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Abstract

Visual relationship reasoning is a crucial yet challeng-

ing task for understanding rich interactions across visual

concepts. For example, a relationship {man, open, door}
involves a complex relation {open} between concrete en-

tities {man, door}. While much of the existing work has

studied this problem in the context of still images, under-

standing visual relationships in videos has received limited

attention. Due to their temporal nature, videos enable us

to model and reason about a more comprehensive set of vi-

sual relationships, such as those requiring multiple (tem-

poral) observations (e.g., {man, lift up, box} vs. {man,

put down, box}), as well as relationships that are often

correlated through time (e.g., {woman, pay, money} fol-

lowed by {woman, buy, coffee}). In this paper, we construct

a Conditional Random Field on a fully-connected spatio-

temporal graph that exploits the statistical dependency be-

tween relational entities spatially and temporally. We in-

troduce a novel gated energy function parametrization that

learns adaptive relations conditioned on visual observa-

tions. Our model optimization is computationally efficient,

and its space computation complexity is significantly amor-

tized through our proposed parameterization. Experimen-

tal results on benchmark video datasets (ImageNet Video

and Charades) demonstrate state-of-the-art performance

across three standard relationship reasoning tasks: Detec-

tion, Tagging, and Recognition.

1. Introduction

Relationship reasoning is a challenging task that not

only involves detecting low-level entities (subjects, objects,

etc.) but also recognizing the high-level interaction be-

tween them (actions, sizes, parts, etc.). Successfully rea-

soning about relationships not only enables us to build

richer question-answering models (e.g., Which objects are

larger than a car?), but also helps in improving image re-

trieval [20](e.g., images with elephants drawing a cart),

scene graph parsing [41] (e.g., woman has helmet), caption-

ing [42], and many other visual reasoning tasks.

Most contemporary research in visual relationship rea-
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Figure 1. Visual relationship reasoning in images (top) vs. videos

(bottom): Given a single image, it is ambiguous whether the mon-

key is creeping up or down the car. Using a video not only helps to

unambiguously recognize a richer set of relations, but also model

temporal correlations across them (e.g., creep down and jump left).

soning has been focused in the domain of static images.

While this has resulted in several exciting and attractive rea-

soning modules [26, 20, 42, 18, 40, 45, 3, 17], it lacks the

ability from reasoning about complex relations that are in-

herently temporal and/or correlated in nature. For example,

in Fig. 1 it is ambiguous to infer from a static image whether

the monkey is creeping down or up the car. Also, it is dif-

ficult to model relations that are often correlated through

time, such as man enters room and man open door.

In this paper, we present a novel approach for reason-

ing about visual relationships in videos. Our proposed ap-

proach jointly models the spatial and temporal structure of

relationships in videos by constructing a fully-connected

spatio-temporal graph (see Fig. 2). We refer to our model

as a Gated Spatio-Temporal Energy Graph. In our graph,

each node represents an entity and the edges between them

denote the statistical relations. Unlike much of the previ-

ous work [15, 43, 27, 4, 31] that assumed a predefined or

globally-learned pairwise energy function, we introduce an

observation-gated version that allows us to make the statis-

tical dependency between entities adaptive (conditioned on

the observation).

Our adaptive parameterization of energy function helps

us model the natural diversification of relationships in
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Figure 2. An overview of our Proposed Gated Spatio-Temporal Energy Graph. Given an input instance (a video clip), we predict the output

relationships (e.g., {monkey, creep down, car}, etc.,) by reasoning over a fully-connected spatio-temporal graph with nodes S (Subject),

P (Predicate) and O (Object). Unlike previous works that assumed a non-gated (i.e., predefined or globally-learned) pairwise energy

function, we explore the use of gated energy functions (i.e., conditioned on the specific visual observation) . Best viewed zoomed in and in

color.

videos. For instance, the dependency between man and

cooking should be different conditioned on the observation

(i.e., whether the location is kitchen or gym). However,

given the large state space of observations (in videos), di-

rectly maintaining observation-dependent statistical depen-

dencies may be computationally intractable [22, 35]. To-

wards this end, we develop an amortized parameterization

of our new gated pairwise energy function, which com-

bines ideas from clique template [33, 34, 21], neural net-

works [8, 35], and tensor factorization [14] for achieving

efficient inference and learning.

We evaluate our model on two benchmark datasets, Ima-

geNet Video [24] and Charades [32]. Our method achieves

state-of-the-art performance across three standard relation-

ship reasoning tasks: detection, tagging, and recognition.

We also study the utility of our model in the zero-shot set-

ting and learning from semantic priors.

2. Related Work

Video Activity Recognition. The notion of activity in a

video represents the interaction between objects [9, 12] or

the interaction between an object and a scene [32]. While

related to our task of relation reasoning, activity recogni-

tion does not require explicit prediction of all entities, such

as subject, object, scene, and their relationships. The term

relation used in activity recognition and relationship rea-

soning has different connotations. In the visual relation-

ship reasoning literature, it refers to the correlation between

different entities, such as object, verb, and scene, while in

activity recognition, it refers to either correlation between

activity predictions (i.e., single entity) or correlation be-

tween video segments. For example, [44] proposed Tem-

poral Relation Network to reason the temporal ‘relations’

across frames at multiple time scales. [6] introduced a

spatio-temporal aggregation on local convolutional features

for better learning representations in the video. [38] pro-

posed Non-Local Neural Networks to model pairwise rela-

tions for every pixel in the feature space from low-layers

to higher-layers. The work was extended to [39] for con-

structing a Graph Convolutional Layer that further modeled

relation between object-level features.

Visual Relationship Reasoning. Most recent works in re-

lation reasoning have focused their analysis on static im-

ages [40, 45, 3, 17]. For example, [26] introduced the

idea of visual phrases for compositing visual concepts of

subject, predicate, and object. [20] decomposed the di-

rect visual phrase detection task into individual detection

on subject, predicate, and object leading to improved per-

formance. [4] further applied conditional random fields on

top of the individual predictions to leverage their statisti-

cal correlations. [18] proposed a deep variation-structured

reinforcement learning framework and then formed a di-

rected semantic action graph. The global interdependency

in this graph facilitated predictions in local regions of the

image. One of the key challenges of learning relationships

in videos has been the lack of relevant annotated datasets.

In this context, the recent work of [29] is inspiring as it

contributes manually annotated relations for the ImageNet

video dataset. Our work improves upon [29] on multiple

fronts: (1) Instead of assuming no temporal contingency be-

tween relationships, we introduce a gated fully-connected

spatio-temporal energy graph for modeling the inherently

rich structure from videos; (2) We extend the study of rela-

tion triplet from subject/predicate/object to a more general

setting, such as object/verb/scene [32]; (3) We consider a

new task ‘relation recognition’ (apart from relation detec-

tion and tagging) which requires the model to make predic-

tions in a fine-grained manner; (4) For various metrics and

tasks, our model demonstrates improved performance.

Deep Conditional Random Fields. Conditional Random

Fields (CRFs) have been popularly used to model the sta-

tistical dependencies among predictions in images [10, 43,

27, 25, 4] and videos [23, 31]. Several extensions have been

recently introduced for fully-connected CRF graphs. For

example, [43, 27, 31] attempted to express fully-connected

CRFs as recurrent neural networks and made the whole net-

work end-to-end trainable, which has led to interesting ap-

plications in image segmentation [43, 27] and video activity

recognition tasks [31]. In the characterization of CRFs, the

unary energy function represents the inverse likelihood for
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assigning a label, while the binary energy function measures

the cost of assigning multiple labels jointly. However, most

of the existing parameterizations of binary energy func-

tions [15, 43, 27, 4, 31] have limited or no connections to

observed variables. Such parameterizations may not be op-

timal for video relationship reasoning due to the adaptive

idiosyncrasy for statistical dependencies between entities.

To address the issue, we instead propose an observation-

gated pairwise energy function with efficient and amortized

parameterization.

3. Proposed Approach

The task of video relationship reasoning not only re-

quires modeling the entity predictions spatially and tempo-

rally, but also maintaining a changeable correlation struc-

ture between entities across videos with various contents.

To this end, we propose a Gated Spatio-Temporal Fully-

Connected Energy Graph for capturing the inherently rich

video structure into account.

We start by defining our notations using Fig. 2 as a run-

ning example. The input instance X lies in a video seg-

ment and consists of K synchronous input streams X =
{Xk}Kk=1. In this example, input streams are {object tra-

jectories, predicate trajectories, subject trajectories}, and

thus K = 3, where trajectories refer to the consecutive

frames or bounding boxes in the video segment. Each

input stream contains observations for T time steps (i.e.,

Xk = {Xk
t }

T
t=1), where for example object trajectories

represent object bounding boxes through time. For each

input stream, our goal is to predict a sequence of entities

(labels) Y k = {Y kt }
T
t=1. In Fig. 2, the output sequence

of predicate trajectories represent predicate labels through

time. Hence we formulate the data-entities tuple as (X,Y )
with Y = {Y 1

t , Y
2
t · · · , Y Kt }Tt=1 representing a set of se-

quence of entities.

The entity Y kt should spatially relate to entities

{{Y 1
t , Y

2
t · · · , Y Kt } \ {Y kt }} and temporally relate to en-

tities {{Y k1 , Y
k
2 · · · , Y kT } \ {Y kt }}. For example, sup-

pose that the visual relationships observed in a grocery

store are {{mother, pay, money}, {infant, get, milk},

{infant, drink, milk}}; spatial correlation must exist be-

tween mother/pay/money and temporal correlation must

exist between pay/get/drink. We also note that implicit

correlation may also exist between Y kt and Y k
′

t′ for t 6=
t′, k 6= k′. Based on the structural dependencies between

entities, we propose to construct a Spatio-Temporal Fully-

Connected Energy Graph (see Sec. 3.1), where each node

represents an entity and each edge denotes the statistical

dependencies between the connected nodes. To further take

account that the statistical dependency between “get” and

“drink” may be different depending on different observa-

tions (i.e., location in grocery store v.s. home), we introduce

an observation-gated parameterization for pairwise energy

functions. In the new parameterization, we amortize the

potentially large computational cost by using clique tem-

plates [33, 34, 21], neural network approximation [22, 35],

and tensor factorization [14] (see Sec. 3.2).

3.1. SpatioTemporal FullyConnected Graph

By treating the predictions of entities as random vari-

ables, the construction of the graph can be realized by form-

ing a Markov Random Field (MRF) conditioned on a global

observation, which is the input instance (i.e., X). Then, the

tuple (X,Y ) can be modeled as a Conditional Random Field

(CRF) parametrized by a Gibbs distribution of the form:

P
(

Y = y|X
)

= 1
Z(X)exp

(

− E(y|X)
)

, where Z(X)

is the partition function and E(y|X) is the energy of as-

signing labels Y = y = {y1t , y
2
t , · · · , y

K
t }Tt=1 conditioned

on X . Assuming only pairwise cliques in the graph
(

i.e.,

P (y|X) := Pψ,ϕ(y|X),E(y|X) := Eψ,ϕ(y|X)
)

, the en-

ergy can be expressed as:

Eψ,ϕ(y|X) =
∑

t,k

ψt,k(y
k
t |X)+

∑

{t,k}6={t′,k′}

ϕt,k,t′,k′(y
k
t , y

k′

t′ |X),

(1)

where ψt,k and ϕt,k,t′,k′ are the unary and pairwise energy,

respectively. In Eq. (1), the unary energy, which is defined

on each node in the graph, captures inverse likelihood for

assigning Y kt = ykt conditioned on the observation X . Typ-

ically, this term can be derived from an arbitrary classifier

or regressor, such as a deep neural network [16]. On the

other hand, the pairwise energy models interactions of label

assignments across nodes Y kt = ykt , Y
k′

t′ = yk
′

t′ conditioned

on the observation X . Therefore, the pairwise term deter-

mines the statistical dependencies between entities spatially

and temporally. However, the parameterization in most pre-

vious works on fully-connected CRF [43, 27, 31, 4] as-

sumes that the pairwise energy function is non-adaptive to

the current observation, which may not be ideal to model

changeable dependencies between entities across videos.

In the following Sec.3.2, we propose an observation-gated

parametrization for pairwise energy function to address the

issue.

3.2. Gated Pairwise Energy Function

Much of existing work uses a simplified parameter-

ization of pairwise energy function and typically con-

siders only the smoothness of the joint label assign-

ment. For instance, in Asynchronous Temporal Field [31],

ϕ·(y
k
t , y

k′

t′ |X) is defined as µ(ykt , y
k′

t′ )K(t, t′), where µ
represents the label compatibility matrix and K(t, t′) is

an affinity kernel measurement which represents the dis-

counting factor between t and t′. Similarly, in the im-

age segmentation domain [43, 27], ϕ·(si, sj |I) is defined

as µ(si, sj)K(Ii, Ij), where s{i,j} is the segment label

and I{i,j} is the input feature for location {i, j} in im-

age I . In these models, the pairwise energy comprises
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an observation-independent label compatibility matrix fol-

lowed by a spatio or temporal discounting factor. We argue

that the parametrization of pairwise energy function should

be more expressive. To this end, we define the pairwise en-

ergy as:

ϕt,k,t′,k′(y
k
t , y

k′

t′ |X) := 〈fϕ〉
X,t,t′,k,k′,yk

t
,yk

′

t′
, (2)

where fϕ can be seen as a discrete lookup table that takes

the inputX of size |X| and outputs a large transition matrix

of size (T 2K2 − 1) × |Y kt | × |Y k
′

t′ |, and where 〈·〉z repre-

sents its zth item. Directly maintaining this lookup table is

computationally intractable due to the large state space of

X . Considering a simple case that X is a pairwise-valued

32 × 32 image, we have |X| = 232×32 possible states.

The state space complexity aggravates when X becomes an

RGB-valued video. Thanks to the recent advances in graph-

ical models [33, 34, 21], deep neural networks [22, 35], and

tensor factorization [14], our workaround is to parametrize

and approximate fϕ as fϕθ with learnable parameters θ as

follows:

〈fϕ〉
X,t,t′,k,k′,yk

t
,yk

′

t′
≈ f

ϕ
θ (X

k
t , t, t

′
, k, k

′
, y
k
t , y

k′

t′ )

=











〈

gkk
′

θ (Xk
t )⊗ hkk

′

θ (Xk
t )
〉

yk
t
,yk

′

t′

t = t′

Kσ

(

t, t′
)〈

rkk
′

θ (Xk
t )⊗ skk

′

θ (Xk
t )
〉

yk
t
,yk

′

t′

t 6= t′
,

(3)

where gkk
′

θ (·), rkk
′

θ (·) ∈ R
|Y k

t
|×r and hkk

′

θ (·), skk
′

θ (·) ∈

R
|Y k

′

t′
|×r represent the r-rank projection from Xk

t , which

is modeled by a deep neural network. A ⊗ B = AB⊤ de-

notes the function on matrix A and B, and results in a tran-

sition matrix of size |Y kt |×|Y k
′

t′ |. Kσ

(

t, t′
)

is the Gaussian

kernel with bandwidth σ representing discounting factor for

different time steps.

The intuition behind our parametrization is as follows:

First, we note that clique templates [33, 34, 21] are adopted

spatially and temporally, which leads to scalable learning

and inference. Second, the idea of using neural networks

for approximating the lookup tables ensures both parame-

ter efficiency and generalization [8, 35]. The lookup table

maintains the state transitions of X → Yk×Yk
′

where cal-

ligraphy font denotes the corresponding state space. Finally,

we choose r << mink{|Y
k
t |} so that a low-rank decompo-

sition is performed on the transition matrix from Y kt to Y k
′

t′ .

The low-rank decomposition allows us to substantially re-

duce the number of learnable parameters. To summarize,

our design for fϕθ amortize the large space complexity for

fϕ and is gated by observation.

3.3. Inference, Message Passing, and Learning

Minimizing the CRF energy in Eq. (1) returns the

most probable label assignment problem of Y =
{y1t , y

2
t , · · · , y

K
t }Tt=1 given the observation X . However,

the exact inference in a fully connected CRF is often com-

putationally intractable even with variables enumeration or

elimination [13]. In this work, we adopt the commonly used

mean-field algorithm [13] as approximate inference, which

finds the approximate posterior distribution Q(Y ) such that

Q(·) is closest to Pψ,ϕ(Y |X) in terms of KL(Q//Pψ,ϕ)
within the class of distributions representable as a product

of independent marginals Q(Y ) =
∏

t,kQ(Y kt ). Follow-

ing [13], inference can now be realized as the naive mean-

field updates with the coordinate descent optimization, and

it can be expressed in terms of fixed-point message passing

equations:

Q(ykt ) ∝ Ψt,k

(

y
k
t |X

)

∏

{t′,k′}6={t,k}

mt′,k′,t,k(y
k
t |X) (4)

with Ψt,k = exp
(

− ψt,k

)

representing the unary potential

and m·(·) denoting the message having form1 of

m·(·) = exp
(

−
∑

yk
′

t′

ϕt,k,t′,k′(y
k
t , y

k′

t′ |X)Q(yk
′

t′ )
)

. (5)

To parametrize the unary energy function, we use a sim-

ilar formulation:

ψt,k(y
k
t |X) :=

〈

f
ψ
〉

X,t,k,yk
t

≈fψθ (X
k
t , t, k, y

k
t ) =

〈

w
k
θ (X

k
t )
〉

yk
t

,
(6)

where wkθ ∈ R
|Y k

t
| represents the projection from Xk

t to

logits of size |Y kt |, modeled by a deep neural network.

Lastly, we cast the learning problem as minimizing con-

ditional cross-entropy between the proposed distribution

and the true one, where θ denotes the parameters we need

in our model: θ∗ = argminθ EX,Y [−logQ(Y )].

4. Experimental Results & Analysis

In this section, we report our quantitative and qualitative

analyses for validating the benefit of our proposed method.

Our experiments are designed to compare different base-

lines and ablations for detecting and tagging relationships

given a video as well as recognizing relationships in a

fine-grained manner.

Datasets. We perform our analysis on two datasets:

ImageNet Video [24] and Charades [32]. (a) ImageNet

Video [24] contains videos (from daily-life as well as

in-the-wild) with manually labeled bounding boxes for

objects. We utilize the annotations from [29], in which a

subset of the videos having rich visual relationships were

selected (1, 000 videos in total with 800 for training & rest

1In Supplementary, we make connection from our gated amortized

parametrization for pairwise energy function in message form with Self-

Attention [36] in machine translation and Non-Local Means [1] in Image

Denoising.
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Method

Correponding Relationship Detection Relationship Tagging Relationship Recognition

Image-Relationship or relationship relationship subject predicate object relationship

Video-Activity Method R@50 R@100 mAP P@1 P@5 P@10 Acc@1 Acc@1 Acc@1 Acc@1

Standard Evaluation

VidVRD∗ [29] Visual Phrases [26] 5.58 6.68 6.94 41.00 29.60 21.85 80.28 16.55 80.40 12.93

UEG VRDV [20] 2.81 3.64 2.94 31.50 19.88 14.98 80.15 23.95 80.55 18.62

UEG† VRD [20] 3.41 4.05 4.52 36.00 21.60 15.41 80.15 25.92 80.55 22.47

SEG DRN [4] 4.34 5.32 4.16 35.00 27.10 20.90 85.15 25.85 84.26 20.97

STEG AsyncTF [31] 4.18 4.98 4.71 40.00 24.45 17.66 89.91 25.92 89.33 22.54

GSTEG (Ours) - 7.05 8.67 9.52 51.50 39.50 28.23 90.60 28.78 89.79 25.01

Zero-Shot Evaluation

VidVRD∗ [29] Visual Phrases [26] 0.93 1.16 0.18 0.0 0.82 0.82 74.54 2.78 74.07 1.62

UEG VRDV [20] 0.0 0.23 1.30×1e-5 0.0 0.27 0.82 74.31 5.09 74.77 3.24

UEG† VRD [20] 0.23 0.23 5.36×1e-5 0.0 0.82 0.82 78.24 5.79 78.47 3.47

SEG DRN [4] 0.23 0.46 6.70×1e-5 0.0 0.82 1.23 81.02 6.94 74.54 3.47

STEG AsyncTF [31] 0.23 0.69 0.02 1.37 1.10 0.96 80.09 7.18 79.17 4.40

GSTEG (Ours) - 1.16 2.08 0.15 2.74 1.92 1.92 82.18 7.87 79.40 6.02

Table 1. Evaluation for different methods on ImageNet Video dataset. ∗ denotes the re-implementation of [29] after fixing the bugs in their

released evaluation code (by contacting authors). † denotes the implementation with additional triplet loss term for language priors [20].

for evaluation, available at [28]). The visual relationship

is defined on the triplet {subject, predicate, object}. For

example, {person, ride, bicycle} or {dog, larger, monkey},

etc. It has 35 categories of subject and object, and 132
categories of predicate (see Suppl. for details) with

trajectory denoting consecutive bounding boxes through

time. A relation triplet is labeled on a pair of trajectories

(one for subject and another for object). The entire video

has multiple pairs of trajectories and these pairs may or

may not overlap with each other spatially or temporally. (b)

Charades [32] contains videos of human indoor activities

(9, 848 in total with 7, 985 for training and the rest for

evaluation, available at [30]) . The visual relationship is

defined on the triplet {verb, object, scene} or {object, verb,

scene}. For example, {hold, blanket, bedroom}, {someone,

cook, kitchen}, etc. It has 33 categories of verb, 38 objects

and 16 scenes (see Suppl. for details). Different from

ImageNet Videos, as suggested by [32, 31, 38, 39], we treat

the entire video as an input instance. Therefore, a video

comprises multiple relation triplets, and each relation triplet

is defined within a time segment. The relation triplets may

or may not overlap temporally with each other.

Tasks. For the above two datasets, we consider the follow-

ing three experimental tasks.

(i) Relationship Detection. For ImageNet Videos, we aim at

predicting a set of visual relationships with estimated sub-

ject and object trajectories. Specifically, a predicted visual

relationship is counted as correct if the predicted triplet is

in the ground truth set and the estimated bounding boxes

have high voluminal intersection over union (vIoU) with the

ground truth (vIoU threshold of 0.5). Following [29], this

task is termed relationship detection, which contains both

relationship prediction and object localization. For Cha-

rades dataset, as suggested by [31]2, we aim at detecting the

2The performance reported in [31] refers to the mean Avergage Preci-

sion (mAP) of 157 activities, while ours consider the detection of relation

triplets. Although not being our focus, our method with the 157 activities

visual relationships in a video without object localization,

i.e., relationship detection happens in the scale of the entire

video. For evaluation, we follow [20, 29] and adopt mean

average precision (mAP) and Recall@K (K equals 50 and

100) metrics, where mAP measures the average of the max-

imum precisions at different recall values and Recall@K
measures the fraction of the positives detected in the top K
detection results.

(ii) Relationship Tagging. For ImageNet Videos, the rela-

tionship tagging task [29] focuses on only relationship pre-

diction. This is motivated by the fact that video object lo-

calization is still an open problem. Similarly, in Charades,

relationship tagging focuses on only relationship prediction

(where relationship tagging happens at the scale of entire

video). Following [29], we use Precision@K (K equals 1,

5, and 10) to measure the accuracy of the tagging results.

(iii) Relationship Recognition. Different from performing

relationship reasoning at the scale of entire video, we

would also like to measure how well the model recognizes

the relationship in a fine-grained manner. For example,

given an object trajectory and a subject trajectory, can the

model predict accurate relationships? For the ImageNet

Video experiments: given an input instance (with object

and subject trajectories in a time segment), we measure the

recognition accuracy of subject, predicate, object, and the

relationship, which we term it relationship recognition. As

the Charades dataset does not consider object localization,

we perform recognition on object, verb, scene, and the rela-

tionship within a time segment (where relation recognition

happens at the scale of a time segment in the video). We

use Accuracy@K (K equals 1) for emphasizing whether

the model gives the correct recognition result on the top 1

relationship prediction.

Pre-Reasoning Modules For all our experiments and ab-

output achieves 33.3 mAP on activity detection as compared to 18.3 mAP

in [31] when using only RGB frames as input. See Suppl. for details.
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Method

Correponding Relationship Detection Relationship Tagging Relationship Recognition

Image-Relationship or relationship relationship object verb scene relationship

Video-Activity Method R@50 R@100 mAP P@1 P@5 P@10 Acc@1 Acc@1 Acc@1 Acc@1

VidVRD [29] Visual Phrases [26] 13.62 18.36 3.12 3.97 4.62 4.26 28.70 63.64 34.91 7.83

UEG VRDV [20] 22.53 29.70 7.93 16.05 11.47 8.72 41.74 64.70 34.62 11.94

UEG† VRD [20] 22.35 29.65 7.90 16.10 11.38 8.67 41.70 64.73 35.17 11.85

SEG DRN [4] 23.68 31.56 8.77 18.04 12.50 9.37 42.84 64.36 35.28 12.60

STEG AsyncTF [31] 23.79 31.65 8.84 18.46 12.57 9.37 42.87 64.53 35.71 12.76

GSTEG (Ours) - 24.95 33.37 9.86 19.16 12.93 9.55 43.53 64.82 40.11 14.73

Table 2. Evaluation for different methods on Charades dataset. Our method outperforms all competing baselines across the three tasks.

lation studies, we use the following three (exactly same)

pre-reasoning modules:

◦ Video Chunking. As suggested by [2], we treat the video

as consecutive overlapping segments with each segment

comprising continuous frames. For ImageNet Video, each

segment contains 30 frames, and adjacent segments have 15
overlapping frames. Since the video is chunked, the object

and subject trajectories are also decomposed into chunks.

For Charades, each segment contains 10 frames, and adja-

cent segments have 6 overlapping frames.

◦ Tracklet Proposal. Tracklet proposal is required in the

ImageNet Video dataset for object localization. For each

chunk in the video, we generate proposals for the possible

subject and object tracklets. We utilize Faster-RCNN [7]

as object detector trained on the 35 objects (categories in

the annotation) from MS-COCO [19] and ImageNet Detec-

tion [24] datasets. Next, the method described in [5] is used

to relate frame-level into a chunk-level object proposals.

Then, non-maximum suppression (NMS) with vIoU > 0.5
is performed to reduce the numbers of generated chunk-

level proposals. During training, proposals that have vIoU

> 0.5 with the ground truth trajectories are selected to be

the training proposals. However, all the generated proposals

are preserved for evaluation.

◦ Feature Representation. Following Sec. 3 notation, we ex-

press the input instance X into K synchronous streams of

features. For the ImageNet Video, K equals 3 and the syn-

chronous streams of features are {Xs
t , X

p
t , X

o
t }
T
t=1. s, p, o

and T denote subject, predicate, object, and the number of

chunks in the input instance, respectively. Note that each in-

stance may have different numbers of chunks, i.e., different

T , because of various duration of relationships. The output

Y st , Y
p
t , and Y ot follow categorical distribution. As in [29],

in the tth chunk of the input instance, we choose the sub-

ject and object features (i.e., Xs
t andXo

t ) to be the averaged

features for the Faster-RCNN label probability distribution

outputs. Xp
t , on the other hand, is chosen to be the concate-

nation of the following three features: the improved dense

trajectory (iDT) feature [37] for subject tracklet, the iDT

feature for object tracklet, and the relative spatio-temporal

positions [29] between subject and object tracklets. See

Suppl. for more details.

For Charades, the input instance X is expressed as

{Xo
t , X

v
t , X

s
t }
T
t=1 with o, v, and s denoting object, verb,

and scene , respectively. Since we are performing relation-

ship reasoning directly in the entire video, we let Y ot , Y
v
t

be a multinomial distribution while Y st still remains to be

a categorical distribution. The multinomial distribution

suggests that each chunk may contain ≥ 0 number of

objects or verbs. We set Xo
t , X

v
t , and , Xs

t to have identical

features: the output feature layer from I3D network [2].

See Suppl. for more details.

Baselines The closest baseline to our proposed model is

VidVRD [29]. Beyond comparisons to [29], we also per-

form a detailed ablation study of our method as well as re-

late to the image-based visual relationship reasoning meth-

ods (when applicable).

VidVRD. VidVRD [29] adopted a structured loss on the

multiplication of three features (i.e., Xs
t , X

p
t , and Xo

t for

ImageNet Video). The loss took softmax over all training

triplets, which resembles the training objective in Visual

Phrases [26] (designed for image-based visual relationship

reasoning). Note that VidVRD fails to consider the tempo-

ral structure of relationship predictions.

GSTEG (Ours). We denote our proposed method as GSTEG

(Gated Spatio-Temporal Energy Graph). For the ablation

study, we choose the Energy Graph (EG) when considering

different energy function designs as described below.

STEG. Spatio-Temporal Energy Graph (STEG) takes into

account the spatial and temporal structure of video enti-

ties. However, it assumes fixed statistical dependencies be-

tween entities. Specifically, it is the non-gated version of

our full model. STEG can be seen as a modified version of

Asynchronous Temporal Fields (AsyncTF) [31] such that

we have (1) AsyncTF’s output to be a relationship predic-

tion, and (2) a fully-connected spatial graph.

SEG. Compared to STEG, the Spatio Energy Graph (SEG)

method does not consider the temporal structure of video

entities. Specifically, SEG assumes a spatially-fully-

connected graph and thus the relationship predictions are

made temporally independently. The counterpart in image-

based visual relationship reasoning methods is Deep Re-

lational Networks (DRN) [4]. We can view SEG as cast-

ing DRN to (1) take the video-based input features and (2)

consider continuous object bounding boxes through time in-

stead of a bounding box in a single frame.

UEG and UEG†. The Unary Energy Graph (UEG) consid-

ers the prediction of entities both spatially and temporally

independently. The counterpart in image-based visual rela-

tionship reasoning methods is the Visual Relationship De-
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Ground Truth
horse-stand_right-person

horse-stand_behind-person

horse-larger-person

person-walk_front-horse

person-walk_left-horse

person-pull-horse

GSTEG
(1) horse-larger-person

(3) person-walk_left-horse

(32) person-walk_front-horse

(40) horse-stand_behind-person

(64) person-pull-horse

(1) horse-larger-person

(3) person-walk_left-horse

Ground Truth
car-move_front-person

car-move_left-person

person-walk_right-car

person-walk_behind-car

person-stand_right-car

person-stand_behind-car

car-move_past-person

VidVRD
(5) horse-larger-person

(29) horse-stand_behind-person

(35) person-walk_front-horse

GSTEG
(24) car-move_left-person

(10) person-walk_right-car

(22) person-stand_right-car

VidVRD
(52) car-move_left-person

(85) person-walk_right-car

(88) person-walk_right-car

(24) person-walk_right-car (1) person-walk_right-car

(33) horse-larger-person(1) horse-larger-person

UEG
(1) horse-larger-person

Relationship Detection Relationship Tagging

Ground Truth
bicycle-move_beneath-person

person-stand_above-bicycle

person-ride-bicycle

bicycle-jump_beneath-person

GSTEG
(1) bicycle-move_beneath-person

(2) person-ride-bicycle

(3) person-sit_above-bicycle

(4) person-stand_above-bicycle

(5) bicycle-jump_beneath-person

Dd : correctly tagged relation

Dd : incorrectly tagged relation

(1) bicycle-move_beneath-person

(2) person-ride-bicycle

(3) person-sit_above-bicycle

(4) person-taller-ball

(5) bicycle-move_front-bicycle

VidVRD
(1) person-ride-bicycle

(2) bicycle-move_beneath-person

(3) person-sit_above-bicycle

(4) bicycle-fly_with-bicycle

(5) person-ride-person

(1) bicycle-move_beneath-person

(2) person-ride-bicycle

(3) person-sit_above-bicycle

(4) sofa-left-sofa

(5) person-behind-sofa

(1) bicycle-move_beneath-person

(2) person-ride-bicycle

(3) person-sit_above-bicycle

(4) skateboard-move_beneath-person

(5) skateboard-stop_behind-person

(1) bicycle-move_beneath-person

(2) person-ride-bicycle

(3) person-sit_above-bicycle

(4) person-front-sofa

(5) person-taller-ball

Ground Truth
dog-jump_right-person

dog-play-person

person-left-dog

person-taller-dog

person-play-dog

dog-jump_above-sofa

sofa-beneath-dog

sofa-taller-dog

sofa-larger-dog

person-stand_left-sofa

person-taller-sofa

sofa-right-person

sofa-larger-person

GSTEG
(1) sofa-larger-domestic_cat

(2) person-sit_above-sofa

(3) person-left-sofa

(4) person-front-sofa

(5) sofa-beneath-domestic_cat

(1) sofa-larger-domestic_cat

(2) sofa-larger-rabbit

(3) sofa-larger-hamster

(4) person-taller-domestic_cat

(5) sofa-larger-bird

VidVRD
(1) person-ride-sofa

(2) sofa-move_beneath-person

(3) person-stand_left-sofa

(4) domestic_cat-move_beneath-person

(5) sofa-fly_with-person

(1) sofa-larger-domestic_cat

(2) sofa-left-sofa

(3) sofa-beneath-domestic_cat

(4) rabbit-sit_above-sofa

(5) sofa-taller-domestic_cat

(1) sofa-larger-domestic_cat

(2) sofa-larger-hamster

(3) sofa-larger-bird

(4) sofa-larger-rabbit

(5) person-taller-bird

(1) sofa-larger-domestic_cat

(2) sofa-larger-rabbit

(3) sofa-larger-hamster

(4) sofa-taller-domestic_cat

(5) sofa-larger-bird

UEG
!

UEG
!

UEG
!

UEG
!

UEG

UEG

UEG

SEG

STEG

SEG

SEG

SEG

STEG

STEG

STEG

Figure 3. Examples from ImageNet Video dataset of Relationship Detection (Left) & Tagging (Right) using baselines, ablations, and our

full model. The bar plots illustrate the R@100 (left) and P@5 (right) difference comparing our model to VidVRD [29]. To show the

results on all the methods, green boxes refer to a video where our model performs better and orange boxes refer to a video where VidVRD

performs better. For tagging (right), we use green to highlight the correctly tagged relation and yellow for incorrectly tagged relation. The

numbers in bracket represent the order of detection or tagging. Best viewed in color.

tection (VRD) method of [20] without using language pri-

ors (denoted as V RDV ). Similar to the modification from

DRN to SEG, the accommodation from V RDV to UEG is

having V RDV take the video-based features and consider

object trajectories. We also perform experiments that ex-

tend UEG with additional triplet loss defined with language

priors [20], which we denote it as UEG†. The counterpart

in image-based methods is the full V RD model of [20].

(Please see Suppl. for more details about parameterizations

and training for all the methods and datasets).

4.1. Quantitative Analysis

ImageNet Video. Table. 1 shows our results and compar-

isons to the baselines. We first observe that, for every met-

ric across the three tasks (detection, tagging, and recogni-

tion), our proposed method (GSTEG) outperforms all the

competing methods. Comparing the numbers between UEG

and UEG†, we find that language priors can help promote

visual relation reasoning. We also observe performance im-

provement from UEG to SEG, which could be explained

by the fact that SEG explicitly models the spatial statistical

dependency in {subject, predicate, object} and leads to a

better relation learning between different entities. However,

comparing SEG to STEG, the performance drops in some

metrics, indicating that modeling temporal statistical depen-

dency using a fixed pairwise energy parameterization may

not be ideal. For example, although STEG gives a much

better relationship recognition results as compared to SEG,

it becomes worse in R@50 for detection and P@5 for tag-

ging. This indicates that observation-gated parametrization

for pairwise energy is able to capture different structure for

different videos. When comparing energy graph models,

VidVRD is able to outperform all our ablation baselines

(except for the full version) in relation detection and tag-

ging. However, it suffers from relation recognition, which

requires a fine-grained understanding of visual relation in

the given object and subject tracklets.

Apart from the ‘standard evaluation’, we also consid-

ered the ‘zero-shot’ setting, where zero-shot refers to the

evaluation on the relative complement of training triplets

in evaluation triplets. More specifically, in the ImageNet

Video dataset, the number of all possible relation triplets

is 35 × 132 × 35 = 161, 700. While the training set

contains 2, 961 relation triplets (i.e., 1.83% of 161, 700),

the evaluation set has 1, 011 relation triplets (i.e., 0.63% of

161, 700). The number of zero-shot relation triplets is 258,

which is 25.5% in the evaluation set. Zero-Shot evaluation

is very challenging due to the fact that we need to infer

the never-seen relationship in the training set. We observe

that, for most cases, our proposed method reaches the best

performance compared to various baselines. The exception

is mAP, where VidVRD attains the best performance

using a structural objective. However, the overall trend of

zero-shot evaluation mirrors standard evaluation.

Charades. Our results and comparisons are shown in Ta-

ble. 2. We find that our method outperforms all relevant

baselines. We also note some interesting differences be-

tween the trend of results in Charades vs. ImageNet Video:

First, comparing UEG to UEG†, we observe that language

priors do not really help the visual relationship reasoning

in Charades. We argue that it may because of the larger

inter-class distinction in Charades’ categories set. For ex-

ample, dog/cat or horse/zebra or sit front/front/jump front

share some similarity in the category set in ImageNet Video,

while the categories are less semantically similar in Cha-

rades. Second, STEG constantly outperforms SEG which

indicates modeling a fixed temporal statistical dependency

between entities may aid the visual relationship reasoning

in Charades. We hypothesize that, as compared to the Im-

ageNet Video dataset that has a diversified set of videos in

the wild between animals or inorganic substances, Charades

contains videos of human indoor activities where relations

between entities are much easier to model by a fixed de-

pendency. Finally, we observe that VidVRD performs sub-

stantially worse compared to all the other models, suggest-
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(Chair, Sit, Kitchen) (None, Stand, Kitchen)

(Table, Sit, Kitchen)
STEG 

(non-gated pairwise energy)

GSTEG

(gated pairwise energy)

v
e
rb

STEG

GSTEG

Object Object

Figure 4. Analysis of non-gated and gated pairwise energies: Given an input video (top left) from Charades (that has {object, verb, scene}
relationships), the matrices (top right) visualize the non-gated and gated pairwise energies between the verbs and objects (rows: 33 verbs,

cols: 38 objects). Notice that for the verb sit (highlighted in red), the gated energy with objects chair, and table is lower compared to the

corresponding non-gated pairwise energies, thereby helping towards improved relationship reasoning. A similar behavior is observed in

case of verb to scene pairwise function (bottom left) as well as verb to verb pairwise function (bottom middle), which models the temporal

correlations e.g., sit/sit or sit/stand. Best viewed in color and color in the matrix or vector is normalized in its own scale.

ing that the structural loss introduced by VidVRD may not

generalize well to other datasets. In case of Charades, we

do not perform zero-shot evaluation as the number of zero-

shot relation triplets is low.
(

The number of all the possible

relation triplets is 33 × 38 × 16 = 20, 064. The training

set contains 2, 285 relation triplets (i.e., 11.39% of 20, 064)

and the evaluation set contains 1, 968 relation triplets (i.e.,

9.81% of 20, 064). The number of zero-shot relation triplets

is 46, which is 2.34% in the evaluation set.
)

In Supplementary, we also provide the results when

leveraging language priors into our model and also provide

the comparisons with Structural-RNN [11] and Graph Con-

volutional Network [39].

4.2. Qualitative Analysis

We next illustrate our qualitative results in Fig. 3 in the

ImageNet Video dataset. For the relationship detection, in

a scene with a person interacting with a horse, our model

successfully detects 5 out of 6 relationships, while failing

to detect horse-stand right-person in the top 100 detected

relationships. In another scene with a car interacting with

a person, our model only detects 1 relationship out of 7
ground-truth relationships. We argue that the reason may be

because of the sand occlusion and the small size of a person.

For relationship tagging, in a scene with a person riding a

bike over another person, our model successfully tags all

four relationships in the top 5 tagged results. Nevertheless,

the third tagged result person-sit above-bicycle also looks

visually plausible in this video. In another scene with a per-

son playing with a dog on a sofa, our model fails to tag any

correct relationships in the top 5 tagged results. Our model

incorrectly identified dog as cat, representing the main rea-

son why it failed.

Since pairwise energy in a graphical model represents

the negative statistical dependency between entities, in

Fig. 4, for a video in Charades dataset, we provide the il-

lustration of pairwise energy when considering our gated

and non-gated parameterization. Observe that the pairwise

energies between the related entities are lower for the gated

parameterization as compared to the non-gated one, sug-

gesting that the gating mechanism is able to aid video rela-

tionship reasoning by improving statistical dependency be-

tween spatially or temporally correlated entities.

5. Conclusion

In this paper, we have presented a Gated Spatio-

Temporal Energy Graph (GSTEG) model for the task of

visual relationship reasoning in videos. In the graph, we

consider a spatially and temporally fully-connected struc-

ture with an amortized observation-gated parameterization

for the pairwise energy functions. The gated design en-

ables the model to detect adaptive relations between en-

tities conditioned on the current observation (i.e., current

video). On two benchmark video datasets (ImageNet Video

and Charades), our method achieves state-of-the-art perfor-

mance across three relationship reasoning tasks (Detection,

Tagging, and Recognition).
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