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Abstract

Data-agnostic quasi-imperceptible perturbations on in-

puts are known to degrade recognition accuracy of deep

convolutional networks severely. This phenomenon is con-

sidered to be a potential security issue. Moreover, some re-

sults on statistical generalization guarantees indicate that

the phenomenon can be a key to improve the networks’

generalization. However, the characteristics of the shared

directions of such harmful perturbations remain unknown.

Our primal finding is that convolutional networks are sen-

sitive to the directions of Fourier basis functions. We de-

rived the property by specializing a hypothesis of the cause

of the sensitivity, known as the linearity of neural networks,

to convolutional networks and empirically validated it. As

a by-product of the analysis, we propose an algorithm to

create shift-invariant universal adversarial perturbations

available in black-box settings.

1. Introduction

Malicious perturbations on inputs can easily change pre-

dictions of deep learning models [36]. These perturba-

tions are called adversarial perturbations or adversarial ex-

amples. They have been intensively studied concerning

deep convolutional networks for object recognition tasks

[4, 7, 19, 24, 36, 39]. They are attracting attention be-

cause they are potential security issues. One of the intrigu-

ing aspects of adversarial perturbations is their universality.

Szegedy et al. [36] observed transferability of the perturba-

tions between classifiers. Papernot et al. [28, 29] exploited

the transferability to attack black-box models. Some ad-

versarial perturbations transfer not only between classifiers

but also between inputs. Goodfellow et al. [7] first dis-

covered the universality, and Moosavi-Dezfooli et al. [22]

studied this phenomenon in more detail. They found that

a single perturbation can change models’ predictions for

a significant portion of data points. Such input-agnostic

perturbations are called universal adversarial perturbations

Figure 1. Examples of images perturbed by single Fourier attack.

Added perturbation is the same as in Figure 3. The size of perturba-

tions is 10/255 in ℓ∞-distance for the first row and 20/255 for the

second. In Sec. 5.7, we show that the single 10/255 and 20/255
perturbations could change predictions for around 40% and 70%
of inputs for various architectures, respectively.

(UAPs). The perturbations also generalize between differ-

ent networks to some extent.

We are primarily concerned with UAPs because of

their relation to statistical generalization guarantees of

deep learning models. For example, studies using PAC-

Bayes [27], compression [1], and minimum description

length [10] are all concerned with how perturbation prop-

agates networks.1 In these analyses, how each perturbation

changes accuracy on training data and true data distribution

matters. In other words, we have an interest in perturba-

tions transferable between inputs. These are nothing else

but UAPs. We try to shed lights on the tendency of UAPs

1In these studies, we consider perturbations on weights, not inputs.

However, perturbations on weights become noises on inputs of the net-

work’s subnetworks and investigating UAPs is still useful.
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Figure 2. Illustration of our UAPs creation algorithm. We only tune frequency of noise. We do not need access to model parameters, output

logits, or training data.

and how they propagate in convolutional neural networks.

Several prior studies tried to understand the properties

of the universality and transferability of adversarial pertur-

bations. Goodfellow et al. [7] explained the existence of

adversarial examples, their transferability, and their univer-

sality using linearity of deep neural networks. Tramèr et

al. [38] investigated the transferable subspace of adversar-

ial perturbations and suggested that it will consist of a high-

dimensional continuous subspace. Moosavi-Dezfooli et al.

[23] showed that the existence of universal adversarial per-

turbations is inevitable given strong geometrical assump-

tions on the decision boundaries of models.

Given the transferability and the universality of adversar-

ial perturbations, it is natural to expect the existence of a set

of directions to which most networks are input-agnostically

sensitive. If we can characterize such directions, it enables

us to improve robustness against such perturbations in prin-

cipled manners. Additionally, we may design better posteri-

ors, weights, or compression algorithms to achieve empiri-

cally better generalization bounds. However, prior work can

only generate such perturbations by sequential optimization

and lacks their useful characterization. We provide a miss-

ing characterization of directions by analyzing Fourier basis

functions.

The motivation of our analysis comes from two parts.

The first is the linear hypothesis of vulnerability, and the

second is a property of linear convolutional layers that the

singular vectors of which are Fourier basis functions. The

property indicates that sensitive directions of convolutional

networks are a combination of a few Fourier basis func-

tions. Through extensive experiments on various architec-

tures and datasets, we found networks are sensitive to the

directions of Fourier basis functions of some specific fre-

quencies. In other words, we could characterize at least

a subset of universal and transferable adversarial perturba-

tions through Fourier basis functions. We also observed

that some adversarial perturbations exploit the sensitivity to

Fourier basis functions. These findings not only provide a

new characterization of adversarial perturbations with ben-

efits described in the preceding paragraph but also suggest

a possibility that some known properties of the universality

of adversarial perturbations might be due to the structure of

convolutional networks.

As a by-product of our analysis, we also developed a

method to create shift-invariant universal adversarial pertur-

bations, which is available in black-box settings. Figure 1

shows examples of perturbed images created by our algo-

rithm, which is explained in Sec. 4. Our perturbations have

simple and shift-invariant patterns, yet achieved high fool

ratio on various pairs of architectures and datasets.

Our contributions are summarized below.

1. We characterized spaces UAPs lie using Fourier basis

functions.

2. We evaluated our hypothesis in extensive experiments.

3. We proposed a black-box algorithm to create shift-

invariant universal adversarial perturbations.

2. Related work

2.1. Adversarial perturbations

One of the most famous algorithms for creating ad-

versarial perturbations is the fast gradient sign method

(FGSM) [7]. Let 𝐽(𝜃, 𝑥, 𝑡) be a loss with parameter 𝜃,

an input 𝑥, and a target label 𝑡. Then, FGSM uses 𝜖 ⋅
Sign (∇𝑥𝐽(𝜃, 𝑥, 𝑡)) as the perturbation, where 𝜖 is a scaling

parameter. Another popular approach is performing gradi-

ent ascent on some loss 𝐽(𝜃, 𝑥, 𝑡). Depending on the choice

of the loss and the optimization methods, there are numer-

ous variants for attacks [4, 24]. Adversarial training [7] is

a current effective countermeasure against adversarial per-

turbations. Kurakin et al. [19] conducted a large-scale

study on adversarial training, and Tramèr et al. [37] ex-

tensively studied the transferability for defended and unde-

fended models. Evaluations of defense methods are noto-
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riously difficult [2, 40]. Thus, some studies have provided

theoretically grounded defense methods [17, 41].

2.2. Universal adversarial perturbations

Moosavi-Dezfooli et al. [22] showed that some input-

independent perturbations can significantly degrade classi-

fiers’ prediction accuracy. Such perturbations are called uni-

versal adversarial perturbations (UAPs). Moosavi-Dezfooli

et al. [22] created UAPs by sequentially optimizing pertur-

bations until we achieve the desired fool ratio. During the

creation, they did not need access to test data. They showed

that UAPs could change over 80% of the predictions of vari-

ous networks trained on ILSVRC2012 [30]. UAPs also gen-

eralize between network architectures to some extent. Re-

cently, Mopuri et al. [25] and Khrulkov et al. [16] pro-

posed activation-maximization approaches for the creation

of UAPs. UAPs degrade the average performance of sys-

tems and have different nature from other kinds of adversar-

ial examples.

2.3. Analysis of transferability and universality

Goodfellow et al. [7] explained the existence of adversar-

ial examples, their transferability, and their universality by

linear hypothesis. In their explanation, the directions of per-

turbations are the most important in adversarial examples.

The hypothesis is based on the following three factors: (1)

modern networks behave like linear classifiers, (2) adversar-

ial perturbations are aligned with the weight vectors of mod-

els, (3) different models learn similar functions. Thus, ad-

versarial perturbations generalize between clean examples,

and also different models. Tramèr et al. [38] analyzed the

dimensionality of the subspace that adversarial examples lie

in. Using first-order approximation, they found that adver-

sarial examples lie in a high-dimensional subspace, suggest-

ing overwrap of the subspace between classifiers. However,

the structure of the subspace is unknown except for its es-

timated dimensionality. Moosavi-Dezfooli et al. [23] an-

alyzed the existence of UAPs using strong geometrical as-

sumptions. They also proposed an algorithm to find UAPs

using Hessian on input, while it is prohibitively slow with

large inputs.

We explain the existence of UAPs on the basis of the

linear hypothesis of Goodfellow et al. [7]. We push forward

the analysis concerning convolutional networks.

2.4. Fourier basis

Jo and Bengio [14] examined whether CNNs learn high-

level features by using Fourier features. Some prior work

used eps compression or other transformations as defenses

against adversarial examples [15, 8, 33]. They remove

high-frequency features from images and relates to this pa-

per. However, connections to universality have not been

explored. Also, the effects of each frequency have not

been studied. In a later section (5), our experiments show

that adversarial perturbations do not necessarily lie in high-

frequency spots.

3. Preliminary

In this section, we describe the relationship between con-

volutional layers and Fourier basis. Notations are summa-

rized in the supplementary material.

3.1. Fourier basis and discrete Fourier transforma-
tion

Let us define 𝜔𝑖,𝑗
𝑁 = 𝜔𝑖

𝑁𝜔𝑗
𝑁 ∈ ℂ

𝑁×𝑁 , where 𝜔𝑁 =
exp(2𝜋

√
−1/𝑁) is the 𝑁 -th root of an imaginary number.

We define 𝐹𝑁 be a matrix such that colums are 𝑛 fourier

basis functions with different frequencies. In other words,

𝐹𝑁 is a matrix such that

(𝐹𝑁 )𝑢,𝑣 =
1√
𝑁

exp(−2𝜋
√
−1(𝑢+ 𝑣)/𝑁). (1)

We notate the 𝑖-th row of 𝐹𝑁 as (𝐹𝑁 )𝑖. Let us define a

transformation 𝑆 : ℂ𝑁×𝑁 → ℂ
𝑁×𝑁 as follows.

𝑆(𝑥)𝑢,𝑣 =

𝑁−1
∑

𝑚=0

𝑁−1
∑

𝑛=0

𝑥𝑚,𝑛 exp(−2𝜋
√
−1(𝑢𝑚+ 𝑣𝑛)/𝑁)

(2)

This transformation 𝑆 is called discrete Fourier transforma-

tion (DFT). Both the transformation and its inverse can be

calculated in the running time of 𝑂(𝑁 log𝑁) by using fast

Fourier transformation [5].

3.2. Decomposition of convolution operator

We define 𝑄𝑁 := 1
𝑁
𝐹𝑁 ⊗ 𝐹𝑁 , where ⊗ is a Kronecker

product. The eigenvectors of a doubly block circulant ma-

trix are known to be 𝑄𝑁 [12]. Since 𝑄𝑁 is unitary, a dou-

bly block circulant matrix can be decomposed as 𝑄𝑁𝐷𝑄H
𝑁 ,

where 𝑄H
𝑁 is an adjoint matrix of 𝑄𝑁 , and 𝐷 is a complex

diagonal matrix. In a case where channel size is one, since

convolution is a doubly circulant matrix when the padding

is “wraps around”[6, 31], the above analysis is directly ap-

plicable. We can extend the result to multi-channel cases,

i.e., 𝑚 ≥ 1.

Proposition 1. Let 𝑀 be a matrix which represents a con-

volutional layer with input channel size 𝑚in, output channel

size 𝑚out, and input size 𝑚in × 𝑁 × 𝑁 . Then, 𝑀 can be

decomposed as

𝑀 = (𝐼𝑚out
⊗𝑄𝑁 )𝐿 (𝐼𝑚in

⊗𝑄𝑁 )
H
, (3)

where 𝐿 is a block matrix such that each block is a 𝑁2×𝑁2

diagonal matrix.
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4. Fourier analysis

In this section, we show that the most sensitive direction

of linear convolutional networks is a combination of a few

Fourier basis functions. The analysis pushes forward the lin-

ear hypothesis of the cause of adversarial examples in Good-

fellow et al. [7]. The linear approximation may not hold

well for deep non-linear networks. However, we can still

expect that adding some Fourier basis functions to inputs

can largely disturb hidden representations of networks. We

assume that the padding of convolutional layers are “wraps

around.” Notations are summarized in the supplementary

material. Proofs of propositions are deferred to the supple-

mentary material.

4.1. Sensitivity of stacked convolutional layers

We first consider stacked stride-1 convolutional layers

without activation functions. In the case, we can show that

the singular vectors of the whole layers can be represented

by a linear combination of single Fourier basis functions

between input channels.

Proposition 2. Let 𝑀 (𝑖) be a convolitional layer with in-

put channel size 𝑚(𝑙), output channel size 𝑚(𝑙+1), input

size 𝑚(𝑙) × 𝑁 × 𝑁 , and stride 1. Let 𝑀 be a stacked

convolutional layers with linear activation, i.e., 𝑀(𝑋) =
(

𝑀 (1) ∘𝑀 (2) ∘ ⋅ ⋅ ⋅ ∘𝑀 (𝑑)
)

(𝑋). Then, the right singular

vectors of 𝑀 can be represented by 𝑎⃗⊗ (𝐹𝑁 )𝑖 ⊗ (𝐹𝑁 )𝑗 for

some 𝑖, 𝑗 ∈ {0, . . . , 𝑁 − 1} and 𝑎⃗ ∈ ℝ
𝑚(1)

.

In other words, the most sensitive directions of linear

convolutional neural networks without reduction layers is

a single Fourier basis function. We can further extend the

result to cases when there are normalization layers or skip

connections.

Proposition 3. Let 𝑀 (𝑖) be a convolitional layer with in-

put channel size 𝑚(𝑙), output channel size 𝑚(𝑙+1), input

size 𝑚(𝑙) × 𝑁 × 𝑁 , and stride 1. Let 𝑀 be a stacked con-

volutional layers with linear activation plus a skip connec-

tion, i.e., 𝑀(𝑋) =
(

𝑀 (1) ∘𝑀 (2) ∘ ⋅ ⋅ ⋅ ∘𝑀 (𝑑)
)

(𝑋) + 𝑋 .

Then, the right singular vectors of 𝑀 can be represented by

𝑎⃗ ⊗ (𝐹𝑁 )𝑖 ⊗ (𝐹𝑁 )𝑗 for some 𝑖, 𝑗 ∈ {0, . . . , 𝑁 − 1} and

𝑎⃗ ∈ ℝ
𝑚(1)

.

Proposition 4. A convolutional layer followed by a nor-

malization layer such as batch-normalization or weight-

normalization can be rerepresented as another convolu-

tional layer without normalization at test time. Thus,

Props. 2 and 3 also hold when normalization layers exist.

These propositions show that manipulating a single

Fourier basis function on input can be most effective to

disturb internal representations of convolutional neural net-

works.

4.2. Reduction layers

In this section, we show that the singular values of the

convolutional layers can be written by a combination of a

few Fourier basis functions even when there are reduction

layers, such as convolutional layers with stride > 1 or aver-

age pooling layers.

Proposition 5. Let 𝑀 be a convolutional layer with stride

𝑠 > 1 where 𝑁 = 0 (mod 𝑠). Then, the singular

value of the layer can be represented by a linear combi-

nation of Fourier basis functions {(𝐹𝑁 )𝑖′ ⊗ (𝐹𝑁 )𝑗′ ∣𝑖′ =
𝑖 (mod𝑠), 𝑗′ = 𝑗 (mod𝑠)} for any 𝑖 and 𝑗.

Since the average pooling layer is a special case of con-

volutional layers, we can apply the above theorem to the

layer.

4.3. Single Fourier attack

We propose an algorithm to find universal adversarial

perturbations using Fourier basis functions. The attack

exploits the sensitivity of convolutional networks to the

Fourier basis directions analyzed in the previous section.

While the linear approximation in the analysis might not

hold well in deep networks, we can still expect that the di-

rections will disturb hidden representations.

A sketch of the algorithm is as follows. We select one

Fourier basis function and use it as a UAP. The method to

select the frequency is described later in this section. The

sketch of the algorithm is incompatible with the restriction

that the inputs must be real. To satisfy the condition, we

have the following proposition.

Proposition 6. 𝑆(𝑥)𝑖,𝑗 = 𝑆(𝑥)∗𝑁−𝑖,𝑁−𝑗 iff the input 𝑥 is

real-valued, where 𝑆(𝑥)∗ is a conjugate of 𝑆(𝑥).

Thus, we make 𝑆(𝑥)𝑖,𝑗 = 𝑆(𝑥)∗𝑁−𝑖,𝑁−𝑗 satisfied to

meet the real-value constraint. Algorithm 1 shows the pseu-

docode of the algorithm, which is named single Fourier at-

tack (SFA). Figure 3 shows a visualization of Fourier ba-

sis in 8 × 8 space and an example of perturbations created

by SFA. Figure 1 shows examples of perturbed images. It

seems that this attack does not change human’s predictions,

and models should be robust against the attack.

To perform the attack, we need to find effective frequen-

cies of the target classifiers. To test the sensitivity, first, we

query a pair of an original image and its perturbed version.

Next, we check whether the classifier’s output differs or not.

We repeat the procedure and solve a black-box optimization

problem formulated as follows.

Problem 1. Given a data distribution 𝐷 ⊂ ℝ
𝑁×𝑁×3, tar-

get function 𝑓 : ℝ𝑁×𝑁×3×({1, . . . , 𝑁} × {1, . . . , 𝑁}) →
{0, 1}, find a frequency 𝑤 ∈ {1, . . . , 𝑁} × {1, . . . , 𝑁}
which maximizes

∫

𝐷

𝑓(𝑥,𝑤)𝑑𝑥. (4)
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Algorithm 1: Single Fourier attack

hyperparam :𝑖, 𝑗: frequency, 𝜖: size of perturbation

input :𝑥 : image

foreach c in channel:
𝑥𝑐 ← 𝑥𝑐 + 𝜖((1 + 𝑖)(𝐹𝑁 )𝑖 ⊗ (𝐹𝑁 )𝑗
+(1− 𝑖)(𝐹𝑁 )𝑁−𝑖 ⊗ (𝐹𝑁 )𝑁−𝑗);
𝑥𝑐 ←Clip(𝑥𝑐, 0, 1);

Figure 3. Left: Visualization of Fourier basis in 8× 8 space. Row

𝑖 and column 𝑗 shows (𝐹8)𝑖 ⊗ (𝐹8)𝑗 . Right: An example of per-

turbations created by Single Fourier attack in Alg. 1. This pertur-

bation was used in later evaluation (Sec. 5.7).

One naive approach to approximately solve the problem

is testing all frequencies with a batch of images and find a

frequency with the highest fool ratio. The batchsize controls

the variance of the evaluation of each frequency. Even if

we do the brute-force search, we can create UAPs within a

reasonable amount of time thanks to the simplicity of our

formulation. As more query efficient methods, we can also

use Bayesian optimization techniques [34, 3]. We show that

the search of the frequency has a favorable property for such

methods in Sec. 5.4. This suggests our algorithm is useful

even when only small numbers of queries are allowed to

create UAPs.

Our formulation and algorithm have the following two

key features. First, we formulated the creation of UAPs as

an optimization problem of two discrete variables. On the

other hand, the original problem has the same number of

parameters with the input size, which can be tens of thou-

sands. This reduction of parameters to optimize is a signif-

icant simplification. Second, our algorithm requires neither

model parameters nor output logits. Prior UAPs creation

algorithms require access to models or substituted models

created by attackers. These requirements have made the at-

tacks less practical. In our algorithm, we only require the

information on the predicted label by the target. Thus, the

algorithm is available in broader settings.

5. Experiments

We presented a characterization of the universal adversar-

ial directions through Fourier basis functions in Sec. 4. To

show that the characterization well describes the nature of

the universal adversarial directions, we conducted a series

of experiments. Primarily, we answer the following ques-

tions.

1. Whether Fourier basis characterization is better than

others such as characterization using the standard basis

(Sec. 5.2).

2. Whether the sensitivity to the Fourier basis directions

is unique to convolutional networks (Sec. 5.3).

3. Whether UAPs are related to Fourier basis directions

(Sec. 5.5).

4. Whether current white-box attacks are also related to

Fourier basis directions (Sec 5.6).

5. Whether manipulation on a single Fourier basis can

image-agnostically change predictions of various con-

volutional neural networks and datasets (Sec. 5.7).

5.1. Evaluation setups

This section describes the evaluation setups. A

more detailed explanation can be found in the sup-

plementary material. We used MNIST [21], fashion-

MNIST [42], SVHN [26], CIFAR10, CIFAR100 [18], and

ILSVRC2015 [30] as datasets. We used a multi-layer per-

ceptron (MLP) consisting of 1000–1000 hidden layer with

ReLU activation, LeNet [20], WideResNet [43], DenseNet-

BC [11], and VGG [32] with batch-normalization for

evaluations on datasets except for ILSVRC2015. For

ILSVRC2015, we used ResNet50 [9], DenseNet, VGG16,

and GoogLeNet [35]. For VGG16 and GoogLeNet, we

added a batch-normalization layer after each convolution

for faster training. We used the fool ratio as a metric, which

is the percentage of data that models changed its prediction,

following Moosavi-Dezfooli et al. [22].

5.2. Fourier domain vs pixel domain

We analyzed the sensitivity of deep convolutional neu-

ral networks to the directions of Fourier basis functions

in Sec. 4. To empirically support the analysis, we inves-

tigated the sensitivity on each Fourier basis. For compar-

ison, we checked the sensitivity on the standard basis di-

rections, which is the manipulation on each pixel. We also

tested the sensitivity in random directions (see Sec. 5.7). We

first describe the method we used to study the sensitivity.

For Fourier basis, we applied a single Fourier attack (Algo-

rithm. 1) and calculated its fool ratio on a single minibatch

for each frequency. We bounded the size of perturbations

by 30/255 in ℓ∞-norm for MNIST, FMNIST, and SVHN,

20/255 for ILSVRC2015, and 10/255 for CIFAR10 and

CIFAR100. For a standard basis, we added 255/255 to

each pixel and then clipped to range from zero to one for
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Algorithm 2: Creation of heatmap

foreach (i,j) in frequencies:

𝐵 := Randomly select Minibatch;

𝑦 ← Forward(𝐵);

𝑦′ ← Forward(𝐵 + noise);

Heatmap𝑖,𝑗 ← FoolRatio(𝑦, 𝑦′);

Figure 4. Visualization of sensitive spot of convolutional networks

in Fourier domain. Coordinate (𝑖, 𝑗) of each image represents fool

ratio on a single minibatch when we used Algorithm 1 as a per-

turbation. White areas are spots with high fool ratio. The cen-

ter of each image corresponds to a high-frequency area. The per-

turbation sizes were 30/255 for MNIST, FMNIST, and SVHN,

and 10/255 for CIFAR10 and CIFAR100. The creation of this

heatmap is described in Algorithm. 2.

Figure 5. Visualization of sensitivity in Fourier domain. Visulaiza-

tion procedure is the same with Figure 4. We can see that most

sensitive frequency is neither hight nor low frequencies, and it lies

in the middle. For reference, frequency distributions in natural

images and random noise can be found in Figure 8.

attack creation, which is an analogy of Algorithm 1. Us-

ing heat maps, we visualized the results for Fourier basis

on ILSVRC2015 in Figure 5 and the results on the other

datasets in Figure 4. The algorithm to create the heat map is

described in Algorithm 2.

We observed that in most cases except for MNIST, ar-

chitectures tend to have some sensitive spots in the Fourier

domain. Especially on CIFAR10 and CIFAR100, VGG and

Wide-ResNet showed near 90% and 99% fooling ratio to

some directions. The result means that the predictions be-

Figure 6. Visualization of the sensitivity of multilayer perceptrons

(MLPs) in the Fourier domain. MLPs did not have sensitive spot

as CNNs in most cases and they were more resistant to directions

of Fourier basis.

came almost random guess. Since all Fourier basis direc-

tions are orthogonal, Figure 4 highlights that there are hun-

dreds of directions that networks are weak independent of

their inputs. While it has been known that there are tens of

orthogonal directions for transferable or universal adversar-

ial examples, to the best of our knowledge, this is the fastest

method to find a large number of orthogonal directions for

which networks are universally vulnerable. Contrastive to

Fourier basis, experiments in standard basis achieved al-

most 0% fool ratio in all settings. In this experiment, we

showed the existence of sensitive spots of convolutional net-

works in the Fourier domain and the effectiveness of the

characterization by Fourier basis directions.

5.3. Convolutional networks vs. MLP

In Sec. 5.2 we observed that various convolutional neu-

ral networks are sensitive to some Fourier basis directions.

To see whether the sensitivity to the Fourier basis functions

is caused by network architectures as suggested in Sec. 4 or

the nature of image processing, we compared the sensitivity

of convolutional neural networks and MLP to Fourier ba-

sis functions. We used the same method as Sec. 5.2 for the

comparison. Figure 6 shows the results for the MLP trained

on various datasets. The MLP did not show vulnerability

to some vectors in the Fourier basis. The contrastive acti-

vation pattern of convolutional networks and multilayer per-

ceptrons supports our analysis of the sensitivity in Sec. 4.

This result suggests the possibility that changing architec-

tures is a useful measure to mitigate adversarial examples,

especially UAPs. Since prior defense work has mostly fo-

cused on training methods [7, 19], this opens another re-

search direction for defense methods. For example, we may

use the information of the weak spots in the Fourier domain

to choose which models to use for ensembles.

5.4. Co-occurrence of sensitivity

In the evaluation in Secs. 5.2 and 5.3, we observed that

convolutional networks showed similar sensitivity to the

Fourier basis directions with similar frequencies. Since

Sec. 4 does not cover this phenomenon, we explain it here.

In convolutional networks, the convolution kernel size is

typically much smaller than the input size. The size of the

kernel restricts the expressiveness of convolutional layers.

This restriction makes convolutional layers respond simi-
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Figure 7. Coordinate (𝑖, 𝑗) of each image shows the magnitude of

outputs of a convolutional layer when input was (𝐹32)𝑖 ⊗ (𝐹32)𝑗 .

The kernel size of each convolutional layer is 3. They were

trained to maximize the output against (𝐹32)8⊗ (𝐹32)8, (𝐹32)8⊗
(𝐹32)16, (𝐹32)12 ⊗ (𝐹32)12, 𝑎𝑛𝑑(𝐹32)16 ⊗ (𝐹32)16, respectively.

Figure 8. Visualization of UAPs calculated for various architec-

tures on ILSVRC2012 by Moosavi-Dezfooli et al. [22] in the

Fourier domain. Coordinate (𝑖, 𝑗) corresponds to the fool ratio

of (𝐹224)𝑖 ⊗ (𝐹224)𝑗 . White spots had higher fool ratio.

larly to similar frequencies. To see the co-occurrence of

the sensitivity, we trained convolutional layers with kernel

size 3× 3 and the input size 32× 32 so that the ℓ2-norm of

their outputs are maximized when one specific Fourier basis

is fed as its input. Then we tested the ℓ2-norm of the layer’s

outputs when their inputs are other Fourier basis functions.

Figure 7 shows the result. The result confirms the hypothe-

sis that convolutional layers respond similarly to Fourier ba-

sis directions with similar frequency. In other words, the op-

timization problem of frequency of Algorithm 1 has a small

Lipschitz constant. This property is known to be favorable

for optimizations in many algorithms including Bayesian

optimizations [34].

5.5. UAPs in Fourier domain

In this section, we investigate whether UAPs created

by an existing method also have some specific patterns in

the Fourier domain. For this analysis, we used precom-

puted UAPs for VGG16, VGG19, VGG-F, CaffeNet [13],

ResNet152, and GoogLeNet by Moosavi-Dezfooli et al.

[22]. Figure 8 shows the magnitude of each frequency of

each UAP in log scale. For reference, Figure 8 also shows

those of random noise and average magnitudes of each fre-

quency of original training data in ILSVRC2015.

While architectures and training procedures differ, Fig-

ure 8 and Figure 5 share a similar tendency compared to

Figure 9. Visualization of FGSM attack in the Fourier domain in

the same way as in Figure 8. FGSM had larger values in sensi-

tive spots revealed in Figure 4. Center of each image is a high-

frequency area.

the random noise and original images. For example, we

can see from Figure 5 that the networks are relatively ro-

bust against high-frequency noises and sensitive to low and

middle-frequency noises. From Figure 8, current UAPs ap-

pear to exploit the sensitivity. This suggests the effective-

ness to consider Fourier domain to analyze existing UAPs.

5.6. Adversarial attacks in Fourier domain

In this section, we investigate whether current white box

adversarial attacks also have some tendency in the Fourier

domain. We studied FGSM [7], which is known to transfer

better than naive iterative attacks [19]. Figure 9 shows the

average magnitude of each vector in the Fourier basis of a

perturbation created by FGSM on test data. Compared with

Figure 4, which revealed sensitive spots in the Fourier do-

main, Figure 9 shows that the mass of FGSM concentrates

almost in the sensitive spots. This experiment also shows

that adversarial perturbations do not necessarily lie in a

high-frequency area, which denies a common myth that ad-

versarial perturbations tend to be high-frequency. Figure 9

also shows that the tendency of adversarial perturbations dif-

fers across datasets and architectures, which reminds us to

test defense methods in various settings.

5.7. Effectivceness of Fourier attack

The analysis in Sec. 4 and experiments in Sec. 5.2 –

Sec. 5.6 suggests the effectiveness of the Fourier basis func-

tions as universal adversarial perturbations. We evaluated
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Table 1. Fool ratio of random noise (upper rows) and SFA (Algo-

rithm 1, lower rows) on various architectures and datasets. Despite

the simpleness of our algorithm, some pairs dropped their accuracy

to almost chance ratio. This results show that our characterization

through Fourier basis functions effectively captures the sensitivity

of networks.

LeNet WResNet VGG DenseNet

MNIST 0.1 55.8 0.0 0.1
Fashion MNIST 5.4 11.4 8.3 12.6

SVHN 3.1 5.2 0.0 4.6
CIFAR10 5.0 8.1 6.8 5.4
CIFAR100 13.0 26.4 25.9 22.5

MNIST 0.4 90.2 0.1 0.2
Fashion MNIST 12.5 48.1 83.7 56.9

SVHN 64.9 90.8 0.0 50.5
CIFAR10 63.3 82.3 72.2 50.7
CIFAR100 83.4 93.7 95.8 72.3

Table 2. Fool ratio of Fourier basis attack on various architec-

tures on ILSVRC2015. Rand is random noise, SSFA is defined in

Sec. 5.7. Attacks are bounded in 10/255 and 20/255 in ℓ∞-norm.

UAP denotes the best performing precomputed UAP in [22] per

architecture. Since naively scaling them to 20/255 can be unfairly

advantageous to ours and we just omitted the evaluation. While

comparable, our algorithm does not assume access to the same

training data and also has no need to train models locally.

GoogLeNet ResNet VGG DenseNet

Rand(10) 8.2 8.5 11.5 9.5
Rand(20) 14.9 16.1 19.7 16.7

UAP(10) [22] 45.5 49.7 64.8 56.0

SFA(10) 34.6 38.7 49.7 36.8
SFA(20) 62.3 68.5 76.3 63.5

SSFA(10) 44.1 40.1 53.3 39.5
SSFA(20) 74.1 66.9 79.0 62.5

its ability to flip predictions on various datasets and architec-

tures. We set the size of perturbations to 10/255 in ℓ∞ for

CIFAR, and to 30/255 for MNIST, FMNIST, and SVHN.

We used frequencies with the highest fool ratio in Figure 4

as the perturbations. In the evaluation, we used Algorithm 1

with one fixed frequency per pair of dataset and architec-

ture. For comparison, we calculated the fool ratio of ran-

dom noise sampled from the 𝜖-ball bounded in ℓ∞-norm.

Table 1 shows the result. Given the dataset and architecture-

agnostic search space, the attack showed strong attack abil-

ity. Especially in CIFAR10 and CIFAR100 experiments,

some architectures dropped prediction accuracy almost to

that of random guessing. This effectiveness of Fourier ba-

sis attack highlights the sensitivity of current convolutional

networks against Fourier features. In MNIST, however, the

fool ratio was not as high as other datasets. Since MNIST is

highly normalized dataset and easiest among them, we sus-

pect that networks can better capture true signal from the

inputs and are more robust to change of a single Fourier ba-

sis direction. From the viewpoints of architectures, LeNet

and DenseNet were more robust than others. We explain

this by their max-pooling layers. As max-pooling layers are

not supported in Sec. 4, they add additional nonlinearities

and mix Fourier basis.

We also tested Algorithm 1 on ILSVRC2015. For the

evaluation, we fixed one frequency for all architectures and

inputs2. In other words, we selected a single perturbation in-

put and architecture agnostically. To choose the frequency,

we took the average of Figure 5 and picked the frequency

with the highest fool ratio. Figure 1 shows examples of cre-

ated adversarial examples. We used 10/255 and 20/255
for the size of perturbations. Note that previous work used

10/255 for the evaluation [22]. Examples of created UAPs

are shown in Figure 1. We empirically found that taking the

sign of Fourier basis can sometimes boost the performance

of the attack. We named this attack Signed-SFA (SSFA),

and we also tested the attack. In the evaluation, we also

tested random perturbations and the best precomputed UAP

from Moosavi-Dezfooli et al. [22] per architecture. The re-

sult is shown in Table 2. Compared to Moosavi-Dezfooli et

al. [22], the fool ratio is comparable to their perturbations

under this black-box setting. Note, since our algorithm does

not need to train local model, our algorithm is more suitable

in black-box settings.

6. Conclusion

From the analysis of linearized convolutional neural

networks, we hypothesized that convolutional networks

are sensitive to the directions of Fourier basis functions.

Through empirical evaluations, we validated the sensitiv-

ity. The finding provides a better characterization of univer-

sal adversarial perturbations using Fourier basis functions.

The characterization might be beneficial to the development

of defense methods and the analysis of statistical general-

ization guarantees. As a by-product of our analysis, we

proposed a black-box method to create universal adversar-

ial perturbations. The algorithm does not require locally

trained models for black-box attack and extends the poten-

tial use cases of universal adversarial perturbations.
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