the supplementary material).

Proposition 2.5 (Analytical Carlsson-Weinshall duality).
The rational map of P3 given by

. 1 1 1 1 T

Y= 2 | lyzazsza| |z1yzsza] |z120y24] 2122259

is a Cremona involution relative to the points in P* with co-
ordinates Z. Using this Z and arbitrary image coordinates
U in (3), we have that Pe(x) = Pg(€).

3. Reduced multi-view geometry

We now restrict our study to the case where Z = Idy
and U = [Id3, —13] so that all cameras can be represented
by projection matrices in the “standard” reduced form of
Eq. (4), and thus identify from now on scene points x and
their images y with their coordinates = and w in P2 and P2.

3.1. Reduced joint images

Let S denote the set of triples (¢, x, u) in P? x P3 x P?
such that Pe(x) = w where Pe is a reduced camera as
in (4). For fixed c and x, there is of course a single u such
that (¢, z, u) belongs to S. More generally, we have the

! Although Pe obviously depends on U and Z, we leave this depen-
dency implicit in the notation to avoid clutter.

Figure 4. The twisted cubic formed by the points ¢ such that c V x
has constant coordinates relative to c V z1,¢c V z2,¢c V 23,¢ V 24.

following result which describes the set .S (see the supple-
mentary material for details).

Proposition 3.1. (1) For fixed c and wu, the set of points
@ such that (c,x,u) belongs to S is a line with Pliicker
coordinates

Ci1C4q 0 0
0 C2C4 0
- B 0 0 C3C4
& = Qcu where Q¢ = 0 —cac3  Ca2C3 ©
cic3 0 —acs
—cic2  C1C2 0

(2) For fixed x and u, the set of points ¢ such that (¢, z, u)
belongs to S is a twisted cubic passing through z1, ..., 2z,
and x (Fig. 4).

Variants of this proposition can be found in [1, 4, 11].
The formula for Q¢ in Eq. (6) is of course an instance of
the classical (transposed) line projection matrix. It will play
a key role in the rest of this presentation. We now consider
n pinholes ¢y, . . ., ¢,, and the associated reduced cameras
Pe,, ..., Pe,. Following [21, 23], we describe the geome-
try of these cameras using the joint image in (P2)".

Definition 3.2. The reduced joint image Vz(cy, . .., ¢y) as-
sociated with n fixed pinholes ci, ..., c, is the set of n-
tuples (wy, ..., uy,) in (P?)"™ such that the corresponding
visual rays are concurrent or, equivalently, such that there
exists some point x such that (c;, €, u;) belongs to S.

The reduced joint image is a special case of Triggs’s joint
image [23] where image (or bundle) basis points are in cor-
respondence. Projective transformations of P? do not af-
fect the joint image, so Vz(¢y,. .., ¢,) is completely deter-
mined by {(cy,...,¢Cn,21,...24) (Fig. 5, left). Let us now
consider instead n fixed scene points 1, ..., T,.

Definition 3.3. The dual
Vy (x1,...,x,) associated with n scene points 1, . .., Ty,
is the set of n-tuples (w1, ..., uy) in (P?)" that are image
coordinates for the points x1,...,x, for some reduced
camera Pe with (unknown) pinhole c or, equivalently, such
that there exists some point ¢ such that (¢, x;,u;) belongs
to S. Note that this condition imposes that n twisted cubics
passing through z1, zo, 23, Z4 intersect at a point c.

reduced joint image
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Figure 5. Left: A reduced joint image characterizes all converging
visual rays from three pinholes. Right: A dual reduced joint image
characterizes all perspective images of three scene points.

The set Vz (1, . .., &, ) characterizes all perspective im-
ages of n fixed points (Fig. 5, right). It is invariant to projec-
tive transformations of P2, and completely determined by
(X1,...,%n,21,...24) in P3. Algebraic characterizations
of dual multi-view constraints are mostly absent from the
literature (see [14] for an exception), but the following re-
sult is an immediate corollary of CW duality.

Proposition 3.4. The dual reduced joint image associated
with n scene points 1, ..., %, is the reduced joint image
associated with their images &1, ...,%, under any Cre-
mona involution relative to z1, z2, 23, Z4.

In particular, like their primal counterparts [21], dual
joint images induce multilinear constraints on point corre-
spondences.

3.2. Reduced multilinearities

Let us now apply the general approach presented so far
to the bilinear and trilinear constraints associated with point
correspondences for reduced cameras of the form (4). Given
two image points u and u’ associated with cameras with
pinholes ¢ and ¢/, a necessary and sufficient condition for
w and v’ to form a correspondence is that the visual rays
Il = Qcu and I” = Qe intersect each other or, equiva-
lently, (1|1") = 0. This immediately yields a bilinear rela-
tion u” Fu' = 0. When ¢ = 14, F is the reduced funda-
mental matrix of [1, 11] (see also [4]). In turn, substituting
2, 2" for ¢/, ¢ in this equation, we also obtain the expres-
sion for the reduced dual fundamental matrix, which char-
acterizes the dual reduced joint image VZ(:B, x') for two
fixed scene points x, x’. We can use the same approach to
characterize correspondences in three images. Indeed, sub-
stituting Qeu, Qeu’, and Qeu’ to 1, I’ and I” in Eq. (2)
from Prop. 1.1 immediately yields the following result.

Proposition 3.5. Taking ¢ = (1,1,1,1)7, a necessary (and
generically sufficient) condition for u, u’' and u" to form
a correspondence for the reduced cameras Pe, Per, Perr is
that the four determinants T} to Ty, respectively given by

Al ! All 1 Al ! Al Al i Al A1 Al
(U2, C3Uz, C3Uz| [U3,C1U3,C1U3| [U1,C2U7,CoUT| [U1,C1V1,C1V]
Al i Al Al i Al Al i Al Al LAl 1
(U3, CouU3, Caug|, [U1,C3U1,C3UL|, [U2,C1U2,C1U|, [U2,C2V2, C2Va

Al Al Al oAl N Al Al Al Al 1
V1,C4V1,C4a V1| |V2,C4V3, C4V2| |U3,C47V3,C4V3| [U3,C3V3,C3V3

(O]

. . _ ) _ . ! li _ /
all vanish, with v; = u;yo — Uiy1, V; = U, o — U;, ¢ and

no__ " 1 . s
v =i, o — iy, and index addition modulo 3.

The proposition follows immediately from (2) and the
form of the matrix Q¢. Its dual involves three scene points
x,x’, x” instead of three pinholes, and is obtained by sub-
stituting & for ¢ in the primal trilinearities from Prop. 3.5.

Proposition 3.6. Taking *x = (1,1,1,1)7, a necessary
(and generically sufficient) condition for u, v’ and u’” to
be projections of =, x’',x" for a reduced camera P¢ (for
some unknown c) is that the four determinants Tl to T, 4>
respectively given by

! ! 11 11 / ! 11 ! ! Vi A 111

U2, T3Uz, T3Uz| U3, T1U3, T1 US| U1, T2U1, T2UT| V1, T1V1,T1 V1
/ ! 11 / ! 111 ! / 111 / / 111

(U3, L2U3, T2 U3, (U1, T3UL, T3 U], (U2, T1U2, T1U2|,[V2, T2V2, T2V
! m_ 1 ! ! /i ! m_ 1 ! 1m 11

V1, T4V1, Ty V1 | |V2, TyV2, T4V | |VU3, T4V3, T4 V3 | U3, T3V3, T3 V3
®)

all vanish.

4. Algebraic constraints on trilinearities

In this section, we investigate the special primal and
dual trilinear conditions (7) and (8). In particular, we show
that the coefficients of these polynomial forms are sub-
ject to very simple algebraic constraints. This contrasts
with the classical trifocal tensor and the induced trilinear-
ities [9, 20, 24], which also characterize correspondences
among three views, but are known to satisfy very complex
internal constraints [6, 7, 11]. This feature suggests that the
coefficients of our trilinearities can be estimated easily from
image data and used in reconstruction algorithms. This will
be confirmed by our experiments in Section 5.

Our first observation is that the conditions (7) and (8)
can be seen as polynomials in the “mixed” coordinates u’s
and v’s (as defined in Prop. 3.5), or also in the “pure” image
coordinates u’s (by replacing the v’s with the corresponding
expressions). Depending on this choice of variables, the
trilinearities have different coefficients. These coefficients
are related by a (non-invertible) linear transformation but
present some differences, as shown next.

4.1. Trilinearities in mixed coordinates

The four reduced primal trilinearities in “mixed” coordi-
nates u’s and v’s can be written explicitly as follows

i 1" /i I 1"

T1 = —p23v1u3Us + P24U2U3VT + P32V1ULU3
I/ ! " ! 1"
—P34U3UV] — P42UV1U3 + P43U3VI U,

I 1" /awZi ! 1"

To = p13v2u3u] — P14aUIUIVE — P31V2U U3
I ! " ! "
+034U3UI V2 + P41UIV2UZ — P43U3V2UT ,

®

! 1" /i ! 1"
T3 = —p12v3uUsu] + P14u1Usvs + P21V3U Uy
! ! " ! "
—pP24U2UTV3 — P41UIV3U2 + P42U2V3UT ,
/) /awii 11
Ty = p12V3V103 — P13V2VIV3 — P21V3VV]
71 r 1 1
+p23V1VaV3 + P31V2V3V] — P32V1V3V3,
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with p;; = & é;’ The six non-zero coefficients of T; are pj,

with j, k distinct in {1, 2, 3,4} \ {i¢}. Hence, sextuples of
valid coefficients for T} are vectors in RS that have no zero
entries and can be written in the form (a;b;);2; with a,b
in R3. These vectors are completely characterized by the
following result.

Proposition 4.1. Avectord = (dlg, dy3, dos, do1, d3q, dgg)
in RS can be written as d;; = a;b; for some vectors
a = (ai,az,a3)T,b = (by,ba,b3)T in R3 if and only if
dy2da3d31 = do1dzadis holds.

Proof. By replacing d;; with a;b;, we see that the condition
is necessary. Conversely, if an element (say) d;s of d is not
zero and d satisfies the condition, we can always set a; = 1
and solve for all the remaining entries. O

The coefficients of each trilinearity are thus constrained
by a single cubic relation. On the other hand, each pair of
trilinearities shares two coefficients, so we expect additional
constraints for the consistency of 71, ...,7,. This is rele-
vant for the reconstruction method that will be described in
Section 5, in which the trilinearities (7) evaluated on point
correspondences are treated as linear conditions on a single
vector p = (pi;) in R'?, such that p;; = &¢] with dis-
tinct ¢, j in {1, 2, 3,4}. In this case, the cond1t10ns for p in
R'2 to be a valid solution are given by the following result.
The proof is analogous to that of Prop. 4.1. We refer to the
supplementary material for details.

Proposition 4.2. A vector d = (d;;) in R'? with no zero
entries can be written as dij = aibj for some vectors
a = (ala az,as, a4)T7 b = (bla b?a b33 b4)T in Rd lf and
only if d;;di; = dydy; holds for all permutations (i, j, k, 1)
of (1,2,3,4).

4.2, Trilinearities in image coordinates

A reduced trilinearity expressed in terms of mixed u’s
and v’s has very simple coefficients, but its variables are
not independent. We now describe the trilinearities in pure
image coordinates. Remarkably, the internal constraints of
each trilinearity are completely linear in this setting. To
simplify our presentation, we focus on the trilinearity 73 .
The trilinearities 75,75 are identical to T} up to permuta-
tion of indices. The trilinearity 7T, has a different analytical
form, but it encodes the same geometric information and
also enjoys similar properties. A general treatment of all the
trilinearities can be found in the supplementary material.

A simple computation shows that

Al Al Al All NN NN
Ty =(—&565 + 4¢3 )usuhul + (hés — Coé) Jugusuy +

Al Al Al Al Al Al Al Al
(—€485 + e3¢ Juausuy + (—&4€3 + 6384 Jugupuy +

Al Al A Al Al NI
(8565 — 564 Jugusuy + (—E38% + €465 )usuzus.

10)

The six non-zero coefficients are linear combinations of the
scalars p;; = ¢;¢. We now address the internal constraints

that are satisfied by these coefficients.

Proposition 4.3. If we allow &, &" to take complex values,

then a vector T in RS represents a set of feasible coefficients
for T in (10) if and only if its elements sum to zero. In this
case, up to scale factors, there are two pairs of (possibly
complex) solutions for (¢, &, ¢4)T and (&4, ¢4, é)T
Proof sketch. We Write T = (7;;,) with 7;;;, being the co-
efficient of uzu -y in Ty. It follows from (10) that it is
necessary for the elements of 7 to sum to zero. For the con-
verse, we note that 7 = Ap,, where

T223 00-1010 P23

T232 1-10 0 0 O P24

_ | 7233 101 00-10 | pa2
T= AT 0001 01 P17 [ps | D

T323 001-100 P42

T332 —10 0 O 1 P43

The matrix A; has rank 5 and its rows and columns sum
to zero. In particular, a solution p; of Eq. (11) can always
be written as p; = p, + t1g for some scalar ¢, where p,
is any solution of 7 = Ap,. Such p, always exists if the
elements of 7 sum to zero. In order for T to be a valid set
of coefficients, the vector p; must factor as ¢;¢}. Accord-
ing to Prop. 4.1, this corresponds to a single equation in
the entries p;;, which we can use to solve for ¢. Moreover,
while this equation was cubic in p;;, it is easy to see that
there is a cancellation of the term ¢3, so we are left with a
quadratic equation in ¢. Each of the two (possibly complex)
solutions to this equation determines up to scale the vectors
(¢4 &, ¢4)" and (¢4, ¢4, )", O

Although the solutions in Prop. 4.3 may in principle be
complex conjugate, they will be real when the vector T is
estimated from exact correspondences, and remain real un-
der small perturbations. We also note that the statement
of Prop. 4.3 holds without modifications for trilinearities
T5,T3. In the case of T}, there are 24 non-zero coefficients
rather than six, but these are also only constrained by lin-
ear conditions (in all cases, the set of valid coefficients is a
vector space of dimension five).

The fact that the coefficients of each trilinearity are not
subject to non-linear constraints may seem surprising. One
way to justify this property is to point out the close re-
lationship between our trilinearities and 2D trifocal ten-
sors. These (2 x 2 x 2)-tensors characterize correspon-
dences for triples of projections from P? to P!. It was
shown by Quan [19] that the entries of these tensors are
also not bound by any internal constraints. In the supple-
mentary material, we argue that the reduced trilinearities
can be obtained by composing a 2D trifocal tensor with lin-
ear changes of coordinates. The idea behind this fact is that,
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Figure 6. Trilinearities express the condition that three coplanar
lines intersect. These are the projections from zj, of three viewing
rays converging at some scene point  in the primal case (left),
and some pinhole c in the dual one (right).

according to Prop. 1.1 [22], each trilinarity 7} imposes the
condition that three viewing rays admit a common transver-
sal passing through the point z;. If we fix a retinal plane
with appropriate coordinates, this is the same as requiring
three coplanar lines to meet at a point, which is the con-
dition imposed by a 2D trifocal tensor. See Fig. 6 and the
supplementary material for details.

5. A quasi-linear three-view SFM algorithm

We now show that the four trilinearities (primal or dual)
can be used to solve structure from motion when sufficient
correspondences are available. Let us first consider primal
trilinearities. As noted in the previous section, each point
correspondence imposes four linear conditions on the vector
p whose entries are p;; = ¢;¢;. Given p correspondences
we can stack the corresponding linear equations to form a
4p x 12 matrix T" and write all the constraints as T'p = 0.
However, it is easy to realize that T'1;, = 0, independently
of the image coordinates. In the absence of noise, the ker-
nel of 7' is thus always at least two-dimensional, since it
contains 115 and the “true” solution p to our problem. We
address this issue by exploiting the special form of the vec-
tor p. In particular, let e be a vector independent of 1,5 in
the kernel, so that we may write p = e + A11, for some
scalar A, and thus p;; = ¢i¢] = e;; + A for j # i. We
have, for example ¢§ = (e13 + A)c) = (ezs + A)ch, and
&) = (e1a+ )} = (eaa+A)ch. This allows us to eliminate
A, obtaining (e23 — e24)¢) + (€14 — e13)é = 0. Collecting
all similar constraints finally yields the following equations:

(€23 — €24€14 — €13 0 0
€32 — €34 0 €14 — e12 0
€42 — €43 0 0 €13 — €12 o _ 0, (12)
0 €31 — €34€24 — €21 0
0 €43 — €41 0
0 0

€21 — €23
€41 — €42€32 — €31 |

e32 —eqzeqr —esr 0 0

€23 — €43 0 €41 — €21 0
€24 — €34 0 0 €31 — €21 |

=0 (13)

0 €13 — €43 €42 — €12 0

0 €14 — €34 0

0 0

€32 — €12
€14 — €24 €23 — €13 |

These equations are sufficient to determine &' and &” and
thus ¢’ and ¢”. Three correspondences (in addition to the
four “reference” correspondences) are necessary to obtain a
unique solution for the 11 unknowns.” Note that although
the vector p must satisfy certain algebraic constraints in or-
der to be of the form p;; = c;c’/ (see Prop. 4.2), our strategy
bypasses this difficulty by directly recovering the vectors ¢’
and ¢”. In other words, this “quasi-linear” method is always
guaranteed to return a valid solution (which will approxi-
mate the “true” solution in the presence of noise). In prac-
tice, we pick four reference points among the (known) cor-
respondences between these pictures, and apply appropriate
image coordinate changes so they become basis points. We
then use singular value decomposition and the remaining
points to find the least-squares solution e of the system of
equation in p associated with 7" which is orthogonal to 112,
and finally use Eq. (13) to compute the position of the pin-
holes. Linear least-squares can then be used again to recon-
struct all scene points from the known pinholes and image
coordinates. We repeat this process for random quadruples
of reference points and a fixed number of iterations, and re-
port the results.

The dual algorithm is very similar except that this time
we fix three points @, ', and =" instead of three images.
We again repeatedly pick four random reference correspon-
dences, and use all images (at least three) of @, «’ and x”
to reconstruct them. The procedure is the same as above,
replacing ¢, ¢/, ¢” with x, ', " .

5.1. Preliminary experiments

We have implemented both the primal and dual versions
of the proposed algorithm and we present below some pre-
liminary experiments with real and synthetic data. We em-
phasize that the main thrust of our presentation is theoret-
ical, with the objective of reaching a better understanding
of multi-view geometry. We do not make any claim here of
outperforming the state of the art, and our experiments are
only included as a proof of concept to validate two points:
(1) our algorithm gives reasonable reconstructions on real
data in a least-squares setting; and (2) its primal version
also gives reasonable results on synthetic data with additive
Gaussian noise in a setting with only 7 correspondences.
Inria toy house data [16]. This dataset consists of 6 images
of the same 38 points. It is small by any standard, but with
enough views and correspondences to demonstrate both the
primal and dual versions of our algorithm. It also makes it
easy to visualize the results since it contains edges linking
the data points (this information is of course only used for
display). Figure 7 shows the reconstructions obtained for
the best choice among 5, 20 and 50 different quadruples of

2The minimum number of correspondences for three-view structure
from motion is six [11]. The proposed algorithm is not “minimal” and
the solution is over-determined.
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reference points based on the reprojection error. The recon-
structions are overlaid on the ground-truth 3D points after
projective registration, along with the corresponding mean
reprojection errors in pixels, and the mean relative recon-
struction errors in percentage of the radius of the scene.’
Reprojection errors are quite reasonable in both cases for
20 different choices, and the reconstructions themselves are
also quite reasonable after 5 random choices only. For com-
parison, we have also tested the code for linear estimation
of the trifocal tensor by Julia and Monasse [12]*, dubbed
here 3LTFT. It yields mean reprojection and reconstruction
errors of 0.7 pixel and 0.3% respectively but, unlike our
method, benefits from Hartley’s data preconditioning [8].

18.0 pixel / 1.6%

5.2 pixel / 1.4%

3.8 pixel / 1.3%

Figure 7. Experiments on the Inria house data [16]. Registered
reconstruction (in red) vs. ground truth (in blue) for the primal
(top) and dual (bottom) versions of our algorithm. The results are
shown, from left to right, for 5, 20, and 50 different choices of
image basis points.

Synthetic noisy data [12]. We have also compared our
primal method with 3LTFT on synthetic data with various
amounts of additive Gaussian noise. In this setting, the cam-
era parameters are estimated from 7 correspondences from
three images (the minimum number for both LTFT and our
algorithm). The quality of the reconstruction is evaluated
by measuring how well it predicts the reprojection of the re-
maining points in the dataset as well as their 3D reconstruc-
tion, once again registered to the ground truth through a ho-
mography. This is the setting where both methods could be
used in practice to establish correspondences via RANSAC,
for example, before a final bundle adjustment step. Fol-
lowing [12], we have constructed a scene consisting of 100
points randomly distributed in a cube of side 400mm ob-
served by three 1200 x 1800 35mm cameras with 50mm

3Here, the “best” basis is the one minimizing the mean reprojection
error over the three images, without of course using 3D ground-truth infor-
mation.

4Available at https://github.com/LauraFJulia/TFT_vs_
Fund.

lenses about 1m away, and added Gaussian noise with a
standard deviation o varying between 0 and 2 pixel to image
coordinates. Figure 8 shows the median values of the mean
reprojection and reconstruction errors, given respectively in
pixel and mm, for 40 random choices of the 7 point corre-
spondences and different values of 0. The 3LTFT plots are
shown in black, and the curves for our method are drawn in
blue, green and red for the best random draw among 5, 10,
and 20 choices of 4 reference points among the original 7.
As shown in Fig. 8, 3LTFT does better in general than our
primal method but both algorithms give reasonable repro-
jection and reconstruction errors for low levels of noise.

median reconstruction error (mm)

o
0 02 04 06 08 1 12 14 16 18 2 0 02 04 06 08 1 12 14 16 18 2
sigma sigma

Figure 8. Experiments with synthetic data [12]. See text for details.

6. Conclusion

We have proposed a new coordinate-free approach to
multi-view geometry that explains Carlsson-Weinshall du-
ality and leads to new algorithms for primal and dual struc-
ture from motion. We believe that this type of work, whose
objective is to complete our understanding of the geometric
underpinnings of 3D computer vision, must be pursued for a
clear and unified picture of multi-view geometry to emerge.
Although, we do not claim by any means to establish a new
state of the art with the proposed algorithms, we also believe
that our preliminary experiments demonstrate that they can
serve as yet another useful toolset in the existing arsenal of
approaches to SFM.

Acknowledgments. This work was supported in part by
the the Inria/NYU collaboration agreement, the Louis Vuit-
ton/ENS chair on artificial intellgence, the Inria-CMU asso-
ciated team GAYA, ANR Recap, and Samsung Electronics.

SWe use the median instead of the mean because the latter is occasion-
ally totally off course for certain choices of the 7 correspondences for both
methods. See supplemental material for details.
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