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Abstract

User identification from hand images only is still a chal-

lenging task. In this paper, we propose a new biometric

identification system based solely on a skin patch from a

multispectral image. The system is utilizing a novel modi-

fied 3D CNN architecture which is taking advantage of mul-

tispectral data. We demonstrate the application of our sys-

tem for the example of human identification from multispec-

tral images of hands. To the best of our knowledge, this

paper is the first to describe a pose-invariant and robust

to overlapping real-time human identification system using

hands. Additionally, we provide a framework to optimize

the required spectral bands for the given spatial resolution

limitations.

1. Introduction

Personal identification using unique physiological fea-

tures such as a face, an iris, fingerprints or vein, is re-

quired in a wide variety of systems and applications. Es-

pecially in the past couple of years, there has been sig-

nificant increase of practical logon applications for differ-

ent types of devices such as cellular phones [3, 28], lap-

tops [24], and video game consoles [33]. In the case of

tabletop devices, which fall into the category of a so-called

tangible user interface [18, 34], identifying a user from his

hands only is desired for individual access controls and nat-

ural user interfaces. The system is required to work with-

out any constraints on hand pose, in contrast to fingerprint

or vein which usually forces users to pause at the ideal

pose. In recent years, thanks to progress in deep learning,

there has been outstanding progress in a variety of com-

puter vision tasks. The standard way to perform image-

based recognition is to use geometric information. While

this approach is suitable for relatively rigid objects such

as faces, hand recognition often requires a particular hand

pose [29, 5, 43, 30, 13]. Our method is pose-invariant and

can deal with occlusions.

Recently, multispectral image acquisition systems which

capture data at several specific wavelength ranges (usually

more narrowly than RGB image acquisition systems) have

become easier available. Due to the complexity of tra-

ditional multispectral acquisition systems, proposed appli-

cations have been limited to very specific fields [16, 22].

However, various types of systems [7, 11] are being devel-

oped recently and spreading to wider commercial applica-

tions [27, 6] including biometrics [45, 1]. Especially the

advent of multispectral mosaic-array sensors [42, 21, 15]

enables the acquisition of video as a sequence of single-

snapshots. However, the disadvantage of these sensors is

the trade-off between spatial resolution and the number of

spectral bands, which means the spatial resolution is sac-

rificed if the number of spectral bands is increased or vice

versa.

Several skin spectra models have been proposed in early

works [2, 40]. According to their optical considerations,

perceived color is mainly composed of dermis scattering,

melanin and vascular absorption which are different among

individuals due to the differences of skin chromophore con-

centrations [35, 40]. Our approach has been motivated by

knowledge from these studies.

In this paper, we propose a framework of hand identifi-

cation using spatial and spectral distributions of skin, with-

out using any geometric information, as shown in Figure 1.

From a small patch (i.e. 16x16 pixels) of a hand, our CNN

model can distinguish among registered users, without us-

ing any additional information about a hand’s shape. One

advantage of our patch-based identification is that it works

even when a hand of a user to be identified is overlapped

by a hand of a different user, or a part of a hand is out of

the view. Additionally, our model can distinguish between

the left and right hand of a person because our CNN model

learns different spectral and spatial features of skin for each

hand. Finally our approach works in a frame-by-frame fash-

ion, making real time processing more feasible. We demon-

strate this user identification framework in the scenario of a

tabletop projection system as shown in Figure 2. A multi-

spectral camera, including a projection system, is mounted

over the tabletop and acquires images of hands which are

moving without any constraints on the table. These capabil-

ities may provide a novel natural user interaction for many

12349



RGB

Multispectral

Feature extraction Information integration Classification Data sensing 

Feature map 

Prediction Multispectral images 

Input: Spectral data cube Output: Skin identification 

Subject    Probability 

skin patch 

Input 
Soft 

max 
FC 

3D  

Conv 

3D  

Conv 

3D  

Conv 

Figure 1. Skin-based user identification with local spatial-spectral features: We propose a novel framework for pose-invariant user identi-

fication by the combination of multispectral image data and an algorithm based on CNN.
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Figure 2. Use case in the scenario of a tabletop interface: In this

case, users’ hands are moving without any shape constraints and

without any restriction in partial overlapping each other.

applications.

In this work, we are dealing with a mosaic-array based

multispectral sensor where its spatial resolution is divided

into spectral bands. Thus, by increasing the number of spec-

tral bands we reduce the resolution of each band. This paper

provides a framework for finding the best trade-off between

the number of spectral bands and the spectral spatial reso-

lution in order to maximize classification accuracy. In other

words, given the fixed 3D spectral data cube volume (speci-

fied by sensor’s basic resolution), our framework optimizes

the shape of the cube with the same volume which provides

the best classification accuracy. This optimization frame-

work requires input from various configurations with dif-

ferent numbers of spectral bands. This would require data

capture with multiple different multispectral cameras with

the same basic sensor resolution, which is not practical. In-

stead, we propose to use a simulation approach, which we

describe in detail in Section 4.

Contributions The key technical contributions of this pa-

per are summarized below.

• Showing superiority of our approach with respect to

conventional RGB image skin-based identification when us-

ing the same amount of data.

• Demonstrating feasibility of hand identification based

on spatial-spectral features of skin using CNNs with syn-

thetic and real datasets.

• Proposing a novel 3D CNN which enhances relevant

spectral bands for skin-based identification.

• Providing multispectral image dataset generating

pipelines for finding an optimal shape of spatial-spectral

data cube.

Outline This paper is organized as follows. We begin with

reviewing prior work in Section 2. In Section 3, we intro-

duce our network architecture utilizing a multispectal data

cube as input. We explain our strategy of generating syn-

thetic datasets in Section 4 and show superiority of multi-

spectral image input via multiple experiments with our syn-

thetic datasets in Section 5. The feasibility with real mul-

tispectral data is shown in Section 6. In Section 7, we dis-

cuss supportive evidence of our proposal with an explana-

tion tool for deep networks. Conclusions, limitations and

future works are provided in Section 8.

2. Prior Work

Identification approach using hands: There are al-

ready many commercial biometric user authentication sys-

tems which require an image of hands. Most of them can

be categorized into fingerprint, vein and geometric iden-

tification. As an example of fingerprints identification,

in [32], the authors extracted ridge ending and ridge bi-

furcation of fingerprint as feature values. In [26], the au-

thors claimed multispectral fingerprint image acquisition

improved robustness against environmental and physiolog-

ical conditions like bright ambient lighting, wetness, poor

contact between the finger and sensor. In the case of vein

authentication, vascular patterns are recognized by analyz-

ing deoxidized hemoglobin absorption of near-infrared light
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in [39]. The other category is the physical dimensions of

a human hand. In [5], a user identification approach us-

ing 25 geometric features of finger and palm was proposed.

In [43], features of hand silhouette extracted by using in-

dependent component analysis showed satisfactory perfor-

mance for groups of about 500 users. A user authentica-

tion system with RGB camera on multi-touch tables was

proposed in [30]. The authors used a support vector ma-

chine classifier with features of palm width, finger length

and breadth. In [13], a non-contact identification method

with CNN was proposed. Here, users hold their hands in

front of a ToF camera and they are classified by shape fea-

tures from their palm.

Multispectral image capturing system: A traditional

multispectral imaging system operates in a sweeping man-

ner and utilizes a prism or grating to disperse light [25].

The next category of multispectral imaging system employs

either liquid-crystal tunable filters or acousto-optic tunable

filters to modulate the input spectrum over time [14]. Re-

cently, as the newest category, single-snapshot multispec-

tral imaging systems are being developed to rapidly acquire

a 3D spectral data cube which allow to avoid motion arti-

facts and thus enabling video acquisition [41, 42, 21, 15].

However, this category of mosaic-array multispectral imag-

ing system usually sacrifices its spatial resolution for spec-

tral resolution. To overcome this problem, some papers re-

cently proposed the framework of combining image sensor

architecture and image signal reconstruction [38, 12].

Potential of skin spectra for user identification: Early

works have shown that skin has much personal informa-

tion. The history began with the famous skin model in [2].

In [37], the authors proposed a novel skin model with two-

region chromophore fitting and estimated consistency of

pigments such as melanin, oxy- and deoxy-hemoglobin, by

measuring the spectra of skin optical properties of 18 sub-

jects of different skin phototypes I–VI [35] in the range

from 500 to 1000 nm. In another work [40], the au-

thors showed that absorption spectra and scattering spectra

properties of skin sub-surface scattering are very different

among 149 subjects.

3. Network architecture for hand identification

Recently, CNNs using 3D convolutions have been suc-

cessful in various applications [10, 8, 23] with high dimen-

sional data. In our skin identification task, with a spectral

data cube, 3D convolution is expected to extract spectral-

spatial features more efficiently than 2D convolution. The

proposed network architecture is shown in Figure 3. Al-

though any architecture can be used as the base network

for extending to 3D, we selected the wide residual net-

works (Wide-ResNet) [44] because the ResNet architecture

and its variants are commonly used in image classification

field. The difference from a normal 3D Wide-ResNet is that
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Figure 3. Network architecture: Our architecture is based on the

Wide-ResNet [44] which has two types of residual blocks with

different skip connections (left). These skip connections of block

A and B are the projection shortcut and the identity shortcut re-

spectively. We used a 3D convolution kernel and extracted the

characteristics of a spectral band. In addition, to enhance rele-

vant spectral bands, we added squeeze-and-excitation (SE) blocks

(right).

spectral attention is involved to enhance the relevant spec-

tral bands. It was inspired by the squeeze-and-excitation

block (SE-block) [17]. SE block enhances the performance

with small computational effort, and pays attention to a sin-

gle weight for each channel of the feature maps. Position-

SE block for facial attribute analysis was proposed in [46],

which focuses on highlighting the relevant spatial position.

Unlike [46], our SE block pays attention to spectra as well

as channels of feature maps.

In our implementation we replaced all 2D convolutions

of Wide-ResNet by 3D convolutions, while keeping the di-

mension of spectral band constant until the last global pool-

ing layer. SE blocks were applied to each residual module.

Concerning the global pooling layer in the SE blocks, only

spatial axes were averaged. At the end of the SE blocks,

weights for each spectral band, as well as each channel of

feature maps, were obtained.

4. Generating synthetic datasets

We need datasets for evaluating the identification perfor-

mance in various types of input data cubes. Therefore, we

provide two types of synthetic multispectral dataset gener-

ating pipelines. One of them is for creating datasets which

include actual hand skin textures. The other is for evalu-

ating performance with a large number of subjects. In this

framework, 1D spectral profiles are converted to 3D data

cubes with measured distributions of skin textures.
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Figure 4. Pipelines of synthetic multispectral skin dataset genera-

tion: We constructed two types of framework. One of them is for

creating datasets which include real hand skin textures. Another is

a framework that converts 1D spectral profiles into 3D data cubes

by incorporating measured distributions of skin.
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Figure 5. Sensor sensitivity characteristics: (a) represents the spec-

tral profile of the acA2500-14gc of Basler AG. (b) shows the spec-

tral profile of the multispectral camera CMS-C of SILIOS Tech-

nologies. Both cameras were used in the experiment described in

Section 6.

4.1. Dataset #1 based on 2D spectral measurement

In order to create this dataset #1, we utilized a 2D spec-

trometer which has been prototyped internally in our affil-

iation. It acquires hyperspectral images in steps of 1 nm

with 168x128 pixel resolution in the visible. 20 hands of

skin from 12 subjects are in the source data and each of

the hands is represented by 18 to 30 hyperspectral images

with various poses. All subjects were Asian males. Here,

we can emulate images according to a sensor specification.

The upper line of Figure 4 shows the pipeline of generat-

ing our skin multispectral dataset #1. In general, an image

capturing system with multiple wavelength channels is rep-

resented by equation 1:

Ic =

∫

700

400

R(λ)L(λ)Sc(λ)dλ+ n (1)

Where Ic means the intensity of spectral band c, λ is the

wavelength over which is integrated and n is the noise. R
is the spectral reflectance of a target in the scene and L is

the spectral distribution of the illumination. Finally, Sc rep-

resents the sensor’s spectral sensitivity of spectral band c.
To acquire the correct reflectance R for each pixel, we had

to normalize the illumination under which we collected the

data. We captured the spectral response of a gray uniform

board whose reflectance is known in advance. Then, we

normalized the skin spectra by using equation 2:

R(λ) = Ms(λ)⊘Mg(λ) (2)

Where Ms and Mg denote the measured data of skin and the

gray board. The symbol ⊘ represents the Kronecker divi-

sion. We mainly assumed a white illumination which has a

flat spectral distribution over all wavelengths as L. With the

sensor spectral sensitivities Sc, we mainly assumed profiles

as shown in Figure 5 (a) and (b) respectively for a multi-

spectral and RGB sensor which were used in actual camera

experiments in Section 6. The final stage of the pipeline

consists of adding sensor noise. We adopted a noise model

described in equation 3 and 4:

Îc(x) = G(Ic(x), sn(x)) (3)

sn(x) = α×

√

Ic(x) (4)

G(m, s) denotes a Gaussian distribution function with a

mean value m and a standard deviation s. Îc(x) indicates

the intensity in a patch image at position x and sn(x) is the

standard deviation of noise. α is a noise scaling coefficient.

We usually set α = 0.25 as a base. In this case, the standard

deviation s becomes 0.78% in a bright region of a 10-bit im-

age. According to the procedure described above, we could

generate a skin dataset #1 which was assumed to be cap-

tured by a multispectral sensor and an RGB sensor. Some

examples of this dataset #1 are shown in our Supplementary

Material.

4.2. Dataset #2 based on large scale spectral profiles

For generating a large scale skin multispectral dataset,

using the pipeline of dataset #1 is a hard task. Especially

collecting the source data with the 2D spectrometer is taking

a lot of time. Therefore, we used the standard object color

spectra database (SOCS) [19] as the source of our dataset.

SOCS contains only 1D skin spectral profiles which were

acquired at a point using a spectrometer. We picked up bare

skin spectral profiles from the forehead of 123 Japanese fe-

males. These profiles are shown in Figure 6. We intended

to generate a skin dataset #2 which was assumed to be cap-

tured by any formats of multispectral sensors. The pipeline

is shown at the bottom of Figure 4. The biggest difference

with the pipeline of dataset #1 is that R in equation1 has

only spectral distributions, but does not have spatial distri-

butions. Hence, we synthesized skin textures based on mea-

surement of real skin. We measured the standard deviation

of real skin sr from the source of dataset #1. This stan-

dard deviation sr is shown in Figure 6 as the yellow band.

Then, we calculated the desired texture pixel number using

equation 5:

R̂(λ) = G(R(λ), sr(λ)) (5)

Here, we could acquire a 3D data cube R̂(λ) as input of

the pipeline. The subsequent procedure is the same as with
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Figure 6. Skin spectral profiles in the SOCS dataset: 123 subjects’

spectral skin profiles were picked up for generating dataset #2.

The wide yellow band means a spatial standard deviations of real

skin. Because distribution among individuals are less than a spatial

distribution, it looks difficult for a human to distinguish the person

from them.

Subject 1 Subject 2 Subject 3 Subject 4 Subject 5 

Figure 7. Samples of synthetic dataset #2: Multispectral data

patches were generated from 1D spectral profiles from the SOCS

dataset. Here, 16×16×3 (RGB) samples are shown. They look

very similar and it seems to be difficult for a human to distinguish

a subject.

Section 4.1. We mainly generated patches with skin texture

having a size of 16x16 pixels, but the size is flexible depend-

ing on a requirement of each experiment. Some samples of

this dataset #2 are shown in Figure 7.

5. Evaluation on synthetic datasets

In this section, we analyzed identification performances

with synthetic datasets which were generated as described

in the previous section. To validate superiority of a multi-

spectral image as input in various aspects, we evaluated on

data trade-off conditions (Section 5.1), different numbers of

classes (Section 5.2) and different noise conditions (Section

5.3). Finally, we compared the performance between 2D

and 3D CNNs including our proposed network architecture

(Section 5.4).

5.1. Data cube tradeoff comparison

In the case of a mosaic-array sensor, the number of spec-

tral bands and the spatial resolution are in a trade-off rela-

tionship, if keeping the amount of data (image width × im-

age height × number of bands) constant. In this experiment,

we evaluated performances among this trade-off conditions.

Experimental setup: We conducted this experiment

with the generation pipeline of dataset #1. At first, 7 types
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Figure 8. Performance comparison under same amount of data:

The amount of data is defined by the multiplication of the num-

ber of spectral bands × the spatial resolution ratio. We evaluated

performances under this trade-off conditions and found that at 16

spectral bands the combination of spectral and spatial information

is optimal.

of multi-band sensors which have respectively 3, 4, 6, 8, 16,

32 and 301 bands were generated. Their sensor sensitivities

were defined by dividing the range 400− 700 nm into their

band numbers equally (whose spectral profiles shaped into

squares). An ideal white illumination was assumed. From

the obtained multispectral images, we cropped 16x16xD

(D=3, 4, 6, 8, 16, 32, 301) data cubes of hand skin re-

gions which have been detected by thresholding in HSV

color space in advance. In order to align the amount of

data among cubes, they were reduced by skip down-scaling

with the ratio
√

3/D from all of their original data amount

of 16x16xD. Finally, sensor noise was added with coeffi-

cient α = 0.25 in equation 4. Then, data cubes were up-

scaled again by filtering for evaluation with the same net-

work. We used the Wide-ResNet [44], which was imple-

mented by [36]. Implementation details with network pa-

rameters are explained in our Supplementary Material. We

split the created dataset into training and evaluation data in

the ratio of 7 to 3. We randomly cropped 500 patches for

each hand from the training data, and in the same manner,

we prepared 215 patches per hand for the evaluation.

Analysis: Figure 8 shows the classification accuracy for

each input. The classification accuracy is increasing with

the number of spectral bands up to 95.7% at 16 bands. Ba-

sically, at 16 spectral bands the combination of spectral and

spatial information is optimal. Even though the maximum

classification accuracy is achievable at 16 spectral bands, 8

bands provide sufficiently good results. Thus, taking into

account the current mutispectral cameras market, we de-

cided to use SILIOS Technologies’ CMS-C multispectral

camera with 8 narrow spectral bands.

5.2. Performance scalability in large scale datasets

We show the scalability of performance related to the

number of classes in the identification.
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Figure 9. Classification accuracy with different number of sub-

jects: The performance gap between RGB and multispectral in-

put becomes larger with an increasing class number. Overall the

identification performance with multispectral input remains more

stable with varying number of classes.

Experimental setup: To facilitate this experiment, we

prepared skin data cubes by utilizing the procedure as de-

scribed in Section 4.2 which was used previously for gener-

ation dataset #2. In this experiment, we intended to emulate

and compare existing sensors, therefore we adopted sensor

sensitivities of the 3-band sensor (Figure 5 (a)) and the 8-

band sensor (Figure 5 (b)). An ideal white illumination was

assumed and the noise level was set to α = 0.5 in equation

4. Then we got 16x16x8 data cubes for the 8-band sensor

and 23x23x3 data cubes for the RGB sensor. Their data

volumes are almost the same when considering the Bayer

pattern [4] in RGB. We prepared sub-datasets with differ-

ent numbers of subjects (16, 32, 64 and 123) based on the

original dataset #2 containing 123 subjects. The number

of patches for each subject were the same in the training

and evaluation. The network architecture and its parameters

were as in the previous experiment explained in Section 5.1.

Analysis: The results of classification accuracy are

shown in Figure 9. In the case of 16 classes, high accuracy

over 99.0% was achieved with both RGB and multispectral

inputs. This means that this dataset with 16 classes might

be simpler than the experiment in Section 5.1. However, the

performance gap between them became larger as the num-

ber of classes increased. The accuracy with multispectral

input was still kept 88.3% even in the case of 123 classes,

though the accuracy with RGB was declined to 72.9%.

5.3. Robustness for noise

We also compared the robustness for sensor noise be-

tween RGB and multispectral input.

Experimental setup: Here, we regenerated dataset #1

with various noise levels. We set the noise scaling coeffi-

cient in equation 4 as α = 0, 0.25, 0.5, 1.0, for creating dif-

ferent levels of noise. We used the same sensor sensitivities

as in Section 5.2. Except for noise and sensor sensitivity,

all other conditions were the same as in the experiment in
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Figure 10. Classification accuracy at different noise levels: As

noise level becomes bigger, the performance gap between with

RGB and with multispectral input becomes larger.

Table 1. Classification accuracy with 2D and 3D based networks
Approach RGB (3 bands) (%) Multispectral (8 bands) (%)

2D CNN [44] 81.0 88.6

3D CNN 80.0 88.0

3D CNN with SE (Ours) 83.2 91.1

Section 5.1. The network, its parameters and training pro-

cedures were also according to Section 5.1.

Analysis: The comparison with different noise levels

is shown in Figure 10. The performance with multispec-

tral input was superior to the one with RGB input at every

noise level. Although both decreased, the performance gap

increased with the noise level. This result implies that spec-

tral information keep contributing to the performance, even

when spatial information is degraded by noise.

5.4. Comparison between 2D and 3D CNNs

In this experiment, we show the performance improve-

ment by our network architecture described in Section 3.

Experimental setup: We used the same dataset with

noise level α = 0.25 which was generated in Section 5.3.

We compared the performances of 2D and 3D convolu-

tions in Wide-ResNet architecture. Then, we evaluated the

effectiveness of the SE-blocks which pay attention to rele-

vant spectral bands.

Analysis: Table 1 shows the results obtained from RGB

and multispectral input with different networks. In the com-

parison between different inputs in 2D CNN, multispectral

input led to 7.6% improvement. However, from the compar-

ison between 2D and 3D convolutions, 3D convolutions did

not enhance the performance for each input. As mentioned

in [20], this might due to the fact that 3D convolutions do

not work well with insufficient number of training data. On

the other hand, our proposal with multispectral input had

2.5% improvement from the 2D CNN. From this result, SE-

blocks enhanced the performance of 3D CNN even with the

insufficient amount of training data. Visualized results are

shown in our Supplementary Material.
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Figure 11. Result on the actual camera dataset of 10 hands: The

first and second columns show the RGB inputs and the prediction

results with 2D CNN. The third and fourth columns show the mul-

tispectral inputs and the prediction results with Ours. For each

prediction result, each color means the predicted class and the la-

bel at the upper-right corner shows the ground truth color.

6. Evaluation on an actual camera dataset

To validate experiments with synthetic data in the pre-

vious section, we did an experiment with an actual camera

setup. We made a real hand skin dataset which was ac-

quired by a multispectral and RGB camera, and compared

the identification performance achieved with each camera

dataset against each other.

6.1. Experimental setup

We used a commercially available multispectral camera,

the CMS-C of SILIOS Technologies, for the image acquisi-

tion. This camera can acquire 8 narrow spectral bands and a

broad monochrome band. In our experiment, we used the 8

color spectral bands only. For the RGB image acquisition,

we used the acA2500-14gc of Basler AG. Both cameras

were synchronized by software with a framerate of about

5 frames per second. Their spectral sensitivities have been

already shown in Figure 5. Other camera specifications and

the experimental setup are explained in our Supplementary

Material. We acquired images of both hands from 5 males,

1 Asian and 4 Caucasians. During the acquisition, the sub-

jects moved their hands freely on the wall which was 0.8

meters away from the cameras. A conventional 100W bulb

was used as a light source. As pre-processing before in-

putting to CNN, illumination normalization represented by

equation 2 were applied to both datasets. In addition to that,

we adjusted the field of view of a pixel by nearest neighbor

resizing and the bit depth between both cameras by round-

ing RGB images. Measured noise levels were correspond-

ing to α = 0.36 in an RGB image and α = 0.43 in a multi-

spectral image on average of spectral bands.

Table 2. Classification accuracy with the actual camera dataset
Approach RGB (3 bands) (%) Multispectral (8 bands) (%)

2D CNN [44] 88.3 91.5

3D CNN 87.9 92.5

3D CNN with SE (Ours) 89.1 93.1

Sub1_L 0.8960 0.0717 0.0164 0.0006 0.0040 0.0012 0.0029 0.0017 0.0040 0.0014 Sub1_L 0.9381 0.0429 0.0153 0.0032 0.0003 0.0000 0.0000 0.0003 0.0000 0.0000

Sub1_R 0.1178 0.6770 0.0288 0.0389 0.0190 0.0568 0.0043 0.0297 0.0107 0.0170 Sub1_R 0.1340 0.7724 0.0063 0.0395 0.0075 0.0277 0.0003 0.0035 0.0032 0.0058

Sub2_L 0.0112 0.0066 0.9309 0.0046 0.0141 0.0061 0.0058 0.0035 0.0084 0.0089 Sub2_L 0.0052 0.0017 0.9821 0.0020 0.0023 0.0003 0.0003 0.0003 0.0043 0.0014

Sub2_R 0.0000 0.0084 0.0144 0.9167 0.0040 0.0193 0.0084 0.0150 0.0023 0.0115 Sub2_R 0.0003 0.0040 0.0144 0.9718 0.0012 0.0049 0.0006 0.0009 0.0000 0.0020

Sub3_L 0.0023 0.0017 0.0092 0.0037 0.8773 0.0444 0.0173 0.0084 0.0135 0.0222 Sub3_L 0.0043 0.0023 0.0115 0.0081 0.8963 0.0346 0.0037 0.0043 0.0187 0.0161

Sub3_R 0.0026 0.0052 0.0017 0.0078 0.0297 0.9009 0.0058 0.0075 0.0049 0.0340 Sub3_R 0.0023 0.0029 0.0029 0.0098 0.0118 0.9490 0.0000 0.0055 0.0023 0.0135

Sub4_L 0.0014 0.0017 0.0167 0.0086 0.0101 0.0023 0.9009 0.0429 0.0075 0.0078 Sub4_L 0.0000 0.0003 0.0003 0.0000 0.0009 0.0000 0.9167 0.0804 0.0014 0.0000

Sub4_R 0.0012 0.0058 0.0058 0.0320 0.0061 0.0078 0.0536 0.8698 0.0046 0.0135 Sub4_R 0.0000 0.0006 0.0012 0.0017 0.0012 0.0012 0.0441 0.9490 0.0003 0.0009

Sub5_L 0.0104 0.0026 0.0098 0.0020 0.0167 0.0072 0.0095 0.0026 0.9124 0.0268 Sub5_L 0.0046 0.0006 0.0017 0.0023 0.0063 0.0026 0.0026 0.0035 0.9614 0.0144

Sub5_R 0.0026 0.0006 0.0009 0.0023 0.0063 0.0213 0.0029 0.0072 0.0052 0.9507 Sub5_R 0.0006 0.0000 0.0000 0.0017 0.0014 0.0176 0.0003 0.0014 0.0049 0.9721
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Figure 12. Confusion matrices comparison between (a) 2D CNN

with RGB input and (b) Ours with multispectral input: More con-

fusion among subjects as well as between hands of a subject are

found in (a). Ours with multispectral input distinguishes among

hands more accurately.

Then, we split images of each hand into training data

and evaluation data in the ratio of 7 to 3. In order to detect

skin pixels, we preprocessed both RGB and multispectral

images by transforming them into the HSV color space and

identified skin pixels by a reference sub-color space. From

the training data, we randomly extracted 8100 patches of

size 16x16 pixels, centered around the detected pixels. In

the same manner, we prepared 3471 patches per hand for

the evaluation. We evaluated the performance with each

input using the same three networks described in Section

5.4.

6.2. Result

Figure 11 shows selected results for comparing between

the 2D CNN with RGB input and our proposed 3D CNN

added SE with multispectral input. Since our goal is to

identify a person from just a small skin area, this perfor-

mance gap is considerable. Table 2 shows the quantita-

tive results obtained from actual RGB and multispectral in-

puts with different networks. When comparing the perfor-

mances between 2D CNN and 3D CNN without SE, mul-

tispectral based performance was improved with more than

eight times the amount of training data to Section 5.4. On

the other hand, RGB based performance was decreased. We

believe that this result comes from 3D convolution, which

benefit more from the relevant spectral information of mul-

tispectral data, and not only from the model capacity in-

crease. We also confirmed that our proposed network led to

more improvement by involving SE-blocks. The final per-

formance gap was 4.8%. When considering the experimen-

tal setup of the class number and noise levels, this result is

reasonable. Figure 12 shows another comparison with con-

fusion matrices. This result also supports our conclusion
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Figure 13. Analysis with Grad-CAM: The center bar graph shows

a histogram of the most contributing spectral band which had the

largest weight in 8 bands. The top plots show skin profiles with

different underlying blood conditions. Bottom the series of images

show some heat map examples of visualization.

that the experimental results with synthetic dataset was val-

idated with the actual dataset.

7. Discussion with network explanation tool

In this section, we reveal the contributing factors to iden-

tification performances with Grad-CAM [31] which is a

technique to produce visual explanations of decisions from

a large class of CNN-based models.

Contribution degree of each spectral band: We can

analyze contributing spectral bands of input. To facilitate

this evaluation, we applied Grad-CAM to the 3D Wide-

ResNet with SE model which was trained in Section 6.

Then, we observed feature maps output from the last resid-

ual block. They had (No. of channels, height, width, No.

of spectral bands) = (512, 4, 4, 8) dimensions and got

weights for each spectral band. Figure 13 shows the his-

togram of the most contributing spectral band. From the

aggregated result, we found that band #5 (center wavelength

λc = 572nm) and #4 (λc = 541nm) contributed more than

other bands. Some Grad-CAM visualizations as heat maps

are shown in the bottom of Figure 13. We can see that the

peak of contribution is located mostly within band #4 and

#5.

Discussion: As shown above, there were significant

bias among contributions of each input spectral bands. The

plots in the top of Figure 13 are quoted from [9]. They

are typical cases of skin reflectance with different condi-

tions of the underlying blood. They indicate cases of high

and low hemoglobin concentration as well as high and low

oxygenation. [9] claims that a skin spectrum shapes into a

“W” curve around 550nm due to underlying blood condi-

tions which are depending on individuals. This is consistent

with our Grad-CAM analysis, showing that spectral bands

of this wavelength region were the most relevant for skin-

based identification. Our 3D CNN with SE architecture en-

hanced the relevant spectral characteristics. Also, it could

learn from the underlying hemoglobin more than other ap-

proaches. We consider that these are the main reasons for

higher performance.

8. Conclusion

In this paper we have presented a novel framework for

skin-based user identification, by combining multispectral

imaging and CNNs. We showed superiority of our ap-

proach, with respect to conventional RGB imaging, when

using the same amount of data. Feasibility of the approach

was demonstrated with synthetic and actual image datasets.

We proposed a novel 3D CNN model which is enhancing

the influence of spectral image data. This paper is the first to

involve SE-blocks for boosting relevant wavelengths. Ad-

ditionally, we developed multispectral image dataset gen-

eration pipelines for finding an optimal shape of spatial-

spectral data cubes.

Limitations and future work: One limitation is that

we do not consider variations in illumination. A solution

would be to add information from a spectrometer which

senses the illumination spectra of a light source in a scene.

Spectrometers recently became affordable devices, making

this approach feasible. Another limitation is that we do not

account for a sudden change of skin color due to sunburn

or coloration by hand cream. Finally, the current work is

restricted to the back-side of the hand. This is mainly due

to the targeted use case scenario of a tabletop device. In

principle, our approach can be also applied to the palm or

other parts of the human body.

Optimizing spectral combinations of a mosaic-array sen-

sor is the most interesting future work. Recently, there

are several proposals which enable to customize capturing

spectral bands such as [42]. We consider that our synthetic

data generation framework and the CNN visualization tech-

nique described in Section 7 are valid for this work. Ad-

ditionally, there should be many spatial clues of personal

identification in infrared spectral bands, although our cur-

rent camera configuration is limited to visible wavelengths

only. We are looking forward to finding the best combina-

tion of bands and extending wavelengths for improving the

performance of our identification framework.
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