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Figure 1: With novel enhancements in both learning objective as well as the network architecture, our proposed nonlinear 3D

morphable model enables, for the first time, regressing high-fidelity facial shape (geometry) and albedo (skin reflectence) by

directly estimating model latent representations.

Abstract

Embedding 3D morphable basis functions into deep

neural networks opens great potential for models with bet-

ter representation power. However, to faithfully learn those

models from an image collection, it requires strong regu-

larization to overcome ambiguities involved in the learning

process. This critically prevents us from learning high fi-

delity face models which are needed to represent face im-

ages in high level of details. To address this problem, this

paper presents a novel approach to learn additional prox-

ies as means to side-step strong regularizations, as well as,

leverages to promote detailed shape/albedo. To ease the

learning, we also propose to use a dual-pathway network,

a carefully-designed architecture that brings a balance be-

tween global and local-based models. By improving the

nonlinear 3D morphable model in both learning objective

and network architecture, we present a model which is su-

perior in capturing higher level of details than the linear

or its precedent nonlinear counterparts. As a result, our

model achieves state-of-the-art performance on 3D face re-

construction by solely optimizing latent representations.

Project website: http://cvlab.cse.msu.edu/

project-nonlinear-3dmm.html

1. Introduction

Computer vision and computer graphics fields have had

much interest in the longstanding problem of 3D face recon-

struction — creating a detailed 3D model of a person’s face

from a collection or a single photograph. The problem is

important with many applications, including but not limited

to face recognition [1, 26, 50], video editing [12, 41], avatar

puppeteering [8, 10, 51] or virtual make-up [13, 24].

Recently, an incredible amount of attention is drawn into

the simplest but most challenging form of this problem:

monocular face reconstruction. Inferring a 3D face mesh

from a single 2D photo is arduous and ill-posed since the

image formation process blends multiple facial components

(shape, albedo) as well as environment (lighting) into a

single color for each pixel. To better handle the ambigu-

ity, one must rely on additional prior assumptions, such as

constraining faces to lie in a restricted subspace, e.g., 3D

Morphable Models (3DMM) [6] learned from a small 3D

scans collection. Many state-of-the-art approaches, either

learning-based [33, 34] or optimization-based face recon-

struction [5,14], heavily rely on such priors. While yielding

impressive results, these algorithms do not generalize well

beyond the underlying model’s restricted low-dimensional

subspace. As a consequence, the reconstructed 3D face may
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fail to recover important facial features, contain incorrect

details or not well aligned to the input face.

Recently, with the flourishing in neural network, a few

attempts have tried to use deep neural networks to replace

the 3DMM basis functions [39, 44]. This increases the

model representation power and learns model directly from

unconstrained 2D images to better capture in-the-wild vari-

ations. However, even with better representation powers,

these models still rely on many constraints [39] to regu-

larize the model learning. Hence, their objectives involve

the conflicting requirements of a strong regularization for a

global shape vs. a weak regularization for capturing higher

level details. E.g., in order to faithfully separate shading

and albedo, albedo is usually assumed to be piecewise con-

stant [22, 36], which prevents learning albedo with high

level of details. In this work, besides learning the shape

and albedo, we propose to learn additional shape and albedo

proxies, on which we can enforce regularizations. This also

allows us to flexibly pair the true shape with strongly reg-

ularized albedo proxy to learn the detailed shape or vice

versa. As a result, each element can be learned with high

fidelity without sacrificing the other element’s quality.

On a different note, many 3DMM models fail to repre-

sent small details because of their parameterization. Many

global 3D face parameterizations have been proposed to

overcome the ambiguities associated with single image face

fitting such as noise or occlusion. However, because they

are designed to model the whole face at once, it is chal-

lenging to use them to represent small details. Meanwhile,

local-based models can be more expressive than global ap-

proaches but with the cost of being less constrained to

realistically represent human faces. We propose using

dual-pathway networks to provide a better balance between

global and local-based models. From the latent space, there

is a global pathway focusing on the inference of global face

structure and multiple local pathways generating details of

different semantic facial parts. Their corresponding features

are then fused together for successive process generation of

the final shape and albedo. This network also helps to spe-

cialize filters in local pathways for each facial part which

both improves the quality and saves the computation power.

In this paper, we improve the nonlinear 3D face mor-

phable model in both learning objective and architecture:

• We solve the conflicting objective problem by learning

shape and albedo proxies with proper regularization.

• The novel pairing scheme allows learning both de-

tailed shape and albedo without sacrificing one.

• The global-local-based network architecture offers

more balance between robustness and flexibility.

• Our model allows high-fidelity 3D face reconstruction

by solely optimizing latent representations.

2. Prior Work

Linear 3DMM. The first generic 3D face model is built

by Blanz and Vetter [6] using principal component analy-

sis (PCA) on 3D scans. Since this seminal work, there has

been a large amount of effort on improving 3DMM model-

ing mechanism. Paysan et al. [30] replace the previous UV

space alignment [6] by Nonrigid Iterative Closest Point [2]

to directly align 3D scans. Vlasic et al. [49] use a multi-

linear model to describe the combined effect of expression

and identity variation on the facial geometry. On the texture

side, Booth et al. [7] explore feature-based texture model to

represent in-the-wild texture variations.

Nonlinear face model. Recently, there is a great interest

to use deep neural networks to present the 3DMM. Early

work by Duong et al. [29] use Deep Boltzmann Machines

to present 2D Active Appearance Models. Bagautdinov et

al. [3] use Variational Autoencoder (VAE) to learn to model

facial geometry directly from 3D scans. On another direc-

tion, Tewari et al. [39] and Tran and Liu [44] attempt to

learn 3DMM models from a 2D image collection. Tewari et

al. [39] embed shape and albedo bases in multi-layer per-

ceptions. Meanwhile, Tran and Liu [44] use convolution

neural networks by representing both geometry and skin re-

flectance in UV space. Despite having greater representa-

tion power, these models still have difficulty in recovering

small details in the input images due to strong regulariza-

tions in their learning objectives.

Global/local-based facial parameterization. Although,

global 3D face parameterizations [23, 49] can remedy the

vagueness associated with monocular face tracking [4, 11];

they can’t represent small geometry details without mak-

ing them exceedingly large and unwieldy. Hence, region or

local-based models are proposed to overcome this problem.

Blanz and Vetter [6] and Tena et al. [37] learn a region-

based PCA, where Blanz and Vetter [6] segment the face

into semantic subregions (eyes, nose, mouth), while Tena et

al. [37] further split into smaller regions to increase the

model’s expressiveness. Other approaches include a region-

based blendshape [18] or localized multilinear model [9].

All these models bring more flexibility than the global one

but at the cost of being less constrained on realistically rep-

resenting human faces. Our approach offers a balance be-

tween global and local models by using a dual-pathway net-

work architecture. Bagautdinov et al. [3] try to achieve

a similar objective with compositional VAE by introduc-

ing multiple layers of hidden variables, but at a cost of ex-

tremely large numbers of hidden variables.

Residual learning. Residual learning has been used in

many vision tasks. In super resolution, Kim et al. [21] pro-

pose to learn the difference between the high-resolution tar-

get and the low-resolution input rather than estimating the

target itself. In face alignment [19], or missing data impu-

tation task [46], residual learning is used in many cascade
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of networks to iteratively refine their estimation by learning

the difference with the true target. In this work, we lever-

age residual learning idea but with a different purpose to

overcome conflicting objectives in learning 3D models.

3. Proposed Method

For completeness, we start by briefly summarizing the

traditional linear 3DMM, the recently proposed nonlinear

3DMM learning method including their limitations. Then

we introduce our proposed improvements in both learning

objective and network architecture.

3.1. Linear 3DMM

The 3D Morphable Model (3DMM) [6] provides para-

metric models representing faces using two components:

shape (geometry) and albedo (skin reflectance). Blanz et

al. [6] describe the 3D face space with PCA. The 3D face

mesh S ∈ R
3Q with Q vertices is computed as:

S = FS(fS |ΘS) = ΘSfS , (1)

where FS(fS |ΘS) is a function of fS ∈ R
lS , parameterized

by ΘS . In linear model, FS is simply a matrix multiplica-

tion (the mean shape is omitted for clarity).

The albedo of the face A ∈ R
3Q is defined within a tem-

plate shape, describing the R, G, B colors of Q correspond-

ing vertices. A is also formulated in a similar fashion:

A = FA(fA|ΘA) = ΘAfA. (2)

To synthesize 2D face images, the 3D mesh is projected

onto the image plan with the weak perspective projection

model. Then, the texture and 2D image is rendered using an

illumination model, i.e., Spherical Harmonics [32].

3.2. Nonlinear 3DMM

Recently, Tewari et al. [39], Tran and Liu [44, 45] con-

currently propose to use deep neural network to present

3DMM bases. Essentially, mappings FS and FA are now

represented as neural networks with parameters ΘS ,ΘA re-

spectively. Tewari et al. [39] straightforwardly use multi-

layer perceptron as their networks. Meanwhile, Tran and

Liu [44] leverage spatial relation of vertices by presenting

both S and A in a UV space, denoted S
UV,AUV. Mappings

F∗ are convolution neural networks (CNNs) with an extra

sampling step converting from R
UV to R

3Q. To make the

framework end-to-end trainable, they also learn a model fit-

ting module, E , which is another CNN. Beside estimating

shape, albedo latent vectors fS , fA, the encoder E also esti-

mates projection matrix M as well as lighting coefficients

L. The objective of the whole network is to reconstruct the

original input image via a differentiable rendering layer R:

argmin
E,DS ,DA

∑

I

Lrec(Î, I), (3)

Î = R (EM (I), EL(I),FS(ES(I)),FA(EA(I))) .

Reconstruction loss. There are many design options for

the reconstruction loss. The straightforward choice is com-

paring images in the pixel space, with typical l1 or l2 loss.

To better handle outliers, the robust l2,1 is adopted, where

the distance in the RGB color space is based on l2 and the

summation is based on l1-norm to enforce sparsity [41,42]:

Li
rec =

1

|V|

∑

q∈V

∥

∥

∥
Î(q)− I(q)

∥

∥

∥

2

, (4)

where V is the set of pixels covered by the estimated mesh.

The closeness between images Î and I can also be en-

forced in the feature space (perceptual loss):

Lf
rec =

1

|C|

∑

j∈C

1

WjHjCj

||ϕj (̂I)− ϕj(I)||
2

2
. (5)

The loss is summed over C, a subset of layers of the network

ϕ. Here ϕj(I) is the activations of the j-th layer of ϕ with

dimension Wj ×Hj × Cj obtained when processing I.

The final reconstruction loss is a weighted average be-

tween the image and feature reconstruction losses:

Lrec(Î, I) = Li
rec(Î, I) + λfL

f
rec(Î, I). (6)

Sparse Landmark Alignment. To help achieve better

model fitting, which in turn helps to improve the model

learning itself, the landmark alignment loss is used as an

auxiliary task. The loss is defined by Euclidean distance

between estimated and groundtruth landmarks:

Llan =

∥

∥

∥

∥

M ∗

[

S(:,d)
1

]

−U

∥

∥

∥

∥

2

2

, (7)

where U ∈ R
2×68 is the manual labels of 2D landmark

locations, d stores the indexes of 68 vertices corresponding

to the sparse 2D landmarks in the 3D face mesh. In [44,45],

the landmark loss is only applied on E to prevent learning

implausible shapes as the loss only affects a tiny subsets of

vertices related to the keypoints.

Different regularization. To overcome ambiguity and

faithfully recover different elements (shape, albedo, light-

ing), many regularizations are needed.

Albedo Symmetry:

Lsym(A) = ‖Auv − flip(Auv)‖
1
, (8)

where flip() is a horizontal image flip operation.

Albedo Constancy:

Lcon(A) =
∑

vuv
j ∈Ni

ω(vuv
i ,vuv

j )
∥

∥A
uv(vuv

i )−A
uv(vuv

j )
∥

∥

p

2
. (9)

The weight ω(vuv
i ,vuv

j ) = exp
(

−α
∥

∥c(vuv
i )− c(vuv

j )
∥

∥

)

,

helps to penalize more on pixels with the same chromaticity
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Figure 2: The proposed framework. Each shape or albedo decoder consist of two branches to reconstruct the true element and its proxy.

Proxies free shape and albedo from strong regularizations, allow them to learn models with high level of details.

(i.e., c(x) = I(x)/|I(x)|), where the color is referenced

from the input image using the current estimated projection.

Ni denotes a set of 4-pixel neighborhood of pixel vuv
i .

Shape Smoothness: This is a Laplacian regularization on

the vertex locations.

Lsmo(S) =
∑

vuv
i ∈Suv

∥

∥

∥

∥

∥

∥

S
uv(vuv

i )−
1

|Ni|

∑

vuv
j ∈Ni

S
uv(vuv

j )

∥

∥

∥

∥

∥

∥

2

. (10)

The overall objective can be summarized as:

L = Lrec(Î, I) + Llan + Lreg, (11)

with Lreg = Lsym(A)+λconLcon(A)+λsmoLsmo(S). (12)

3.3. Nonlinear 3DMM with Proxy and Residual

Proxy and Residual Learning. Strong regularization

has been shown to be critical in ensuring the plausibility

of the learned models [39,45]. However, the strong regular-

ization also prevents the model from recovering high-level

details in either shape or albedo. Hence, this prevents us

from achieving the ultimate goal of learning a high-fidelity

3DMM model.

In this work, we propose to learn additional proxy

shape (S̃) and proxy albedo (Ã), on which we can apply

the regularization. All presented regularizations will now

be moved to proxies:

L∗
reg = Lsym(Ã) + λconLcon(Ã) + λsmoLsmo(S̃). (13)

There will be no regularization applied directly to the ac-

tual shape S and albedo A, other than a weak regularization

encouraging each to be close to its proxy:

Lres = ‖∆S‖
1
+‖∆A‖

1
=

∥

∥

∥
S− S̃

∥

∥

∥

1

+
∥

∥

∥
A− Ã

∥

∥

∥

1

. (14)

By pairing two shapes S, S̃ and two albedos A, Ã, we

can render four different output images (Fig. 2). Any of

them can be used to compare with the original input image.

We rewrite our reconstruction loss as:

L∗
rec = Lrec(Î(S̃, Ã), I)

+ Lrec(Î(S̃,A), I)

+ Lrec(Î(S, Ã), I). (15)

Pairing strongly regularized proxies and weakly regular-

ized components is a critical point in our approach. Using

proxies allows us to learn high-fidelity shape and albedo

without sacrificing quality of either component. This pair-

ing is inspired by the observation that Shape from Shad-

ing techniques are able to recover detailed face mesh by

assuming over regularized albedo or even using the mean

albedo [34]. Here, Lrec(Î(S, Ã), I) loss promotes S to re-

cover more details as Ã is constrained by piece-wise con-

stant Lcon(Ã) objective. Vice versa, Lrec(Î(S̃,A), I) aims

to learn better albedo. In order for these two losses to

work as desired, proxies S̃ and Ã should perform well

enough to approximate the input images by themselves.

Without Lrec(Î(S̃, Ã), I), a valid solution that minimizes

Lrec(Î(S, Ã), I) is combination of a constant albedo proxy

and noisy shape creating surface normal with dark shading

in necessary regions, i.e., eyebrows.

Another notable design choice is that we intentionally

left out the loss function on Î(S,A), even though this the-

oretically is the most important objective. This is to avoid

the case that the shape S learns an in-between solution that

works well with both Ã,A and vice versa.

Occlusion Imputation. With proposed objective func-

tion, our model is able to faithfully reconstruct input im-

ages. However, we empirically found that besides high-
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Figure 3: The proposed global-local-based network architecture.

fidelity visible regions, the model tends to keep invisible

region smooth. The reason might be that, there is no su-

pervision on those areas other than the residual magnitude

loss pulling the shape and albedo closer to their proxies. To

learn a more meaningful model, which is beneficial to other

applications, i.e., face editing or face synthesis, we propose

to use a soft symmetry loss [43] on occluded regions:

Lres-sym(S) = ‖T⊙ (∆S
uv
z − flip(∆S

uv
z ))‖

1
, (16)

where T is a visibility mask of each pixel in UV space,

approximated based on estimated surface normal direction.

Even though the shape itself is not symmetric, i.e., face with

asymmetric expression; we enforce symmetrical property

on its depth residual ∆Sz (only use shape’s z-dimension).

3.4. Global­Local­Based Network Architecture

While global-based models are usually robust to noise

and mismatches, they are usually over-constrained and do

not provide sufficient flexibility to represent high-frequency

deformations as local-based models. In order to take the

best of both worlds, we propose to use dual-pathway net-

works for our shape and albedo decoders.

Here, we transfer the success of combining local and

global models in image synthesis [15, 28] to 3D face mod-

eling. The general architecture of a decoder is shown in

Fig. 3. From the latent vector, there is a global pathway fo-

cusing on inferring the global structure and a local pathway

with four small sub-networks generating details of different

facial parts, including eyes, nose and mouth. The global

pathway is built from fractional strided convolution layers

with five up-sampling steps. Meanwhile, each sub-network

in the local pathway has the similar architecture but shal-

lower with only three up-sampling steps. Using different

small sub-networks for each facial part offers two benefits:

i) with less up-sampling steps, the network is better able

to represent high-frequency details in early layers; ii) each

sub-network can learn part-specific filters, which is more

computationally efficient than applying across global face.

As shown in Fig. 3, to fuse two pathways’ features, we

firstly integrate four local pathways’ outputs into one sin-

gle feature tensor. Different from other works that synthe-

size face images with different yaw angles [20,47,48] with

no fixed keypoints’ locations, our 3DMM generates facial

albedo as well as 3D shape in UV space with predefined

Input

l2,1

l2,1+

Grad. diff.

l2,1+

Perceptual

Figure 4: Reconstruction results with different loss functions.

topology. Merging these local feature tensors is efficiently

done with the zero padding operation. The max-pooling fu-

sion strategy is also used to reduce the stitching artifacts on

the overlapping areas. Then the resultant feature is simply

concatenated with the global pathway’s feature, which has

the same spatial resolution. Successive convolution layers

integrate information from both pathways and generate the

final albedo/shape (or their proxies).

4. Experimental Results

We study different aspects of the proposed framework,

in terms of framework design, model representation power,

and applications to facial analysis.

The training is similar to [45], which also include a pre-

train stage with supervised losses. Adopting Basel Face

Model (BFM) [30]’s facial mesh triangle topology, we use a

subset of Q = 39, 111 vertices on the face region only. The

model is trained on 300W-LP dataset [52], which contains

122, 450 in-the-wild face images, in a wide pose range.

The model is optimized using Adam optimizer with a

learning rate of 0.001. We set the following parameters:

U = 192, V = 224, lS = lA = 320. λ values are selected

to bring losses to similar magnitudes.

4.1. Ablation Study

Reconstruction Loss Functions. We study effects of dif-

ferent reconstruction losses on quality of the reconstructed

images (Fig. 4). As expected, the model trained with l2,1
loss only results in blurry reconstruction, similar to other

lp loss. To make the reconstruction more realistic, we ex-

plore other options such as gradient difference [27] or per-

ceptual loss [17]. While adding the gradient difference loss

creates more details in the reconstruction, combining per-

ceptual loss with l2,1 gives the best results with high level

of details and realism. For the rest of the paper we will refer
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Input Î(S̃, Ã) Î(S, Ã) Î(S̃,A) Î(S,A)

S̃ S Ã A

Figure 5: Image reconstruction with our 3DMM model using the

proxy and the true shape and albedo. Our shape and albedo can

faithfully recover details of the face. Note: for the shape, we show

the shading in UV space – a better visualization than the raw S
UV.

Without Lres-sym With Lres-sym

Figure 6: Affect of soft symmetry loss on our shape model.

to the model trained using this combination.

Understanding image pairing. Fig. 5 shows fitting re-

sults of our model on a 2D face image. By using the proxy

or the final components (shape or albedo) we can render

four different reconstructed images with different quality

and characteristics. The image generated by two proxies

S̃, Ã is quite blurry but is still be able to capture major vari-

ations in the input face. By pairing S and the proxy Ã, S
is enforced to capture high level of details to bring the im-

age closer to the input. Similarly, A is also encouraged to

capture more details by pairing with the proxy S̃. The final

image Î(S,A) inherently achieves high level of details and

realism even without direct optimization.

Residual Soft Symmetry Loss. We study effects of the

residual soft symmetry loss on recovering details on oc-

cluded face region. As shown in Fig. 6, without Lres-sym, the

learned model can result in an unnatural shape, in which

one side of the face is over-smooth, on occluded regions,

while the other side still has high level of details. Our model

learned with Lres-sym can consistently create details across

the face, even in occluded areas.

4.2. Representation Power

We compare the representation power of the proposed

nonlinear 3DMM with Basel Face Model [30], the most

commonly used linear 3DMM. We also make comparisons

with the recently proposed nonlinear 3DMM [44].

Texture. We evaluate our model’s power to represent

Input Linear Nonlinear +GL +GL & Proxy

Figure 7: Qualitative comparisons on texture representation

power. Our model can better reconstruct in-the-wild facial texture.

Table 1: Texture representation power quantitative comparison

(Average reconstruction error on non-occluded face portion.)

Method Reconstruction error (l2,1)

Linear [52] 0.1287

Nonlinear [45] 0.0427

Nonlinear + GL (Ours) 0.0386

Nonlinear + GL + Proxy (Ours) 0.0363

in-the-wild facial texture on AFLW2000-3D dataset [52].

Given a face image, also with the groundtruth geometry

and camera projection, we can jointly estimate an albedo

parameter fA and a lighting parameter L whose decoded

texture can reconstruct the original image. To accomplish

this, we use SGD on fA and L with the initial parameters

estimated by our encoder E . For the linear model, Zhu et

al. [52] fitting results of Basel albedo using Phong illumi-

nation model [31] is used. As in Fig. 7, nonlinear model sig-

nificantly outperforms the Basel Face model. Despite, being

close to the original image, Tran and Liu [45] model recon-

struction results are still blurry. Using global-local-based

network architecture (“+GL”) with the same loss functions

helps to bring the image closer to the input. However,

these models are still constrained by regularizations on the

albedo. By learning using proxy technique (“+Proxy”), our

model can learn more realistic albedo with more high fre-

quency details on the face. This conclusion is further sup-

ported with quantitative comparison in Tab. 1. We report the

averaged l2,1 reconstruction error over the face portion of

each image. Our model achieves the lowest averaged recon-

struction error among four models, 0.0363, which is a 15%
error reduction of the recent nonlinear 3DMM work [45].

Shape. Similarly, we also compare models’ power to

represent real-world 3D scans. Using ten 3D face meshes
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Origin Linear [30] Nonlinear [45] Our

NME 0.0241 0.0146 0.0139

Figure 8: Shape representation power comparison. Given a 3D

shape, we optimize the feature fS to approximate the original one.

Tran and Liu 

Linear 3DMM 

Our 

Figure 9: The distance between the input images and their recon-

struction from three models. For better visualization, images are

sorted based on their distance to our model’s reconstructions.

provided by [30], which share the same triangle topology

with us, we can optimize the shape parameter to gener-

ate, through the decoder, shapes matching the groundtruth

scans. The optimization objective is defined based on ver-

tex distances (Euclidean) as well as surface normal direc-

tion (cosine distance), which empirically improves recon-

structed meshes’ fidelity compared to optimizing the former

only. Fig. 8 shows the visual comparisons between different

reconstructed meshes. Our reconstructions closely match

the face shapes details. To make quantitative comparisons,

we use NME — averaged per-vertex Euclidean distances

between the recovered and groundtruth meshes, normalized

by inter-ocular distances. The proposed model has a signif-

icantly smaller reconstruction error than the linear model,

and is also smaller than the nonlinear model by Tran and

Liu [45] (0.0139 vs. 0.0146 [45], and 0.0241 [30]).

4.3. Identity­Preserving

We explore the effect of our proposed 3DMM on pre-

serving identity when reconstructing face images. Using

DR-GAN [48], a pretrained face recognition network, we

can compute the cosine distance between the input and its

reconstruction from different models. Fig. 9 shows the plot

of these score distributions. At each horizontal mark, there

Input Overlay Albedo Shape Shading

Figure 10: Model fitting on faces with diverse skin color, pose,

expression, lighting. Our model faithfully recovers these cues.

Input Our Tewari17

Figure 11: 3D reconstruction comparison to Tewari et al. [40].

are exactly three points presenting distances between an im-

age with its reconstructions from three models. Images are

sorted based on the distance to our reconstruction. For the

majority of the cases (77.2%), our reconstruction has the

smallest difference to the input in the identity space.

4.4. 3D Reconstruction

Using our model FS ,FA, together with the model fitting

CNN E , we can decompose a 2D photograph into different

components: 3D shape, albedo and lighting (Fig. 10). Here

we compare our 3D reconstruction results with different

lines of works: linear 3DMM fitting [40], nonlinear 3DMM

fitting [39, 45] and approaches beyond 3DMM [16, 35].

Comparisons are made on CelebA dataset [25].

For linear 3DMM model, the representative work, MoFA

by Tewari et al. [38, 40], learns to regress 3DMM parame-

ters in an unsupervised fashion. Even being trained on in-

the-wild images, it is still limited to the linear subspace,

with limited power to recovering in-the-wild texture. This

results in the surface shrinkage when dealing with challeng-

ing texture, i.e., facial hair as discussed in [39, 44, 45]. Be-

sides, even with regular skin texture their reconstruction is
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Figure 12: 3D reconstruction comparisons to nonlinear 3DMM approaches by Tewari et al. [39] or Tran and Liu [45]. Our model can

reconstruct face images with higher level of details. Please zoom-in for more details. Best view electronically.

Input Our Tran18b Sela17

Figure 13: 3D reconstruction comparisons to Sela et al. [35] or

Tran et al. [43], which go beyond latent space representations.

still blurry and has less details compared to ours (Fig. 11).

The most related work to our proposed model is

Tewari et al. [39], Tran and Liu [45], in which 3DMM bases

are embedded in neural networks. With more representation

power, these models can recover details that the traditional

3DMM usually can’t, i.e. make-up, facial hair. However,

the model learning process is attached with strong regular-

ization, which limits their ability to recover high-frequency

details of the face. Our propose model enhances the learn-

ing process in both learning objective and network architec-

ture to allow higher-fidelity reconstructions (Fig. 12).

To improve 3D reconstruction quality, many approaches

also try to move beyond the 3DMM such as Richardson et

al. [34], Sela et al. [35] or Tran et al. [43]. The current

state-of-the-art 3D monocular face reconstruction method

by Sela et al. [35] using a fine detail reconstruction step

to help reconstructing high fidelity meshes. However, their

first depth map regression step is trained on synthetic data

generated by the linear 3DMM. Besides domain gap be-

tween synthetic and real, it faces a more serious problem

of lacking facial hair in the low-dimension texture. Hence,

this network’s output tends to ignore these unexplainable

regions, which leads to failure in later steps. Our net-

work is more robust in handling these in-the-wild varia-

tions (Fig. 13). The approach of Tran et al. [43] shares a

similar objective with us to be both robust and maintain high

level of details in 3D reconstruction. However, they use an

Figure 14: Adding stickers to faces. The sticker is naturally

added into faces following the surface normal or lighting.

over-constrained foundation, which loses personal charac-

teristics of the each face mesh. As a result, the 3D shapes

look similar across different subjects (Fig. 13).

4.5. Facial Editting

With more precise 3D face mesh reconstruction, the

quality of successive tasks is also improved. Here, we show

an application of our model on face editing: adding stick-

ers or tattoos onto faces. Using the estimated shape as well

as the projection matrix, we can unwrap the facial texture

into the UV space. Thanks to the lighting decomposition,

we can also remove the shading from the texture to get the

detailed albedo. From here we can directly edit the albedo

by adding sticker, tattoo or make-up. Finally, the edited

images can be rendered using the modified albedo together

with other original elements. Fig. 14 shows our editing re-

sults by adding stickers into different people’s face.

5. Conclusions

In realization that the strong regularization and global-

based modeling are the roadblocks to achieve high-fidelity

3DMM model, this work presents a novel approach to im-

prove the nonlinear 3DMM modeling in both learning ob-

jective and network architecture. Hopefully, with insights

and findings discussed in the paper, this work can be a step

toward unlocking the possibility to build a model which

can capture mid and high-level details in the face. Through

which, high-fidelity 3D face reconstruction can be achieved

solely by doing model fitting.
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