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Abstract

We integrate two powerful ideas, geometry and deep vi-

sual representation learning, into recurrent network archi-

tectures for mobile visual scene understanding. The pro-

posed networks learn to “lift” and integrate 2D visual fea-

tures over time into latent 3D feature maps of the scene.

They are equipped with differentiable geometric opera-

tions, such as projection, unprojection, egomotion estima-

tion and stabilization, in order to compute a geometrically-

consistent mapping between the world scene and their 3D

latent feature state. We train the proposed architectures to

predict novel camera views given short frame sequences as

input. Their predictions strongly generalize to scenes with a

novel number of objects, appearances and configurations;

they greatly outperform previous works that do not con-

sider egomotion stabilization or a space-aware latent fea-

ture state. We train the proposed architectures to detect and

segment objects in 3D using the latent 3D feature map as

input—as opposed to per frame features. The resulting ob-

ject detections persist over time: they continue to exist even

when an object gets occluded or leaves the field of view.

Our experiments suggest the proposed space-aware latent

feature memory and egomotion-stabilized convolutions are

essential architectural choices for spatial common sense to

emerge in artificial embodied visual agents.

1. Introduction

Current state-of-the-art visual systems [11] accurately

detect object categories that are rare and unfamiliar to many

of us, such as gyromitra, a particular genus of mushroom

(Figure 1 top left). Yet, they neglect the basic principles of

object permanence or spatial awareness that a one-year-old

child has developed: once the camera turns away, or a per-

son walks in front of the gyromitra, its detection disappears

and it is replaced by the objects detected in the new visual

frame. We believe the ability of current visual systems to

detect rare and exquisite object categories and their inability
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Figure 1. Internet vision versus robotic vision. Pictures taken

by humans (top row) (and uploaded on the web) are the output of

visual perception of a well-trained agent, the human photographer.

The content is skillfully framed and the objects appear in canonical

scales and poses. Pictures taken by mobile agents, such as a NAO

robot during a robot soccer game (bottom row), are the input to

such visual perception. The objects are often partially occluded

and appear in a wide variety of locations, scales and poses. We

present recurrent neural architectures for the latter, that integrate

visual information over time to piece together the visual story of

the scene.

to carry out elementary spatial reasoning is due to the fact

that they are trained to label object categories from static

Internet photos (in ImageNet and COCO datasets) using a

single frame as input. Our overexposure to Internet pho-

tos makes us forget how pictures captured by mobile agents

look. Consider Figure 1. Internet photos are skillfully cap-

tured by human photographers, are well framed and show

objects unoccluded, in canonical locations, scales and poses

(top row). Instead, photos captured by NAO robots during a

soccer game show objects in a wide variety of scales, poses,

locations, and occlusion configurations (bottom row). Of-

ten, it would not even make sense to label objects in such

images, as most objects appear only half-visible. In the case

of Internet vision, the picture is the output of visual percep-

tion of a well-trained visual agent, the human photographer.

In the case of mobile robotic vision, the picture is the input

to such visual perception. Thus, different architectures may

be needed for each.

We present Geometry-aware Recurrent Neural Network
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Figure 2. Geometry-aware Recurrent Neural Networks

(GRNNs) integrate visual information over time in a 3D

geometrically-consistent deep feature memory of the visual scene.

At each frame, RGB images are unprojected into corresponding

3D feature tensors, which are oriented to the coordinate frame of

the memory map built thus far (2nd row). A 3D convolutional

GRU memory is then updated using the egomotion-stabilized fea-

tures as input.

architectures, which we call GRNNs, that learn to “lift” and

integrate over time 2D image features into 3D feature maps

of the scene, while stabilizing against the egomotion of the

agent. They update over time a 3-dimensional latent fea-

ture state: the latent feature vectors are arranged in a 3D

grid, where every location of the grid encodes a 3D phys-

ical location in the scene. The latent state is updated with

each new input frame using egomotion-stabilized convolu-

tions, as shown in Figure 2. GRNNs learn to map 2D input

visual features to a 3D latent feature map, and back, in a

differentiable manner. To achieve such differentiable and

geometrically-consistent mapping between the world scene

and the 3D latent feature state, they are equipped with dif-

ferentiable geometric operations, such as egomotion esti-

mation and feature stabilization, 3D-to-2D projection, and

2D-to-3D unprojection, as shown in Figure 2. Beyond being

space-aware, we do not impose any other constraints on the

learned representations: they are free to encode whatever is

relevant for the downstream task.

We train GRNNs in a self-supervised manner to predict

image views from novel camera viewpoints, given short

frame sequences as inputs. We empirically show GRNNs

learn to predict novel views and strongly generalize to

novel scenes with different number, appearances and con-

figuration of objects. They greatly outperform geometry-

unaware networks of previous works that are trained un-

der the exact same view-prediction loss, but do not use

egomotion-stabilized convolutions or a 3D latent space. We

argue strong generalization is a necessary condition for

claiming the ability to spatially reason. Furthermore, we

show learnt representations of GRNNs support scene arith-

metics: adding/subtracting latent scene 3D feature maps

and decoding them from a particular viewpoint matches the

result of adding/subtracting 3D world scenes directly.

We train GRNNs in a supervised manner to detect and

segment objects in 3D, given short frame sequences as in-

puts (Figure 2). We use the latent 3D feature map as in-

put to a 3D version of maskRCNN [11], a state-of-the-art

2D object detector/segmentor. The resulting 3D object de-

tections and 3D voxel segmentations persist in time despite

instantaneous occlusions and dis-occlusions: an object that

is not visible in the current frame is still present in the la-

tent 3D feature map. By projecting the detected 3D ob-

jects in 2D we obtain amodal [20] object boxes and seg-

ments, even under severe occlusions. Visual recognition

with GRNNs thus exhibits object permanence, a prop-

erty which is effortless for humans, and impossible thus far

for 2D visual detectors. The GRNN architecture borrows

many ideas from SLAM (Simultaneous Localization and

Mapping) methods, as we discuss in Section 3. GRNNs

though eventually learn to “imagine” missing content of

the scene without visual inspection from multiple view-

points. Datasets and code are available at our project page

https://ricsonc.github.io/grnn/.

2. Related Work

Deep geometry Simultaneous Localization and Mapping

(SLAM) [23, 16] methods are purely geometric methods

that build a 3D pointcloud map of the scene while estimat-

ing the motion of the camera. Our method builds multiple

deep feature maps instead, which capture both the geome-

try and the semantics of the scene. Recently, there has been

great interest in integrating learning and geometry for single

view 3D object reconstruction [25, 28], 3D object recon-

struction from videos [18], depth and egomotion estimation

from pairs of frames [27, 32], depth estimation from stereo

images [8], and estimation of 3D human keypoints from 2D

keypoint heatmaps [29, 26]. Many of those works use neu-

ral network architectures equipped with some form of dif-

ferentiable camera projection, so that the 3D desired esti-

mates can be supervised directly using 2D quantities. For

example, Tulsiani et al. [25], Wu et al. [28] and Zhou et al.

[32] use a single image frame as input to predict a 3D re-

construction for a single object, or a 2D depth map for the

entire scene. These works use multiple views only to obtain

extra regularization for the predictions in the form of depth

re-projection error. Learnt stereo machines (LSM) [15] in-

tegrate RGB information along sequences of random cam-

era viewpoints into a latent 3D feature memory tensor, in
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an egomotion-stabilized way, similar to our method. How-

ever, their goal is to 3D reconstruct a single object, as op-

posed to detect and 3D reconstruct multiple objects, which

our model does. They assume egomotion is given, while

we also propose a way to estimate egomotion. They can

only be trained supervised for the object 3D reconstruction

task, while GRNNs can be trained self-supervisedly through

view prediction. The work of LSM has inspired though the

models proposed in this paper.

MapNet [12], Cognitive mapping and planning [10],

IQA [9] and Neural Map [19] construct 2D overhead maps

of the scene by taking into account the egomotion of the

observer, similar to our method. MapNet further estimates

the egomotion, while other methods assume it is known. In

IQA, objects are detected in each frame and detections are

aggregated in a birdview map, whereas we detect objects

directly using the 3D feature map as input.

The closest work to ours is the work of Cheng at al. [3],

which considers egomotion-stabilized convolutions and a

3D latent map for segmenting objects in 3D, like us. How-

ever, they assume egomotion is known—while we learn to

estimate it—and their object detection pipeline uses heuris-

tics in order to specify the number of objects in the scene

by discretizing continuous voxel segmentation embeddings

that they obtain with metric learning. We instead train 3D

region proposal and segmentation networks. Most impor-

tantly, they do not consider self-supervised learning via

view prediction, which is one of the central contributions

of this work. Rather, they exclusively focus on supervised

voxel labelling using groundtruth 3D voxel occupancies

provided by a simulator.

Self-supervised visual feature learning Researchers

have considered many self-supervised tasks to train visual

representations without human labels. For example, works

of [13, 1] train visual representation by predicting egomo-

tion between consecutive frames, and works of [6, 24] pre-

dict novel views of a scene. In particular, the authors of

generative query network (GQN) [6] argue that GQN learns

to disentangle color, lighting, shapes and spatial arrange-

ment without any human labels. We compare against their

model in Section 4 and show GRNNs can strongly general-

ize beyond the training set, while GQN cannot. Such strong

generalization suggests that 3D latent space and egomotion-

stabilization are necessary architectural choices for spatial

reasoning to emerge.

3D object detection When LiDAR input is available,

many recent works attempt detecting objects directly in 3D

using LiDAR and RGB streams [33, 17, 31]. They mostly

use a single frame as input, while the proposed GRNNs in-

tegrate visual information over time. Extending GRNNs to

scenes with independently moving objects is a clear avenue

for future work.

3. Geometry-aware recurrent networks

GRNNs are recurrent neural networks whose latent state

mt ∈ R
w×h×d×c, t = 1 · · ·T learns a 3D deep feature

map of the visual scene. We use the terms 4D tensor and

3D feature map interchangeably, to denote a set of feature

channels, each being 3-dimensional. The memory map is

updated with each new camera view in a geometrically-

consistent manner, so that information from 2D pixel pro-

jections that correspond to the same 3D physical point end

up nearby in the memory tensor, as illustrated in Figure 3.

This permits later convolutional operations to have a corre-

spondent input across frames, as opposed to it varying with

the motion of the observer. We believe this is a key for gen-

eralization. The main components of GRNNs are illustrated

in Figure 3 and are detailed right below.

Unprojection At each timestep, we feed the input RGB

image It to a 2D convolutional encoder-decoder network

with skip-connections (2D U-net [22]) to obtain a set of 2D

feature maps Ft ∈ R
w×h×c. We then unproject all fea-

ture maps to create a 4D feature tensor VI
t ∈ R

w×h×d×c

as follows: For each ”cell” in the 3D feature grid indexed

by (i, j, k), we compute the 2D pixel location (x, y) which

the center of the cell projects onto, from the current camera

viewpoint:

[x, y] = [f · i/k, f · j/k],

where f is the focal length of the camera. Then, VI
i,j,k,: is

filled with the bilinearly interpolated 2D feature vector at

that pixel location (x, y). All voxels lying along the same

ray casted from the camera center will be filled with nearly

the same image feature vectors. We further unproject the

input 2D depthmap Dt into a binary voxel occupancy grid

VD
t ∈ {0, 1}w×h×d that contains the thin shell of voxels

directly visible from the current camera view. We com-

pute this by filling all voxels whose unprojected depth value

equals the grid depth value. When a depth sensor is not

available, we learn to estimate the depthmap using a 2D U-

net that takes the RGB image as input.

We multiply each 3-dimensional channel of the feature

tensor VI
t with the binary occupancy grid VD

t to get a fi-

nal 4D feature tensor Vt ∈ R
w×h×d×c. The unprojected

tensor Vt enters a 3D encoder-decoder network with skip

connections (3D U-net) to produce a resulting feature ten-

sor V̄t ∈ R
w×h×d×c.

Egomotion estimation and stabilization Our model ori-

ents the 3D feature memory to have 0◦ elevation using the

absolute elevation angle of the first camera view. We as-

sume this value is given, but it can also be estimated using a
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Figure 3. GRNN architecture. At each time step t, an RGB image It is the input to a 2D U-net. The resulting 2D deep feature maps are

unprojected to 4D tensors Vt, which in turn are input to a 3D U-net (we do not show the optional combination with unprojected depthmaps

for clarity). The resulting 3D deep feature maps V̄ are oriented to cancel the relative camera motion between the current viewpoint and the

coordinate system of the 3D GRU memory state mt−1, as estimated by an egomotion estimation module. The resulting oriented 3D deep

feature maps V̄t’ update the 3D GRU memory state and output mt. The updated state of the GRU module is then projected from specific

viewpoints and decoded into a corresponding RGB image for view prediction, or fed into a 3D MaskRCNN to predict 3D object bounding

boxes and object voxel occupancies.

2D convnet. This essentially makes the memory to always

be parallel to the ground plane. The azimuth of the 3D fea-

ture memory is chosen to be the azimuth of the first view in

the input frame sequence. We assume the camera does not

translate, only rotates by varying two degrees of freedom,

elevation and azimuth.

At each time step t, we estimate the relative elevation

and azimuth between the current frame’s viewpoint and the

feature memory. Note that we can alternatively predict the

(absolute) elevation directly from each input view, without

matching against the memory built thus far. For the az-

imuth, since we need to estimate the relative azimuth to the

first view, such cross-view comparison is necessary. Specif-

ically, the tensor V̄t is rotated by different azimuth and el-

evation angles and results in a stack of rotated feature ten-

sors V̄rot ∈ R
(L·K)×w×h×d×c, where L,K are the total

number of azimuths and elevation angles considered, re-

spectively, after discretization. Similar to the bilinear in-

terpolation used during unprojection, to fill in each feature

voxel in a rotated tensor V̄rot
·,i,j,k,:, we compute the 3D lo-

cation (X,Y, Z) where it is rotated from and insert the bi-

linearly interpolated feature value from the original tensor

V̄t. We then compare each of the rotated feature maps with

our current 3D feature memory mt−1 ∈ R
w×h×d×c using

matrix inner products, to produce a probability distribution

over azimuth and elevation pairs:

ρ̄t(r) = mt−1 ∗ V̄rot(r, :, :, :, :), r ∈ 1 · · ·L ·K

ρt = softmax(ρ̄t),

where ∗ denotes matrix inner product. The resulting rota-

tion r̄t is obtained by a weighted average of azimuth and

elevation angles where weights are in ρt. Finally, we orient

the tensor V̄t to cancel the relative rotation r̄t with respect

to our 3D memory mt−1, we denote the oriented tensor as

V̄′

t.

Recurrent map update Once the feature tensor has been

properly oriented, we feed V̄′

t as input to a 3D convolu-

tional Gated Recurrent Unit [4] layer, whose hidden state

is the memory mt−1 ∈ R
w×h×d×c, as shown in Figure 3.

This state update outputs mt. The hidden state is initial-

ized to zero at the beginning of the frame sequence. For

our view prediction experiments (Section 4) where we use a

fixed number of views T , we found that averaging, namely

mT = 1
T

∑
t
¯̄V ′

t works equally well to using the GRU up-

date equations, while being much faster.

Projection and decoding Given a 3D feature memory mt

and a desired viewpoint q, we first rotate the 3D feature

memory so that its depth axis is aligned with the query cam-

era axis. We then generate for each depth value k a corre-

sponding projected feature map pk ∈ R
w×h×c. Specifi-
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cally, for each depth value, the projected feature vector at a

pixel location (x, y) is computed by first obtaining the 3D

location it is projected from and then inserting bilinearly

interpolated value from the corresponding slice of the 4D

tensor m. In this way, we obtain d different projected maps,

each of dimension w × h× c. Depth ranges from D − 1 to

D + 1, where D is the distance to the center of the feature

map, and are equally spaced.

Note that we do not attempt to determine visibility of fea-

tures at this projection stage. The stack of projected maps

is processed by 2D convolutional operations and is decoded

using a residual convLSTM decoder, similar to the one pro-

posed in [6], to an RGB image. We do not supervise visi-

bility directly. The network implicitly learns to determine

visibility and to choose appropriate depth slices from the

stack of projected feature maps.

3.1. View prediction

Mobile agents have access to their egomotion, and can

observe sensory outcomes of their motions and interactions.

Training sensory representations to predict such outcomesis

a useful form of supervision, free of human annotations, of-

ten termed self-supervision since the “labels” are provided

by the embodied agent herself. Can spatial common sense,

the notion of objects and scenes, geometry, visibility and

occlusion relationships, emerge in a self-supervised way in

a mobile agent that moves around and observes the world?

We train GRNNs to predict the image the agent would

see from a novel viewpoint, given a short view sequence

as input. Given the 3D feature memory and a query view-

point, we orient the map to the query viewpoint, we project

it to 2D and decode it to an RGB image, as described

above. We train our view prediction using a standard cross-

entropy pixel matching loss, where the pixel intensity has

been squashed into the range [0, 1]. Our model is end-to-end

differentiable. For view prediction, we did not use depth as

input, nor did we use a 2D U-net to estimate it. We also

did not set the memory to be parallel top the ground plane.

We use only the RGB input and set the coordinate system

of the memory to match that of the first camera view af-

ter unprojection, for a fair comparison with prior art. We

show in Section 4 that GRNNs greatly outperform alter-

native geometry-unaware RNN architectures in view pre-

diction and strongly generalize beyond the training set to

novel scenes with different number of objects, appearances

and arrangements. Training and implementation details are

included in the supplementary file.

3.2. 3D object detection and segmentation

We train GRNNs in a supervised manner to predict 3D

object bounding boxes and 3D object segmentation masks,

using groundtruth 3D object boxes and 3D voxel segmenta-

tions from a simulator. We adapt MaskRCNN [11], a state-

of-the-art object detector/segmentor, to have 3D input and

output, instead of 2D. Specifically, we consider every grid

location (X,Y, Z) in our 3D memory to be a candidate 3D

box centroid. At each time step, the 3D feature memory mt

is fed to a 3D region proposal network to predict positive

anchor centroids, as well as the corresponding adjustment

for the box center location and the box dimensions, width,

height and depth. Our 3D bounding box encoding is similar

to the one proposed in VoxelNet [33]. We filter the proposed

boxes using non-max suppression to reject highly overlap-

ping ones. We train with a combination of classification and

regression loss, following well established detector training

schemes [21, 11]. The proposed 3D bounding boxes that

have Intersection of Union (IoU) above a specific threshold

with a corresponding groundtruth object box are denoted

as Regions of Interest (ROIs) and are used to pool features

from their interior to predict 3D object voxel occupancy, as

well as a second refinement of the predicted 3D box loca-

tion and dimensions.

Object permanence Even when an object is not visible

in the current camera viewpoint, its features are present in

the 3D feature memory, and our detector detects and seg-

ments it, as we show in the second column of Figure 6.

In other words, object detections persist through occlusions

and changes of the field of view caused by camera motion.

Applying the detector on the latent 3D model of the scene as

opposed to the 2D visual frame is beneficial. The latent 3D

model follows the physical laws of 3D non-intersection and

object permanence, while 2D visual observations do not.

4. Experiments
The term “spatial common sense” is broad and concerns

the ability to perceive and understand properties and regu-

larities regarding spatial arrangements and motion that are

shared by (“common to”) nearly all people. Such common

sense includes the fact that objects have 3D shape as op-

posed to being floating 2D surfaces, the fact that scenes are

comprised of objects, the 3D non-intersection principle, the

fact that objects do not spontaneously disappear, and many

others [7]. The model we propose in this work targets un-

derstanding of static scenes, that is, scenes that do not con-

tain any independently moving objects, and that are viewed

under a potentially moving observer. Thus, we restrict the

term spatial common sense to refer to rules and regularities

that can be perceived in static worlds. Our experiments aim

to answer the following questions:

1. Do GRNNs learn spatial common sense?

2. Are geometric structural biases necessary for spatial

common sense to emerge?

3. How well do GRNNs perform on egomotion estima-

tion and 3D object detection?
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4.1. View prediction

We consider the following simulation datasets:

i) ShapeNet arrangement from [3] that contains scenes with

synthetic 3D object models from ShapeNet [2] arranged on

a table surface. The objects in this dataset belong to four

object categories, namely, cups, bowls, helmets and cam-

eras. We follow the same train/test split of ShapeNet [2]

so that object instances which appear in the training scenes

do not appear in the test scenes. Each scene contains two

objects, and each image is rendered from a viewing sphere

which has 3 × 18 possible views with 3 camera elevations

(20◦, 40◦, 60◦) and 18 azimuths (0◦, 20◦, . . . , 340◦). There

are 300 different scenes in the training set and 32 scenes

with novel objects in the test set.

ii) Shepard-metzler shapes dataset from [6] that contains

scenes with seven colored cubes stuck together in random

arrangements. We use the train and test split of [6].

iii) Rooms-ring-camera dataset from [6] that contains

rooms with random floor and wall colors, in which there

are variable numbers of objects with different shapes and

colors.

We compare GRNNs against the recent ”tower” archi-

tecture of Eslami et al. [6], a 2D network trained under a

similar view prediction loss. At each time step, the tower

architecture takes as input a 2D RGB image and performs

a series of convolutions on it. The camera pose from which

the image was taken is tiled along the width and height

axes and then concatenated with the feature map after the

third convolution. Finally, the feature maps from all views

are combined via average pooling. Both our model and

the baseline use the same autoregressive decoder network.

For fairness of comparison, we use groundtruth egomotion

rather than estimated egomotion in all view prediction ex-

periments, and only RGB input (no depth input of depth es-

timation) for both our model and the tower baseline. In both

the baseline and our model, we did not use any stochastic

units for simplicity and speed of training. Adding stochastic

units in both is part of our future work.

Test results from our model and baseline on test images

of ShapeNet arrangements and Shepard-metzler datasets

are shown in Figure 4. Reconstruction test error for the

ShapeNet arrangement test set is shown in Table 1. GRNNs

have a much lower reconstruction test error than the tower

baseline. In Figure 4, in the first four rows, the distribu-

tion of the test scenes matches the training scene distribu-

tion. Our model outperforms the baseline in visual fidelity.

In Figure 4, in the last four rows, the test scene distribu-

tion does not match the training one: we test our model and

baseline on scenes with four objects, while both models

are trained on scenes with exactly two objects. In this

case, our model shows strong generalization and outper-

forms by a margin the geometry-unaware baseline of [6],

the latter refuses to see more than two objects present. We
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Figure 4. View prediction results for the proposed GRNNs and

the tower model of Eslami et al. [6]. Columns from left to right

show the three input views, the groundtruth image from the query

viewpoint, the view predictions for GRNNs and for the tower base-

line. The first two rows are from the ShapeNet arrangement test set

of [3], the next two rows are from the Shepard-Metzler test set of

[6], and the following two rows are from the Rooms-ring-camera

dataset also from [6]. The last four rows show generalization to

scenes with four objects from the ShapeNet arrangement dataset,

while both models were trained only on scenes with two objects.

GRNNs outperform the baseline by a large margin and strongly

generalize under a varying number of objects.

argue the ability to spatially reason should not be affected

by the number of objects present in the scene. Our re-

sults suggest that geometry-unaware models may be merely

memorizing views with small interpolation capabilities, as

opposed to learning to spatially reason.

Scene arithmetics The learnt representations of GRNNs

are capable of scene arithmetics, as we show in Figure 5.
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The ability to add and subtract individual objects from 3D

scenes just by adding and subtracting their corresponding

latent representations demonstrates that our model disentan-

gles what from where. In other words, our model learns to

store object-specific information in the regions of the mem-

ory which correspond to the spatial location of the corre-

sponding object in the scene. Implementation details and

more qualitative view prediction results are included in the

supplementary file.

(A)               (B)              (C)
query gt 

(A-B+C)

GRNNs 

(Ours)

Tower 

(Baseline)

Figure 5. Scene arithmetic with GRNNs and the model of Eslami

et al. [6] (tower). Each row is a separate ”equation”. We start

with the representation of the scene in the leftmost column, then

subtract (the representation of) the scene in the second column,

and add the (representation of the) scene in the third column. We

decode the resulting representation into an image. The groundtruth

image is shown in the forth column. It is much more visually

similar to the prediction of GRNNs than to the tower baseline.

Tower GRNNs

(Baseline) (Ours)

ShapeNet 0.109± 0.029 0.084± 0.017
Shepard-Metzler 0.081± 0.017 0.073± 0.014

Table 1. View prediction loss and the standard deviation for

the ShapeNet arrangement test set for two-object test scenes. Our

model and baseline were trained on scenes that also contain two

objects with different object instances.

4.2. Egomotion estimation

In this section, we quantify the error of our egomotion

estimation component. We train our egomotion estimation

# views one two three avg.

GRNNs 8.6/17.8 5.6/16.8 5.6/6.6 6.6/13.7

Table 2. Egomotion estimation error of GRNNs in elevation

and azimuth angles for the ShapeNet arrangement test set using

different number of views. The error decreases with more views

integrated in the memory.

module using groundtruth egomotion from a simulator, us-

ing the ShapeNet arrangement dataset. In Table 2, we show

egomotion estimation error in elevation and azimuth an-

gles. Our model improves its egomotion estimates with

more views, since then a more complete feature memory

is compared against each input unprojected tensor.

4.3. 3D object detection and segmentation

We use the ShapeNet arrangement dataset, and the

train/test scene split of [3]. We use mean Average Precision

(mAP) to score the performance of our model and baselines

for 3D object detection and 3D segmentation. Mean aver-

age precision measures the area under the precision-recall

curve. We vary the cutoff threshold of Intersection over

Union (IoU) to be 0.33, 0.5 and 0.75 between our predic-

tions and the groundtruth 3D boxes and masks. We consider

four ablations for our model: predicted egomotion (pego)

versus groundtruth egomotion (gtego) used, and predicted

depth (pd) versus groundtruth depth (gtd) used as input. We

use suffixes to indicate the model we use.

We compare against the following 2D baseline model,

which we call 2D-RNN: we remove the unprojection, ego-

motion estimation and stabilization and projection opera-

tions from our model. The baseline takes as input an image

and the corresponding depth map, feeds it to a 2D encoder-

decoder network with skip connections to obtain a 2D fea-

ture tensor. The camera parameters for this view are con-

catenated as additional channels to the 2D feature tensor

and altogether they are fed to another 2D encoder-decoder

network to obtain the 2D feature tensor for a 2D GRU mem-

ory update. We then feed the 2D memory feature tensor

to an additional 2D encoder-decoder network and reshape

the channel dimension of its output into d feature vector of

length 7 (one value for the anchor box prediction, six values

for the 3D bounding boxes adjustments) to form a 4D tensor

of size w × h× d× 7 as prediction.

We show mean average precision for 3D object detection

and 3D segmentation for our model and the baseline in Ta-

ble 3, and visualize predicted 3D bounding boxes and seg-

mentations from GRNNs (GRNN-gtego-gtd) in Figure 6.

GRNNs significantly outperform the 2D-RNN. Groundtruth

depth input significantly helps 3D segmentation. This sug-

gests that inferring depth using a cost volume as in [15]

would potentially help depth inference as opposed to rely-

ing on a per frame depthnet [5] that does not have access

to multiple views to improve its predictions. Implementa-
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Figure 6. 3D object detection and segmentation with GRNNs. In the first and second row on the left we show the input images over

time, and their corresponding object detection results for a top view, respectively. Blue voxels denote groundtruth objects and the predicted

bounding boxes are shown in red and green . On the right, we show segmentation results for the third time step, visualizing the results from

two views. Predicted 3D boxes and their corresponding predicted masks are show in red and green, and we show in blue the corresponding

groundtruth. Best seen in color.

detection 2DRNN-

gtego-

gtd

GRNN-

gtego-pd

GRNN-

gtego-

gtd

GRNN-

pego-gtd

segmentation 2DRNN-

gtego-

gtd

GRNN-

gtego-pd

GRNN-

gtego-

gtd

GRNN-

pego-gtd

mAPd
0.75 0.364 0.471 0.816 0.549 mAPm

0.75 0.003 0.024 0.058 0.023

mAPd
0.50 0.964 0.964 0.998 0.983 mAPm

0.50 0.104 0.246 0.338 0.249

mAPd
0.33 0.998 0.994 0.999 0.999 mAPm

0.33 0.244 0.429 0.485 0.384

Table 3. Mean Average Precision (mAP) for 3D object detection and 3D segmentation for three different thresholds of Intersection over

Union (IoU) (0.75,0.5,0.33) on ShapeNet arrangement test set of [3].

tion details and more qualitative results are included in the

supplementary file.

5. Conclusion
We presented GRNNs, recurrent neural networks

equipped with differentiable geometric operations to esti-

mate egomotion and build 3D deep feature maps for visual

scene understanding on mobile visual agents. GRNNs add

a new dimension to the latent space of previous recurrent

models and ensure a geometrically-consistent mapping be-

tween the latent state and the 3D world scene. We showed

spatial common sense emerges in GRNNs when trained in

a self-supervised manner for novel view prediction. They

can predict object arrangements, visibility and occlusion re-

lationships in scenes with novel number, appearance and

configuration of objects. We also showed that view predic-

tion as a loss does not suffice for spatial common sense to

emerge, since 2-dimensional models of previous works fail

to strongly generalize.

Thus far, GRNNs has been trained and tested on simu-

lated scenes. Deploying our model on more realistic envi-

ronmentsis a clear avenue for future work. We expect pre-

training in simulated environments to help performance in

the real world. Besides, one limitation of the current model

is that it operates on static scenes. Extending the proposed

architectures to dynamic scenes, scenes with independently

moving objects in addition to camera motion, is another

very useful direction of future work. Finally, exploiting the

sparsity of our 4D tensors to save GPU memory is an im-

portant direction for scaling up our model to large scenes.

GRNNs pave the way for embodied agents that learn vi-

sual representations and mental models by observing and

moving in the world: these agents learn autonomously and

develop the reasoning capabilities of young toddlers as op-

posed to merely mapping pixels to labels using human su-

pervision.
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[15] A. Kar, C. Häne, and J. Malik. Learning a multi-view stereo

machine. CoRR, abs/1708.05375, 2017.

[16] C. Kerl, J. Sturm, and D. Cremers. Dense visual SLAM for

RGB-D cameras. In IROS, 2013.

[17] M. Liang, B. Yang, S. Wang, and R. Urtasun. Deep con-

tinuous fusion for multi-sensor 3d object detection. In The

European Conference on Computer Vision (ECCV), Septem-

ber 2018.
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