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Abstract

Non-line-of-sight (NLOS) imaging is the problem of re-

constructing properties of scenes occluded from a sensor,

using measurements of light that indirectly travels from the

occluded scene to the sensor through intermediate diffuse

reflections. We introduce an analysis-by-synthesis frame-

work that can reconstruct complex shape and reflectance of

an NLOS object. Our framework deviates from prior work

on NLOS reconstruction, by directly optimizing for a sur-

face representation of the NLOS object, in place of com-

monly employed volumetric representations. At the core

of our framework is a new rendering formulation that ef-

ficiently computes derivatives of radiometric measurements

with respect to NLOS geometry and reflectance, while ac-

curately modeling the underlying light transport physics.

By coupling this with stochastic optimization and geome-

try processing techniques, we are able to reconstruct NLOS

surface at a level of detail significantly exceeding what is

possible with previous volumetric reconstruction methods.

1. Introduction

Non-line-of-sight (NLOS) imaging is an emerging tech-

nology that concerns with using higher-order light transport

in order to reconstruct properties of a scene that is outside

the direct line of sight of a sensor. A common setting is the

so-called “looking around the corner” problem [41, 77] (see

Figure 1), where information about an NLOS object (ge-

ometry, reflectance, motion, class label, and other proper-

ties) is extracted from measurements of photons that bounce

between a visible wall and the object. This technology

has seen rapid advances in the past decade, as several ac-

tive [68, 56, 40, 74, 13, 73, 81, 36, 42, 63, 48, 61, 50, 80]

and passive [8, 66, 6, 10, 5] techniques have been introduced

that can operate under progressively more challenging con-

ditions (ambient lighting, real-time capture, and so on).

We are focusing on the problem of shape reconstruction

in the looking-around-the-corner setting using active illu-

mination. Typically, active techniques use a controllable
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Figure 1. Looking around the corner: Non-line-of-sight (NLOS)

imaging is the problem of reconstructing parts of a scene occluded

from a sensor, by analyzing light that bounces multiple times be-

tween visible and occluded surfaces. We develop an inverse ren-

dering pipeline that uses an accurate radiometric image formation

model to produce detailed NLOS surface reconstructions.

source, such as a laser beam, to indirectly inject light into

the NLOS scene, through a reflection on the visible wall.

Then, they use time-resolved, or transient, intensity mea-

surements [33] to reconstruct the NLOS scene.

Most existing techniques perform 3D reconstruction us-

ing an image formation model introduced by Velten et

al. [77]. This model represents the NLOS scene as an

albedo volume, where each voxel is an isotropic reflector

with an associated albedo value. This representation allows

approximately formulating transient light transport in the

NLOS scene with only linear algebraic operations. In turn,

this allows recovering the unknown albedo volume from the
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transient measurements by solving a, potentially regular-

ized, linear least-squares system [31, 29, 56, 30, 3, 48, 50].

This mathematical tractability comes at the cost of phys-

ical accuracy: In NLOS scenes consisting of opaque ob-

jects, light transport is the result of discrete light-surface

interactions at the object interfaces, rather than continuous

light-volume interactions. Additionally, these interactions

include effects such as normal-dependent shading and non-

Lambertian reflectance, which are ignored by the albedo

volume. On the other hand, instead of volumetric albedo,

given a representation of the NLOS objects’ surface and

reflectance, light transport can be modeled exactly using

the rendering equation [35]. However, unlike the albedo

volume model, evaluating this equation is only possible

through computationally expensive Monte Carlo rendering

operations [75, 64, 18]. This increased computational com-

plexity has so far hindered the adoption of the rendering

equation in NLOS reconstruction techniques.

In this paper, we overcome the computational complex-

ity and introduce a computational pipeline that reconstructs

NLOS object shape, in the form of a triangular mesh, and

complex reflectance, in the form of a microfacet BRDF,

while accurately taking into account the underlying light

transport physics. At the core of our pipeline is a differ-

entiable formulation of the rendering equation in the NLOS

setting. This formulation enables the use of Monte Carlo

rendering to efficiently estimate derivatives of radiomet-

ric measurements with respect to shape and reflectance pa-

rameters. We combine an optimized differentiable render-

ing implementation with stochastic optimization in an in-

verse rendering framework [53], where we iteratively de-

form an NLOS surface so as to minimize the difference be-

tween measured and rendered light transients. We augment

this surface optimization pipeline with geometric process-

ing tools that help improve the quality of the resulting tri-

angular mesh. Through experiments on synthetic and mea-

sured data, we show that this pipeline can produce NLOS

surface reconstructions at a level of detail comparable to

what is achieved by albedo-volume methods using two or-

ders of magnitude more measurements, while additionally

recovering non-Lambertian reflectance. We will release

our optimized implementation in order to encourage adop-

tion of inverse rendering pipelines in NLOS imaging, either

as stand-alone reconstruction tools or in conjunction with

albedo-volume methods as post-processing procedures.

2. Related Work

Non-line-of-sight imaging refers to the broad problem of

reconstructing properties of scenes that are normally oc-

cluded from a sensor. Even though interest in this problem

dates back several decades [24], it has recently attracted in-

creased attention within computer vision and graphics, fol-

lowing two seminal papers [41, 77] demonstrating the abil-

ity to reconstruct shape in the looking around the corner

setting (Figure 1). Most of the NLOS imaging techniques

that have been introduced since then use active illumina-

tions, with a few notable exceptions [8, 66, 6, 10, 5].

We can broadly classify active NLOS imaging tech-

niques into three categories. First are coherent illumination

techniques, which take advantage of speckle statistics to re-

cover information about the NLOS scene [68, 36, 7, 37].

The second category includes techniques that use incoher-

ent intensity measurements, under laser or flash illumina-

tion, to recover NLOS motion information [42], semantic

labels [71], or in certain cases even geometry [81, 73].

Most relevant to us is the third category of active tech-

niques, which reconstruct NLOS geometry using transient

intensity measurements [33]. This has been demonstrated

using sensing technologies that include ultrafast photodi-

odes [41], optical coherence tomography [80], streak cam-

eras [77, 29], continuous-wave time-of-flight cameras [31,

34], and single-photon avalanche diodes (SPADs) [13, 56,

30, 45, 3, 74, 63, 61, 50, 80]. Most of these techniques use

a volumetric representation of the NLOS scene and an ap-

proximate image formation model introduced by Velten et

al. [77]. Our point of departure from this line of work is

to show that, using a physically-accurate image formation

model based on the rendering equation [35], we can recon-

struct surfaces, rather than volumes, for the NLOS scene, at

higher geometric detail. Compared to other techniques that

reconstruct surface representations from the timestamps of

specific events in transients [74, 80], we do so by taking into

account the complete transient intensity information, which

enables us to additionally reconstruct reflectance.

Surface optimization is a classical approach for 3D recon-

struction in computer vision, where it is commonly applied

for stereo-based reconstruction [2, 21, 22, 25, 16, 69, 83,

15, 82, 65, 44]. In a related context, surface optimization

techniques are used in mesh editing applications for com-

puter graphics [17, 54, 70, 20, 49]. At a high-level, both

types of applications operate by first defining an objective

function (or energy) as an integral on a surface. Then, they

derive expressions for the derivatives of this surface integral

with respect to some surface representations. Finally, these

derivatives are used to create a flow process that progres-

sively deforms some initial surface, until the objective func-

tion is minimized. The derivation of derivative expressions

typically relies on tools from differential geometry, and has

been demonstrated for both implicit (e.g., level sets [55])

and parametric (e.g., triangular meshes [16]) surface rep-

resentations. Similar surface integrals arise in the context

of NLOS imaging through the rendering equation. There-

fore, we take advantage of this mathematical machinery to

perform surface optimization for NLOS reconstruction.

Differentiable rendering has been introduced as a method-

ology for recovering physical unknowns from image mea-
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surements, which can include direct-only [52] and global

illumination effects (e.g., scattering [28, 27, 84, 46, 26, 38],

or interreflections [51, 47, 4]). Typically, differentiable ren-

dering is used to perform analysis-by-synthesis, also known

as inverse rendering [53, 60, 59]. This refers to the search

for values of physical parameters that, when used to syn-

thesize images, can reproduce input image measurements.

To efficiently perform this search through gradient-descent

optimization, differentiable rendering is used to estimate

derivatives of images with respect to the unknown parame-

ters. In our setting, we devise differentiable rendering algo-

rithms that enable surface optimization, and are tailored to

the NLOS image formation model for increased efficiency.

3. Problem setting

We focus on the looking-around-the-corner imaging set-

ting, which we describe in detail in this section. Along

the line, we introduce relevant notation, and use this no-

tation to write down expressions for the radiometric mea-

surements captured under this setting as a function of prop-

erties of the NLOS scene. These expressions are common-

place in the physics-based rendering literature (see, for in-

stance, [75, 64, 18]), but we describe them in detail as the

necessary background for deriving the inverse rendering al-

gorithm of Section 4. To help navigate this section, in Fig-

ure 2, we visualize in two dimensions the looking-around-

the-corner setting and some of our notation.

We use a pulsed source l0 and a transient detector s0 to

image a scene that consists of two distinct sets of surfaces:

surfaces SLOS that are visible to both the source and detec-

tor, and surfaces SNLOS that are occluded from both of them.

We assume that there are no surfaces that are neither in SLOS

nor in SNLOS. We additionally assume that the visible sur-

face SLOS has Lambertian reflectance.

We use the source to illuminate a point l on the visible

surface SLOS. Likewise, we use the detector to image a point

s on SLOS. We call the points l and s the virtual source

and virtual detector respectively. This terminology stems

from the fact that these points effectively act as an isotropic

source and detector directly attached to SLOS, as they redi-

rect light, through a diffuse reflection, from the source to

the NLOS scene, and from the NLOS scene to the detector.

3.1. Image formation model

We restrict our attention to light effects from so-called

three-bounce paths of the form l0 → l → x → s → s0
where x ∈ SNLOS; that is, paths that, between the virtual

source l and virtual detector s, have a single interaction with

the NLOS surface at a point x ∈ SNLOS. We make this sim-

plification motivated from previous observations that pho-

tons following higher-order paths are difficult to detect with

existing sensors [63]. We additionally ignore light follow-

ing direct paths without interacting with the NLOS surface

SNLOS, as this light component is typically removed using

time-gating mechanisms [13]. Additionally, for each pair of

virtual points l and s, we assume that we have calibrated our

measurements so that we can neglect the radiometric and

pathlength terms for the connections l0 → l and s → s0.

Under these assumptions, we can use the path integral

formulation of light transport [75] to write the intensity

measured by the sensor s0 at time t as

I (t; l, s) =

∫

SNLOS

g(x,n̂(x))
︷ ︸︸ ︷

W (x; t) f (x, n̂ (x))

· v (x, l) v (x, s) dA (x) , (1)

where A (x) is the area measure on SNLOS, n̂ is the normal

of a surface at a specific point, and W (x; t), f (x, n̂ (x)),
v (x, s) will be discussed below. When considered as a

function of all possible times t, virtual sources l, and vir-

tual detectors s, I (t; l, s) is often referred to as the five-

dimensional transient [13]. We note that, because of the

three-bounce assumption, the usual path integral reduces to

a single surface integral over the NLOS surface SNLOS.

The radiometric throughput f in Equation (1) is the ra-

diance that flows through the path l → x → s,

f (x, n̂ (x)) = fs (n̂ (x) , ω̂l (x) , ω̂s (x))

·
〈−ω̂l (x) , n̂ (l)〉 〈ω̂l (x) , n̂ (x)〉

‖x− l‖
2

·
〈−ω̂s (x) , n̂ (s)〉 〈ω̂s (x) , n̂ (x)〉

‖x− s‖
2 , (2)

where fs is the BRDF of SNLOS at point x, ω̂l (x) is the

normalized vector parallel to l−x, and likewise for ω̂s (x).
The temporal importance W models the mechanism by

which the sensor selects paths of length within some spe-

cific range for each measurement I (t; l, s)1,

W (x, t) = rect

(
τ (x)− t

T

)

, (3)

where rect is the unit rectangular function, T is the sensor’s

temporal resolution, and τ is the length of path l → x → s,

τ (x) = ‖x− l‖+ ‖x− s‖ . (4)

Finally, the visibility function v is a binary indicator of

occlusion between two points,

v (x,y) =

{

1, if x,y are visible to each other,

0, otherwise.
(5)

Comparison to albedo volume model. It is instruc-

tive to compare the surface integral formulation of Equa-

tion (1) with the albedo volume model of Velten et al. [77].

1We treat geometric pathlength and time of flight as equivalent, with

the understanding that they relate to each other through the speed of light.
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Figure 2. Pipeline overview: (Left) 2D visualization and notation. (Middle) We sample points x to estimate the transient and its gradients

with respect to reflectance π and vertices v of a triangular mesh. (Right) We use the computed gradients to evolve the surface.

This model represents the NLOS scene as an albedo func-

tion ρ (x), defined on all points of a continuous three-

dimensional volume, x ∈ VNLOS. Then, transient measure-

ments are expressed as a volume integral,

I (t; l, s) =

∫

VNLOS

W (x; t) ρ (x)

‖x− l‖
2
‖x− s‖

2 dV (x) , (6)

where V (x) is the standard measure on VNLOS. Compared

to Equation (1), we note that the integrand of Equation (6)

constrains the reflectance function fs to be Lambertian, and

omits the normal-related shading terms and the visibility

terms v. Recent extensions incorporate normal and visibil-

ity effects through additional volumetric functions defined

everywhere on VNLOS [30]. However, the albedo, normal,

and visibility volumetric functions are treated as indepen-

dent of each other, even though they are in fact interwined

as functions of the underlying NLOS surface SNLOS.

Despite the lack of physical accuracy, the albedo vol-

ume model is attractive because of its mathematical con-

venience: Through a straightfoward discretization of the

volume integral of Equation (6), forward evaluations of the

model become simple matrix-vector multiplication opera-

tions. Consequently, inverting the model to reconstruct the

NLOS scene can be posed as a linear least-squares problem.

By contrast, forward evaluations of the surface integral of

Equation (1) rely on involved surface quadrature methods,

or Monte Carlo rendering. In turn, this makes inverting the

model for NLOS reconstruction non-trivial. We defer dis-

cussion of Monte Carlo rendering until Section 4.2, after we

first develop our approach for performing this inversion.

4. Analysis-by-synthesis optimization

We can now formulate the NLOS reconstruction prob-

lem. We are given a set of calibrated transient measure-

ments
{

Ĩm (t) ,m = 1, . . . ,M
}

, corresponding to pairs of

virtual points {(lm, sm) ,m = 1, . . . ,M}. We additionally

adopt parametric forms SNLOS [v] and fs [π] for the NLOS

surface and reflectance, respectively. Then, we recover

the unknown parameters from the measurements through

analysis-by-synthesis, also known as inverse rendering: We

search for the parameter values that can be used to simulate

transients that best match our measurements. Formally, we

minimize the following loss function,

E (v,π) =
1

2

∑

m,t

∥
∥
∥Ĩm (t)− I [v,π] (t; lm, sm)

∥
∥
∥

2

. (7)

We use the notation I [v,π] (t; l, s) to indicate that a ren-

dered transient is a function, through Equation (1), of the

surface and reflectance parameters v and π. While we use

the L2 loss for convenience, our technique can be used

to minimize arbitrary losses differentiable with respect to

I [v,π] (t; l, s), including losses derived from the noise

model of the underlying transient sensors [32].

We aim to use gradient-descent optimization, in order to

efficiently minimize the analysis-by-synthesis objective and

recover the NLOS surface and reflectance parameters. Dif-

ferentiating the loss function E (v,π) of Equation (7) with

respect to surface and reflectance parameters, we obtain

∂E

∂y
=−

∑

m,t

(

Ĩm (t)− I (t; lm, sm)
)∂I (t; lm, sm)

∂y
, (8)

where y can be either v or π. Evaluating the derivatives

requires computing not only the transients I , but also their

derivatives ∂I/∂π and ∂I/∂v with respect to reflectance

and surface parameters. This is challenging because I is

not an analytical function of these parameters, but is only

related to them through the surface integral of Equation (1).

We overcome this obstacle using an approach based

on differentiable rendering. We prove that the derivatives

∂I/∂π and ∂I/∂v can be expressed as surface integrals

analogous to that of Equation (1). This allows us to de-

rive efficient Monte Carlo rendering algorithms for stochas-

tically approximating the reflectance and surface deriva-

tives. We can, then, combine these stochastic estimates with

stochastic gradient descent optimization [39] to minimize

Equation (7). In the rest of this section, we first describe our

choices for NLOS suface and reflectance parameterization,

then provide an overview of our approach differentiable ren-

dering approach, deferring details to the supplement.
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4.1. Differentiating transients

Surface parameterization. We represent the NLOS sur-

face SNLOS as a triangular mesh with boundary, which we

represent using two matrices: First, a 3 × V geometry ma-

trix V providing the three-dimensional coordinates of its V
vertices. Second, a 3 × T topology matrix T providing the

integer vertex indices of its T triangles. We do not assign

any normal or texture parameters to the vertices, and at ev-

ery point on the mesh, we assume that the surface normal

is equal to the corresponding triangle’s face normal. We

use meshes instead of an implicit representation (e.g., level

sets [55] or signed distance functions [14] to facilitate effi-

cient Monte Carlo rendering (see Section 4.2). On the other

hand, this complicates optimization due to the need to han-

dle the discrete topology matrix T . As is common in mesh

optimization, we use differentiable rendering to minimize

Equation (7) only with respect to mesh vertices. During

this iterative minimization, we use standard geometry pro-

cessing tools to improve the mesh topology (Section 5).

Reflectance parameterization. We assume that the NLOS

surface has a spatially-uniform BRDF, which we represent

using the widely-adopted GGX microfacet BRDF, as de-

scribed by Walter et al. [79]. For completeness, we provide

in the supplement the full expression fs for GGX.

Derivatives as surface integrals. We now state the main

technical result of the paper, which allows us to derive

expressions for the derivatives of the image formation

model (1) with respect to surface geometry and reflectance.

Proposition 1 The derivatives of a transient I (t; l, s) with

respect to reflectance and mesh vertices can be written as:

∂I

∂v
=

∫

SNLOS

gs (x, n̂ (x)) v (x, l) v (x, s) dA (x) , (9)

∂I

∂π
=

∫

SNLOS

gr (x, n̂ (x)) v (x, l) v (x, s) dA (x) , (10)

for appropriate functions gs and gr.

We provide the proof and detailed expressions for gs and

gr in the supplement. In the case of reflectance, this simply

involves changing the order of differentiation and integra-

tion. However, in the case of mesh vertices, differentiating

Equation (1) is complicated by the fact that the integration

over surface is also a function of the mesh vertices. We

tackle this by using recent results on analytically express-

ing gradient flows from mesh functionals as surface inte-

grals [20, 19]. These results have also been used by De-

launoy and Prados [16] for surface optimization in line-of-

sight reconstruction problems (e.g., shape from shading).

Our proof makes the approximation that the visibility

terms v are independent of the mesh geometry. This ap-

proximation is justified by the fact that the visibility terms

have non-zero derivatives only on a zero-measure part of the
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Figure 3. Comparison of gradient estimation techniques: We

estimate the derivative of a transient with respect to one coordinate

of one NLOS surface vertex. We plot two estimates, one computed

using the rendering algorithm of Section 4.2, and another using

finite differences and antithetic variates [23]. We observe that the

numerical gradient is significantly noisier than the rendered one,

despite being computed using twice as many path samples.

surface (that is, on occluding contours [43]), and is common

in computer vision and graphics problems [2, 67, 49]. De-

launoy and Prados [16] show that differentiation is possible

even without approximating the visibility terms v as con-

stant. As we discuss in the supplement, we can similarly

extend Proposition 1 to account for visibility. However, in

practice we found that this complicates Monte Carlo render-

ing without significantly improving the optimization results.

Surface regularization. We note that, when optimizing ge-

ometry, we follow Delaunoy and Prados [16] and augment

the loss function E (v,π) with a normal smoothing regu-

larization term. We discuss this in the supplement.

4.2. Stochastic estimation and optimization

We can now describe our two core computational tools

for efficiently minimizing the loss function of Equation (7).

Monte Carlo rendering. The surface integrals of

Equations (1), (9), and (10) can be approximated us-

ing Monte Carlo integration: We first use any proba-

bility distribution µ on SNLOS to sample a set of points

{xj ∈ SNLOS, j = 1, . . . , J}. Then, we can form the re-

spective unbiased and consistent estimates [23]:

〈I〉 =
J∑

j=1

g (xj , n̂ (xj)) v (xj , l) v (xj , s)

µ (xj)
, (11)

〈
∂I

∂v

〉

=

J∑

j=1

gs (xj , n̂ (xj)) v (xj , l) v (xj , s)

µ (xj)
, (12)

〈
∂I

∂π

〉

=

J∑

j=1

gr (xj , n̂ (xj)) v (xj , l) v (xj , s)

µ (xj)
. (13)

In the supplement, we describe a stratified area sampling

procedure, which greatly accelerates rendering.

Stochastic gradient descent. Using these Monte Carlo

estimates, we can approximately compute the derivatives

of Equation (8). We can combine these stochastic deriva-
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(a) initial mesh (b) mesh after gradient descent (c) EL TOPO (d) isotropic remeshing

Figure 4. Geometry processing: We show an example of the geometric processing operations we use improve mesh topology. (a) Initial

mesh. (b) Mesh after gradient descent steps, with self-intersections at several places (see inset). (c) Mesh evolution using El Topo, which

helps reduce self-intersections. (d) Mesh after isotropic remeshing, which increases mesh detail while decreasing high frequency artifacts.

tive estimates with stochastic gradient descent (SGD) algo-

rithms to perform the analysis-by-synthesis optimization of

Equation (7). We use Adam [39] to alternatingly optimize

for reflectance and surface, and provide more details about

our optimization procedure in the supplement.

Comparison with numerical differentiation. The perfor-

mance of SGD optimization critically depends on the abil-

ity to compute unbiased gradient estimates of low variance.

To highlight the importance of our differentiable rendering

formulation in facilitating this optimization, we compare in

Figure 3 rendered gradient estimates with estimates com-

puted using a finite-difference approximation. We observe

that the numerical gradients have significantly higher vari-

ance; therefore, using them with SGD would greatly slow

down convergence. Alternatively, we could eliminate vari-

ance in finite-difference estimation, by using a quadrature

technique (e.g., finite elements) to compute the forward in-

tegral (1). However, this could introduce strong bias, and

therefore affect the physical accuracy of the result.

5. Geometry processing operations

As discussed in Section 4.1, we use stochastic gradient

descent to optimize only the vertices of the mesh SNLOS, and

not its topology. We instead improve the mesh topology by

using, at various times during the analysis-by-synthesis op-

timization, geometry processing tools, as shown in Figure 4.

Robust surface evolution. As the mesh SNLOS evolves over

multiple SGD iterations, triangle quality typically degrades.

Motivated by other optimization-driven mesh editing algo-

rithms [49], we instead evolve SNLOS using the pipeline of

Brochu and Bridson [12], implemented in El Topo [11].

Given initial vertices {vi, i = 1, . . . , V }, and associated

displacements { dvi, i = 1, . . . , V }, El Topo performs two

types of operations: First, it alters the displacement vec-

tors and mesh topology, to produce a non-intersecting mesh.

Second, it uses local topology operations to improve overall

mesh quality. In our implementation, we accumulate dis-

placement vectors dvi over multiple gradient-descent iter-

ations, then use El Topo to evolve the mesh.

Progressive refinement and isotropic remeshing. As an

additional means of regularization, we optimize the NLOS

surface SNLOS in a coarse-to-fine fashion. We start with a

mesh of a relatively small number of vertices V and tri-

angles T . Then, during the gradient-descent optimization

of SNLOS, we progressively increase the number of vertices

and triangles. We implement mesh refinement by perform-

ing isotropic remeshing operations [9] with increasing tar-

get number of vertices. In addition to increasing the mesh

detail, isotropic remeshing improves mesh quality and fil-

ters out high-frequency artifacts on the mesh surface.

6. Experiments

Implementation. Our framework has three major compo-

nents: differentiable rendering, geometry processing, and

stochastic gradient descent. For rendering, we have devel-

oped a C++ implementation based on Embree [78] for fast

CPU execution. For geometry processing, our C++ imple-

mentation is built using the El Topo [11], CGAL [72] and

libigl [57] libraries. Finally, both the rendering and geom-

etry components are interfaced with Pytorch [58], which

we use for stochastic gradient descent optimization with

Adam [39]. Our implementation can scale up to optimiza-

tion of meshes with more than 100, 000 vertices, using 4096
transient measurements of 1200 temporal bins each. We

run experiments on a 72-core Amazon EC2 c5.18xlarge in-

stance, with a runtime of around two hours per scene. Our

implementation and data are available online [1].

Scanning configuration. In all our experiments, we use

a confocal scanning procedure, l = s [56]. The scanning

points are on a 64× 64 regular grid on the visible surface.

Initialization. Except where specified otherwise, we ini-

tialize using the light cone transform algorithm of O’Toole

et al. [56]. We convert the resulting albedo volume to a sur-

face by first computing the maximum albedo voxel along

the depth axis, then pruning albedo values below a thresh-

old, and finally triangulating the remaining points.

6.1. Synthetic experiments

We use synthetic data to evaluate the ability of our

method to reconstruct NLOS surface shape and reflectance.

In our synthetic experiments, NLOS objects are placed at a

distance of 0.4 m from a visible wall of size 0.5m× 0.5m.
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Figure 5. Surface reconstruction examples: (Top) Ground truth. (Middle) Reconstructions using the light cone transform [56]. (Bottom)

Reconstructions from our method. We can reconstruct shapes with different surface characteristics, including strong non-convexities, large

depth variations, and bas-relief details.

Figure 6. Alternative initialization: (Left) Reconstruction us-

ing space carving [74]. (Middle, right) Reconstruction from our

method, shown in same scale (middle) and zoomed-in (right).

We use Monte Carlo transient rendering [62] to synthesize

data, to which we add noise [32]. In the supplement, we

show additional simulations evaluating performance for dif-

ferent numbers of measurements and amounts of noise.

Shape reconstruction. Figures 1 and 5 show reconstruc-

tions for a variety of NLOS shapes with known Lambertian

reflectance. Our method reconstructs surface details that

are completely missing from the initial volumetric recon-

struction. A notable result is the soap bar, where we can

reconstruct the relief letters (depth 2 transient bins). In the

supplement, we use surface distance metrics to quantify the

reconstruction improvements.

Alternative initialization. Figure 6 shows an example

where we initialize our optimization using the space carv-

ing algorithm of Tsai et al. [74]. We observe that, despite

the very crude initialization, our method still produces a re-

construction of comparable detail to that produced from the

more accurate volumetric initialization in Figure 1.

Simultaneous shape and reflectance reconstruction. Fig-

ure 7 shows simulated experiments for reconstructing both

shape and reflectance. We experiment with a range of GGX

α values, going from very smooth to very rough specular

reflectance (Figure 7(b)-(c)). We observe that our algorithm

successfully reconstructs a rough estimate of both shape and

reflectance in all cases, but the reconstruction quality dete-

riorates as the surface becomes more specular.

6.2. Experiments with measured data

We perform experiments using datasets from three real

NLOS scenes, captured with SPAD-based transient imag-

ing systems. The first dataset is the diffuse ’S’ shape ob-
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Figure 7. Reconstruction of both shape and reflectance: (a) We

render transients for different GGX α values to visualize the effect

of reflectance on NLOS measurements. (b, c) We also visualize the

reflectance by rendering the scene under ambient light. (d - g) We

show optimization results for different α values, with the initial

shape and α at the top, and the optimized results at the bottom.

ject from [56]. As shown in Figure 8, our recovered shape

closely resembles the ground truth geometry and is overall

flatter than the volumetric reconstruction.

We additionally show reconstructions for two datasets

captured with our own implementation of the SPAD setup of

O’Toole et al. [56], for two NLOS objects of greater surface

complexity. The first object is a diffuse horse bust with fine

geometric details. As shown in Figure 8, our recovered re-

sult reproduces the flat and curved surface areas better. The

second object is a planar scene with a 6mm tall (5 transient

bins) relief in the shape of two digits. Our recovered result

better differentiates the digits from the background surface.

7. Discussion

We discuss some limitations of our NLOS surface opti-

mization framework. Since we do reconstruction by opti-

mizing a very non-linear loss function, our final result can

be strongly dependent on the initialization. Our experi-

ments indicate that the quality of the initialization strongly

affects the extent of the NLOS object that is recovered, but

has a small impact on reconstruction detail. We hope to ad-

dress the former issue by incorporating boundary evolution

techniques into our optimization pipeline. Additionally, our

pipeline performs worse as the reflectance of the NLOS ob-

ject becomes more specular. We believe this is primarily

caused by the area sampling procedure we use for render-

ing, which becomes very inefficient for highly-specular re-

flectance. We can potentially improve performance in such

cases by considering multiple importance sampling tech-

niques [76]. Finally, our results show a difference in per-

(a) scene (b) initialization (c) optimized shape

Figure 8. NLOS surface reconstruction using SPAD measure-

ments: (Top) Diffuse object from [56]. (Middle) A diffuse horse

statue. (Bottom) Digit relief on a planar object. In our experiment,

we cover the digits with white paper, to increase SNR.

formance between synthetic and real data. The noise sensi-

tivity experiments in the supplement indicate that the differ-

ence is primarily due to inaccurate modeling of SPAD sen-

sors (Poisson noise, pile-up, jitter [32]). We expect that we

can close the performance gab by changing the loss function

of Equation (7) to account for these effects.

Despite these limitations, our experiments demonstrate

that our surface optimization framework significantly im-

proves the quality of reconstruction possible in NLOS set-

tings. Because it is based on the rendering equation, our

framework can be used to process not only transients,

but all types of radiometric measurements: steady-state,

continuous-wave time-of-flight, and so on. Therefore, we

hope it can serve as a platform for exploring NLOS imag-

ing schemes that use, independently or in combinations, al-

ternative radiometric sensors, transient or otherwise. Addi-

tionally, our framework can be used to empirically investi-

gate fundamental resolution limits inherent in each of these

sensing modalities, without concern about information loss

from approximations to the image formation model. Such

empirical investigations can complement existing theoreti-

cal results [34] on resolution limits, or even provide insights

that will eventually lead to such results.
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