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Abstract

The analysis and modeling of cloth has received a lot

of attention in recent years. While recent approaches are

focused on woven cloth, we present a novel practical ap-

proach for the inference of more complex knitwear struc-

tures as well as the respective knitting instructions from only

a single image without attached annotations. Knitwear is

produced by repeating instances of the same pattern, con-

sisting of grid-like arrangements of a small set of basic

stitch types. Our framework addresses the identification

and localization of the occurring stitch types, which is chal-

lenging due to huge appearance variations. The resulting

coarsely localized stitch types are used to infer the under-

lying grid structure as well as for the extraction of the knit-

ting instruction of pattern repeats, taking into account prin-

ciples of Gestalt theory. Finally, the derived instructions

allow the reproduction of the knitting structures, either as

renderings or by actual knitting, as demonstrated in several

examples.

1. Introduction

Fabrics are an essential matter in our daily life. In con-

trast to their woven counterparts, knitted clothing visually

sticks out due to complicated underlying stitch structures

formed by various knitting operations, each inducing a char-

acteristic appearance. Furthermore, knitting clothing of var-

ious types still belongs to a handcraft mastered by a rather

large group of our society covering all ages. One reason for

this may be the interest in manufacturing one’s own clothing

with knitting patterns following the individual subjective

preferences. While there are books and websites that pro-

vide a wide range of patterns together with their respective

construction instructions, it would be desirable to be able to

reproduce patterns from images provided e.g. by standard

search engines such as Google, which lack the correspond-

ing knitting instruction.

Unfortunately, inferring the underlying knitting patterns

by only ”reading” a single image is particularly challenging,

even for experts. The visual appearance of stitches exhibits

a large variety as neighboring stitches may occlude them or

cast shadows. The variability in the appearance of the ba-

sic stitch types is further increased by the properties of the

used yarns, such as their thickness, type of yarns, etc., or

the individual knitting styles of different people leading to

various deformations, such as stretchings, holes and tight

or loose stitches. Therefore, even experts often prefer ana-

lyzing the respective physical clothing pieces by stretching

it and performing the inspection from both sides, in order

to reliably infer the knitting instructions, including other-

wise covered stitches. These manipulations are not possible

when analyzing knitted fabrics in single photos.

Inverse procedural modeling of objects from only a few

or even single examples has received a lot of attention in

the last decade. Corresponding applications encompass the

derivation of production rules for plants, woven fabrics,

buildings and facades. However, the developed approaches

are custom tailored for the corresponding applications and

cannot be easily transformed to infer knitting patterns.

In this paper, we direct our attention to the inference

of the complicated structures of knitwear and the deriva-

tion of the respective knitting instructions, to the best of our

knowledge, for the first time from only a single image with-

out annotations. This implies solving the labeling problem,

i.e. the identification of the occurring stitch types as well as

their proper localization from the visually complex appear-

ance depicted in the input photographs. For this purpose, we

introduce a novel pipeline that involves four major compo-

nents represented by (1) the search for the individual stitch

types across the image, (2) the inference of the underlying

grid structure from the coarsely localized stitches from the

previous step, (3) an error correction and pattern size detec-

tion step that determines the size of the desired pattern and

corrects the labeling errors from the first step, and, finally,

(4) the derivation of the final knitting instruction (in anal-

ogy to instructions in knitting books), based on the found

pattern size and corrected underlying grid structure, taking

into account the intuition of human perception by applying

the Law of Symmetry and the Law of Prägnanz [5]. These
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Figure 1: Exemplary appearance variations of knits (top)

and purls (bottom).

derived instructions allow the reproduction of the knitting

patterns with possibly different yarn types as demonstrated

in several examples.

In summary, the key contributions of this paper are:

• A novel method for inverse procedural modeling of

knitwear from a single image.

• The derivation of the underlying optimal regular grid

structure from initially determined hypotheses regard-

ing the coarse localization of stitch types.

• An error correction technique that determines the cor-

rect size of the knitting pattern and corrects possible

recognition errors.

• A final induction of the knitting instruction from the

derived grid structure following human intuition.

2. Background

Knitting relies only on a relatively small set of basic ac-

tions, and their combinations allow to generate the under-

lying knit structures for various patterns [34]. Therefore,

even children can learn to produce caps, scarfs or pothold-

ers. These basic actions and their combinations result in a

number of stitch types, which are used to generate a wide

range of various knitting designs by repetitions and different

orderings. In this paper, we focus on the two fundamental

stitch types: knit and purl (see Figure 1).

The usual shape of a knit resembles the structure of a

”v”. If there is a purl stitch above or below (or both), a knit

stitch becomes partially covered by the purl stitch(es). Ad-

ditionally, the width of the stitch gets smaller than it would

be if it had other knits as an upper and/or lower neighbor.

The purl stitch usually resembles a wave structure. This

wave becomes wider if there are knit stitches underneath

and above the purl. However, in case there is a knit stitch

on the right or the left side (or both) of a purl, then the purl

stitch gets partially covered. Figure 1 illustrates some of the

appearance/shape variations of purls and knits. Note that

the shown stitch variations are solely induced by arranging

the basic stitch types in different orderings. Additionally,

these appearance variations heavily depend on the proper-

ties of the used yarn, as well as stitch deformations resulting

from subjective knitting styles, making almost every stitch

of a hand-made piece of knitted fabric individual.

3. Related Work

The major components of our framework for inverse

modeling of knitwear include the search for occurrences of

basic stitch types as marked by the user within the image,

the inference of a grid structure based on the stitch candi-

dates and underlying repeating patterns. As a consequence,

we briefly review the developments in the areas of template

matching and inverse procedural modeling. We refrain from

a detailed discussion regarding the visualization of knitted

fabrics, but only refer to the work by Yuksel et al. [34].

Template matching: Traditional techniques for effi-

ciently searching a query patch within an image are usually

based on using the Sum-of-Squared-Distances (SSD), the

Sum-of-Absolute-Distances (SAD) or Normalized Cross-

Correlation (NCC). Subsequent works addressed their lack-

ing robustness towards handling noise [10] and illumina-

tion changes [13]. Further improvements came with the

use of robust error functions [6, 22, 21, 18]. Later, Barnes

et al. [2, 3] introduced the PatchMatch algorithm for nearest

neighbor matching across translations, rotations and scales.

However, all of these techniques only allow a one-to-one

mapping between a template and the query region and rely

on a strict rigid geometric deformation between the tem-

plate patch and the target patch. As a consequence, they

are not capable of dealing with the geometric deformations

we expect for patches containing knitting primitives (knits

and purls). Towards handling appearance variations for ma-

terial recognition, other approaches rely on the matching

of histograms extracted for different images by considering

various descriptors (e.g. [20]) within classification frame-

works. Furthermore, set-based matching has been explored

to allow a more robust matching of textures based on the

consideration of the appearance space of textures [14, 31].

Other approaches have been designed to explicitly han-

dle parametric deformations such as 2D affine transfor-

mations [16] or more general non-rigid distortions [29].

However, despite the requirement of a parametric distortion

model for the underlying geometry, these techniques also

rely on the assumption of a one-to-one mapping between

the query and target patch, which is susceptible to errors in

the presence of occlusions or background clutter.

Further work explores the bi-directional similarity be-

tween target and query patch. Simakov et al. [23] rep-

resent images in terms of a set of patches and the con-

sidered bi-directional similarity (BDS) measure considers

the sum of distances between a patch in the first image

and its nearest neighbor in the second image and vice

versa. To also distinguish between inliers and outliers aris-

ing from foreground/background parts of the considered

patches, the Best Buddies Similarity (BBS) has been pro-

posed [7], based on counting the Best Buddy Pairs and,

hence, using the actual distances only implicitly. Therefore,

an increased robustness in comparison to BDS has been
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achieved. Talmi et al. [26] extended this work by enforcing

diversity in the mutual nearest-neighbor matching and ex-

plicitly considering the deformation of the nearest-neighbor

field. To achieve a speed up of the matching process, they

use an approximate nearest neighbor search.

While any of the template matching techniques could be

applied to derive probability maps for the localization of

certain basic primitives required in our approach, we use

template matching based on BBS due to its proven robust-

ness to deformations that are expected to occur for the prim-

itives of knitting. We improved the BBS technique by the

use of additional gradient information. In the evaluation,

we compare several template matching techniques and show

that the extended BBS approach outperforms the other tech-

niques in the context of our particular problem.

Image-based detection of weave patterns: Cloth mod-

eling has received a lot of attention so far. Especially

approaches for detecting weave patterns from images are

closely related to our work. In particular, the complete

reverse-engineering of woven cloth at the yarn level as

approached by Schröder et al. [19] and Guarnera et al.

[11] has been demonstrated to be the current state-of-the-

art technique. While these approaches are powerful for the

analysis of woven cloth, they are not designed to handle

knitted textiles. Knitted clothing is inherently 3D and the

final shapes of stitches, especially hand-made stitches, do

not possess the similarity and regularity of warp and weft

of woven cloth, where occlusions and non-rigid deforma-

tions of the yarn have to be taken into account in order to be

able to find the actual position and the type of the stitches

in the image. To the best of our knowledge, we are the first

to tackle the problem of detecting knitting patterns and the

respective knitting instructions from a single image.

Inverse procedural modeling: Inverse procedural mod-

eling (IPM) is the problem of inferring a set of parameters

[28, 30] or even a whole procedural description for a given

model. Early investigations on applying inverse procedural

modeling for graphics applications include the works on 3D

meshes [4] and 2D vector designs [24], but there has been a

lot of progress in this area of research. Meanwhile, inverse

procedural modeling is widely used and has been applied

for varying purposes ranging from the inference of 3D de-

sign patterns [27] over the modeling of plants [25, 17] to

editing of building point clouds [8] as well as inferring pro-

cedural descriptions of building facades [32, 33, 9, 17] and

reverse engineering of woven cloth [19]. For a detailed and

extensive survey on inverse procedural modeling, we refer

to the report by Aliaga et al. [1].

4. Stitch Pattern Inference Approach

In this section, we introduce our approach to infer knit-

ting patterns and the respective instructions for their gener-

ation from single input images. An initial pre-processing

step compensates for non-axis-alignment of the depicted

knit patterns and, hence, makes our framework capable of

handling tilted images of knitwear. In the next step, the user

provides exemplars of particular basic stitch types, such

as knits or purls within the image via an intuitive inter-

face. Subsequently, image patches containing these stitch

types are searched within the whole image and the result-

ing coarse localization of the individual stitch types is used

to infer the underlying grid structure. Furthermore, an er-

ror correction procedure allows to compensate for possible

misclassifications of the stitch types in the grid and detects

the size of the repeating pattern. The found size and the

optimized grid structure are then used to find the starting

position of the pattern, thus finalizing the process of stitch

pattern inference. Finally, we derive the underlying produc-

tion rules and convert them into corresponding knitting in-

structions that allow the reproduction of the knitting pattern

depicted in the input image. Details regarding the involved

components are described in the following sections.

4.1. PreProcessing

Before allowing the user to specify templates for the rel-

evant stitch types in the image, we perform a pre-processing

step to facilitate the annotation process. To compensate for

deviations from axis-alignment, we use Histograms of Ori-

ented Gradients (HOG) to determine the most dominant di-

rections in the photo, which is justified due to the inherent

grid structure resulting from the production process. This

allows the reversal of rotations to align the grid structure

with the axes and, hence, makes our algorithm capable of

also handling non-axis-aligned input patterns. Respective

examples are shown in the supplemental material.

4.2. Interactive Selection of Relevant Stitch Types

The detection of stitch types could possibly be ap-

proached with a completely automatic pipeline. However,

this would require huge annotated databases depicting the

possibly occurring stitch types with various stitch neigh-

borhoods and distortions with yarns of different properties

(yarn thickness, reflectance behavior, etc.) under different

illumination conditions. As such databases, to the best of

our knowledge, are not yet publicly available, we refrain

from relying on a completely automatic approach to de-

tect stitch types across the image based on machine learn-

ing techniques. Instead we let the user guide the search for

stitch types by providing a single template for the individ-

ual stitch types occurring in the input image, in order to

keep user interaction as minimal as possible. For this pur-

pose, we implemented an easy-to-use interface that allows

the user to choose a sample for each stitch type by simply

drawing a rectangle over a stitch. In turn, considering the

possibly strong variations of the occurring stitches requires

a subsequently applied robust template matching technique.

8632



4.3. Derivation of Stitch Localization Hypotheses

Finding certain stitch types in an image is complicated

because their appearance may significantly vary due to par-

tial occlusions by neighboring stitches, variances in the used

yarn types including their reflectance behavior, thickness

and hairiness, as well as variations induced by the individ-

ual knitting style during manufacturing, manifested in de-

formations like tight or loose stitches. To be able to find

stitch types across the image based on a given template,

handling distortions and partial matches becomes an essen-

tial prerequisite for the derivation of hypotheses of where

the respective stitch types are found.

Best Buddies Similarity (BBS) based template match-

ing [7] has been designed towards these goals of matching

distorted and partially occluded patterns and proven to out-

perform most previous techniques in this regard. We there-

fore apply this technique for the detection of hypotheses

for the individual stitch types such as knits or purls. Fol-

lowing Dekel et al. [7], the BBS between two point sets

P = {pi}
N
i=1 and Q = {qi}

M
i=1 extracted from a local im-

age region and a template is defined according to

BBS(P,Q) =
1

min(M,N)

N
∑

i=1

M
∑

j=1

bb(pi, qj , P,Q). (1)

Here,

bb(pi, qj , P,Q) =











1, if NN(pi, Q) = qj

and NN(qj , P ) = pi

0, otherwise

(2)

acts as an indicator function influenced by the nearest neigh-

bor definition

NN(pi, Q) = argminq∈Qd(pi, q) (3)

and the distance measure

d(p, q) = ||p
(A)
i − q

(A)
j ||22 + λG||p

(G)
i − q

(G)
j ||22

+λL ||p
(L)
i − q

(L)
j ||22. (4)

In comparison to the original implementation [7], we ex-

tend the RGB-based appearance (A) and spatial distance (L)

within the patch with an additional gradient constraint (G),

that enforces similar gradients within the patches. Based on

several examples, we determined λG = 100 to be suitable

for our purpose, and otherwise follow the original imple-

mentation in using λL = 2 and a decomposition of image

and template into k × k patches with k = 3.

As a result, we obtain BBS likelihood maps that indicate

where the respective stitch types are (coarsely) localized.

Finally, we merge the likelihood maps obtained for the dif-

ferent stitch types to a resulting likelihood map that con-

tains the maximum likelihood of the individual stitch types

obtained per pixel as well as the corresponding most likely

stitch type. An example of these maps is shown in Figure 2.

Figure 2: User-specified stitch templates (left) and corre-

sponding likelihood maps (middle). The likelihood value is

indicated with the colorization, i.e. the lighter the spot the

higher the probability. The image on the right depicts the

maximum likelihood map including the assignments to the

stitch types (knit = orange, purl = blue).

4.4. Inference of Grid Structure of Stitches

The maximum likelihood map retrieved in the last step

contains the coarse per-pixel likelihood regarding the local

presence of respective stitch types. From this coarse local-

ization we need to determine the fine-grained arrangement

and the corresponding classes of the individual stitches. For

this purpose, we exploit the presence of an underlying grid-

like structure induced by the knitting process to account for

the fact that the spatial extension of the individual stitches

constrains their locations. In general, the latter will not be

equidistant and the grid may exhibit significant distortions

due to the non-ideal man-made manufacturing process or

the respective treatment of the fabric. To model this be-

havior, we associate the centers of the stitches with a set of

labeled points arranged in a 2D grid-like structure. These

points have to fulfill the following properties:

• Each point is assigned a high likelihood of represent-

ing a certain stitch type such as knits or purls (P1).

• Neighboring points must preserve a minimal distance

(on the order of magnitude of a stitch prototype) to

each other (P2).

• Adjacent points cannot be further apart than the maxi-

mal extension of a stitch type (P3).

• The set of points has the structure of a regular approx-

imately rectangular grid (P4).

Finding the optimal set of points fulfilling the above

stated properties can then be formulated in terms of a point

selection problem.

4.4.1 Stitch Localization as Point Selection Problem

To infer the positions of the centers of the individual

stitches, we solve a point selection problem that can be for-

mulated in terms of an integer linear program (ILP). Let P
denote the set of all possible points (pixels) of the input im-

age. Furthermore, let Popt be the point set corresponding

to the solution of our optimization problem. Denoting the
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likelihood value of a pixel pi ∈ P to be assigned to a cer-

tain stitch type according to the likelihood map from the

previous step with score(i) and using the binary variables

oi =

{

0 if pi /∈ Popt

1 if pi ∈ Popt

(5)

that determine whether a point pi is assigned to the optimal

solution, we maximize the functional
∑

pi∈P

score(i) oi (6)

subject to the constraints following from the aforemen-

tioned properties P2, P3 and P4. To ensure the properties

P2 and P3, we determine for each pixel pj ∈ P two corre-

sponding rectangular regions Pmin
j ⊂ P and Pmax

j ⊂ P
that represent the uncertainty in the location of neighboring

points in the grid structure . Pmin
j has the width wmin and

the height hmin of the estimated minimal extension of the

stitch and Pmax
j has the width wmax and the height hmax of

the estimated maximal extension. The computation of the

corresponding extension size values and the uncertainties is

discussed in Section 4.4.3. To account for the property P2,

we constrain each region Pmin
j to contain at most one op-

timal point p ∈ Popt and, to account for the property P3,

each region Pmax
j is constrained to have at least one point

p ∈ Popt, i.e.:

∑

∀i:pi∈Pmin
j

oi ≤ 1 and
∑

∀i:pi∈Pmax
j

oi ≥ 1 ∀pj ∈ P.

(7)

In order to force the points of the optimal solution to have

a grid-like structure (P4), we subdivide the input image into

r · c grid cells Gk ⊂ P with the width wi

c
(1 − uw) and

the height hi

r
(1 − uh), where wi and hi denote the width

and the height of the image respectively and c and r de-

note the number of rows and columns of the grid. These

are precomputed, as described in Section 4.4.2. With uw

and uh, we denote the uncertainties in the spatial extension

of the stitches in x and y direction respectively, which are

used here to allow the overlap of the cells. The values of

uw and uh are computed as described in Section 4.4.3. We

constrain the optimal solution to contain at least one point

in each grid cell. Furthermore, the number of points in the

solution is constrained to be equal to r · c. Both constraints

ensure (P4) while allowing for overlapping cells:

∑

∀i:pi∈Gj

oi ≥ 1 ∀Gj ∈ G, (8)

∑

∀i:pi∈P

oi = r · c. (9)

G denotes the set of all grid cells. To solve this ILP, we

use the Gurobi solver [12]. From the points contained in

the resulting optimal solution we construct the grid in the

following manner: We sort all points according to the x
coordinates of the pixels and assign to each row of the grid

c points. The stitch types assigned to the individual points

are stored in a matrix Mr×c.

4.4.2 Computing the Number of Rows and Columns

To determine the number of columns in the grid, we use the

position of one of the stitch samples selected by the user

during the initial step of the inference approach and select

the region around the stitch position within the likelihood

map. The height of the selected region corresponds to the

height of the selected template with some additional toler-

ance and the respective width is given by the image width.

To account for possible distortions, the height is allowed to

deviate up to uy in each direction from the center of the cho-

sen stitch sample (in our experiments, we use uy = 25%).

Using the data of this truncated map, we apply a similar ILP

formulation as before with slight changes. In contrast to the

optimization described before, the point variables consist of

the pixels from the chosen strip. The objective functional

and all constraints except for the row and the column num-

ber constraints remain unmodified. The number r of rows

is set to 1. Now we compute the possible minimal value of

the number of columns c as cmin = wi

Wmax
, where Wmax

denotes the maximal width of both templates, since we do

not yet know the correct stitch labelings of this strip. To ac-

count for possible stitch occlusions, we compute the maxi-

mal value of c as cmax = 2 wi

Wmin
, where Wmin denotes the

minimal width of both templates. We iterate through the

possible numbers of columns from cmin to cmax and divide

the resulting objective function of each optimal solution by

the current number of columns. Finally, we obtain the num-

ber c of columns corresponding to the largest value of the

normalized objective function as the optimal solution. The

number of rows is determined accordingly.

4.4.3 Uncertainty in the Locations of Adjacent Stitches

Because of occlusions and different deformations the

stitches vary from each other in size. Additional variations

are induced by the use of different yarn types and incon-

sistencies of the knitter. We implicitly take these aspects

into account by analyzing the strips extracted from the pre-

vious step to estimate uncertainties in the spatial extensions

of the stitches. First, we compute the average width wa and

height ha of the stitches taken from the four strips (two for

each sample). By computing the maximum absolute devi-

ation for the width (dw) and height (dh) separately, we get

the uncertainties uw = dw

wa
and uh = dh

ha
, yielding the val-

ues wmin = wa − uw and wmax = wa + uw for the width

and analogous values hmin and hmax for the height, which

are then used for the optimization.
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For the computation of the number of rows and columns

we use the average of the actual sizes of the templates se-

lected by the user and set the values of uncertainties ux and

uy to be equal to 25% of the average template size each.

Note that large uncertainty values result in an increasing

number of variables during the optimization, hence signifi-

cantly increasing computational time.

4.5. Error Correction and Repeat Size Detection

After the inference of the underlying grid structure M
from the previous step, we aim at finding an intuitive re-

peating pattern of minimal size. For this purpose, we as-

sume that the knitting pattern of interest is at least twice

contained completely within the image, but unfinished re-

peats may occur as well. In order to find the pattern, we first

find the correct size and subsequently determine the starting

position of the pattern. As the extracted matrix M of stitch

types resulting from the grid optimization step might still

contain some wrongly recognized stitch types, the identifi-

cation of the pattern size in the matrix M as well as the po-

tentially required error correction have to be conducted si-

multaneously. While the size of the repeating structure may

be derived from the matrix M without labeling errors of the

stitch types using region growing procedures as proposed by

Wu et al. [33], the occurrence of errors in M instead forces

us to perform an exhaustive search over all possible repeat

sizes and to compute an error score for each possible repeat

size. Finally, the size with the least error score is assumed

to be the correct one.

Let r and c denote the number of the rows and columns

of a possible repeat. Assuming the presence of at least two

occurrences of the pattern in the image, we only consider

repeat sizes s = (r, c) that satisfy at least one of conditions

r ≤ R
2 and c ≤ C

2 . In more detail, we fully partition M into

a set of non-overlapping submatrices Ms for each possible

repeat size s = (r, c), where each Ms
i ∈ Ms has the size s

(or smaller if depicting an unfinished repeat on a boundary).

The partitions are evaluated at different positions (m,n) of

M with m = r k and n = c h with k = 1, . . . , ⌊R
r
⌋ and

h = 1, . . . , ⌊C
c
⌋, respectively. Subsequently, we align all

Ms
i ∈ Ms according to their indices and compute the ma-

trix Ms
max, which contains the stitch type with the maximal

occurrence for each equal index of the submatrices. Then,

we compute the Hamming distance Di between each Ms
i

and Ms
max. The sum of all Hamming distances yields the

overall distance Ds of the current repeat size s.

We consider the size and the underlying stitch type ma-

trix Ms
max with the minimal distance as the resulting pattern

size. If there are several sizes with the same edit distance,

we take the one with the smallest value r + c, since other-

wise there is evidence for having another repeat withing the

repeat. In the case that we cannot determine the type with

maximal occurrence for an index position due to an equal

number of the stitch types at this position, we compare the

corresponding likelihood values of the pixels from which

these types were derived to determine the final type.

If the distance of the resulting optimal repeat deviates

from zero, errors have been detected in the matrix M . In

this case, the corresponding Ms
max is determined to have

the correct labelings of the stitches and all the submatrices

are corrected according to Ms
max.

4.6. Repeat Position Determination

Finally, the localization of an as intuitive as possible re-

peating pattern from the underlying grid structure and the

size of the repeating pattern has to be computed. In or-

der to select an intuitive pattern repeat, we take inspiration

from human perception and make use of two of the basic

laws in Gestalt theory [5]. The Law of Symmetry states

that symmetrical elements tend to be perceived as a unified

group. Taking this into consideration, we search for sym-

metry along the x-direction of the pattern. If there is a sym-

metry, we take it into account when selecting the starting

position of the repeat. If there is no symmetry in the struc-

ture of the repeat, we apply the Law of Prägnanz. Accord-

ing to this law, humans prefer simpler and ordered states

that require less cognitive effort and, hence, can be faster

processed than complex structures that, in turn, might have

to be reorganized or even further decomposed. In our case,

this corresponds to selecting the starting position of the pat-

tern from all the possible positions that leads to the least

amount of changes from one type of stitch to another when

computing the sum of the type changes from each two ad-

jacent rows and columns of the pattern in question. This

ensures that individual structures such as squares or circles

appearing in the pattern will not be broken.

5. Results and Discussion

Sample selection: In order to test our approach, we have

chosen 25 photos and scans that depict knitting samples

with different patterns and were produced with yarns of var-

ious types and colors. Eight of the photos were taken from

the internet, one photo depicts a machine knitted piece and

sixteen photos depict hand-made knitting fabrics. The fo-

cus on hand-made samples results from the fact that these

exhibit a higher degree of variation and, hence, are more

challenging than machine-knitted samples.

Performance analysis: Table 1 provides an overview

over the computation times as well as the problem sizes for

the four examples selected for this paper. More examples

with corresponding running times are shown in the supple-

mental material. Since the most time-consuming operations

were computations of the similarity maps with BBS and

solving for the optimum with the Gurobi solver [12], we

report the computation times only for these steps. The other

steps required only a negligible amount of time. All com-
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putations were performed with an unoptimized implemen-

tation on an Intel(R) Core(TM) i7-5820K CPU with 3.30

GHz.

Table 1: The columns contain the image size (IS), the run-

times (in seconds) of BBS and ILP, as well as the size of

both the grid (GS) and the pattern (PS). eG and eP denote

the fraction of misclassified stitch types for the overall grid

and the pattern after error correction.

ID IS BBS ILP GS PS eG eP
1 673× 257 102.53 11.02 9×5 4×2 1/45 0

2 690×370 31.93 8.13 15×11 7×6 1/165 0

3 803×844 219.79 62.02 11×17 8×8 4/187 0

4 516×347 137.74 4.78 7×6 3×4 0 0

Visual quality: Figure 3 demonstrates the results of the

individual steps of the pipeline for four of the example tex-

tiles. For the example in the second row one stitch in the

input image (the sixth stitch from the left in the bottom row)

has actually been wrongly knitted (knit instead of purl).

This error was recognized and corrected by our method. To

obtain the shown realistic renderings (last column), we syn-

thesize yarns using the procedural model of Zhao et al. [35].

We then deform the yarn according to the discovered knit-

ting instructions and discretize the resulting fiber geometry

into a voxel grid, storing averaged densities and fiber ori-

entations per voxel [15]. This voxel-based representation is

then rendered using a volumetric path tracer [15]. Further-

more, Figure 4 shows results for the inferred grid structure

obtained when applying our method on worn clothing.

Susceptibility to template selection: To evaluate the ro-

bustness regarding the selection of templates for the individ-

ual stitch types, we performed a study where 10 people aged

from 10 to 67 years were asked to provide respective anno-

tations. The results do not exhibit significant differences, as

long as the testers follow the simple instruction of selecting

two templates, which look similar to other stitches of the

same type (Figure 1) (see supplemental material).

Table 2: Performance comparison of several template

matching techniques: The rows contain the fractions of mis-

classified pixels ePx, stitch types for the overall grid eG and

the pattern after error correction eP . For the computation of

the first measure we excluded pixels within a small band at

the transitions between different stitch types. In 32% of the

tests, the optimization based on the SAD likelihood maps

did not succeed in detecting the correct number of rows

and/or columns of the grid. These cases are excluded from

the reported values eG and eP for SAD.

SAD NCC DDIS BBS BBSg

ePx 0.422 0.453 0.216 0.342 0.194

eG 0.633 0.087 0.062 0.071 0.040

eP 0.268 0.056 0.051 0.046 0.029

Suitability of different template matching schemes:

We evaluated the suitability of different template matching

schemes for the generation of likelihood maps for the indi-

vidual stitch types. For this purpose, we compare our ex-

tended version of the BBS technique with additional gradi-

ent information (BBSg) to the normalized cross-correlation

(NCC), the sum of absolute differences (SAD), the original

BBS approach [7] without the proposed extension and the

deformable diverse similarity (DDIS) approach [26]. Ta-

ble 2 summarizes the respective results. In order to achieve

meaningful results, the resolution of the input image is re-

quired to be sufficient so that the minimal template size is

not smaller that 30× 30 pixels.

Computational efficiency: In order to find the final cen-

ter positions of stitches, we apply a global optimization

that is formulated as an ILP problem. As ILP problems

are known to be NP-hard, the computational times may be

impractical. In order to speed-up the inference of optimal

grids, which is particularly required for larger images, we

downsize the corresponding likelihood maps by the factor

of 0.5. The downsizing significantly decreases the compu-

tational time of the optimization, while still yielding similar

results as without downsizing (for the evaluation of scaling

we refer to the supplemental material).

Another possibility to decrease the computational time

is to choose some iterative locally optimal approach instead

of global optimization. For comparison, we use the like-

lihood and the stitch type assignments from the template

matching step as the starting point for a greedy strategy to

select neighboring stitch centers, where we also exploit un-

certainty of the template sizes. In a first step, we take the

maximum of the likelihood to find the the most likely loca-

tion of a stitch and define a minimum distance within which

no other stitch is allowed to occur depending on the tem-

plate uncertainty. After discarding the respective area in the

likelihood, we continue to search for the next highest like-

lihood, place a stitch center and again remove the region

from the likelihood. This process is iterated until no fur-

ther stitch center can be placed or the remaining likelihoods

are lower than a certain threshold t (we used t = 0.2). As

shown in Figure 3, this approach does not result in accept-

able stitch center hypotheses, due to the iterative local op-

timization. Furthermore, this method does not compute the

uncertainties automatically but requires their manual speci-

fication for each fabric sample individually. In contrast, our

global optimization technique yields stitch center hypothe-

ses at a higher quality.

Pattern search: In principle, once the size and cor-

rect labeling of the repeated pattern is found, one could

reproduce the initial knitted example, since the knitting is

done periodically. However, when knitting whole clothing

pieces, the borders of the piece should be appealing. Hence,

we need to identify the starting position of the correct or at
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input knit map purl map greedy ours pattern rendering

Figure 3: From left to right: input image, likelihoods for both stitch types, stitch center hypotheses derived via a greedy

approach and grid structure inferred via our approach, corresponding knitting instruction (counting the rows from bottom to

top, empty cells correspond to knits in odd rows and purls in even rows while cells containing bars correspond to purls in odd

rows and knits in even rows) and rendering.

Figure 4: General, unrestricted setup of knitwear worn by a

person (left) with detected grid structures for some regions

of interest (right).

least of a nice pattern. In the supplementary material, we

illustrate the problem of choosing an intuitive pattern. With

our pattern search procedure we try to avoid breaking ex-

isting structures of the pattern, such as triangles or checker-

boards, thereby following the Gestalt principles.

Limitations: In this paper, we limit our approach to

the two fundamental stitch types: knit and purl. However,

the number of stitch types is not strictly limited to two.

In the supplemental material we also provide an example

with three stitch types. However, including stitch types (e.g.

holes) that deform the grid-like structure of the patten, re-

quires including additional constraints, which we want to

pursue in future work. Furthermore, if the input image

is of low quality or contains almost completely occluded

stitches, so that already the coarse localization does not

yield meaningful results, the optimization technique will

not produce the correct labeling.

6. Conclusion and Future Work

We have presented a novel practical framework for the
inference of the complicated structures of knitwear as well
as the corresponding knitting instructions from a single im-
age. Templates for individual stitch types, as provided by
the user, are roughly localized across the complete image
and the resulting stitch positions are subsequently refined
by optimizing the underlying grid structure within an in-
teger linear program. The size of the repeating pattern is
computed from the derived stitch labeling at the vertices
of the resulting grid. Subsequently, we apply the Law of
Symmetry and the Law of Prägnanz from Gestalt theory to
find an intuitive pattern repeat and derive the corresponding
knitting instruction. While our approach was demonstrated
to allow the derivation of the knitting instructions for sev-
eral different knitwears, there are still some open challenges
to be addressed by future research. Including further stitch
types into the framework as well as further reducing the de-
gree of user interaction based on the combination of a large
database of stitch types with their respective appearance
variations and machine learning techniques is a promising
avenue of research that we plan to pursue in future work.
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