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Abstract

Semantic segmentation is a key problem for many com-
puter vision tasks. While approaches based on convolu-
tional neural networks constantly break new records on dif-
ferent benchmarks, generalizing well to diverse testing en-
vironments remains a major challenge. In numerous real
world applications, there is indeed a large gap between
data distributions in train and test domains, which results
in severe performance loss at run-time. In this work, we
address the task of unsupervised domain adaptation in se-
mantic segmentation with losses based on the entropy of the
pixel-wise predictions. To this end, we propose two novel,
complementary methods using (i) an entropy loss and (ii) an
adversarial loss respectively. We demonstrate state-of-the-
art performance in semantic segmentation on two challeng-
ing “synthetic-2-real” set-ups' and show that the approach
can also be used for detection.

1. Introduction

Semantic segmentation is the task of assigning class la-
bels to all pixels in an image. In practice, segmentation
models often serve as the backbone in complex computer
vision systems like autonomous vehicles, which demand
high accuracy in a large variety of urban environments. For
example, under adverse weathers, the system must be able
to recognize roads, lanes, sideways or pedestrians despite
their appearances being largely different from ones in the
training set. A more extreme and important example is
so-called “synthetic-2-real” set-up [31, 30] — training sam-
ples are synthesized by game engines and test samples are
real scenes. Current fully-supervised approaches [23, 47, 2]
have not yet guaranteed a good generalization to arbitrary
test cases. Thus a model trained on one domain, named
as source, usually undergoes a drastic drop in performance
when applied on another domain, named as farget.
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Figure 1: Proposed entropy-based unsupervised domain

adaptation for semantic segmentation. The top two rows show
results on source and target domain scenes of the model trained
without adaptation. The bottom row shows the result on the same
target domain scene of the model trained with entropy-based adap-
tation. The left and right columns visualize respectively the se-
mantic segmentation outputs and the corresponding prediction en-
tropy maps (see text for details).

Unsupervised domain adaptation (UDA) is the field of
research that aims at learning only from source supervi-
sion a well performing model on target samples. Among
the recent methods for UDA, many address the problem by
reducing cross-domain discrepancy, along with the super-
vised training on the source domain. They approach UDA
by minimizing the difference between the distributions of
the intermediate features or of the final outputs for source
and target data respectively. It is done at single [15, 32, 44]
or multiple levels [24, 25] using maximum mean discrep-
ancies (MMD) or adversarial training [10, 42]. Other ap-
proaches include self-training [5 1] to provide pseudo labels
or generative networks to produce target data [ 14, 34, 43].

Semi-supervised learning addresses a closely related
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problem of learning from the data of which only a subset
is annotated. Thus, it inspires several approaches for UDA,
for example, self-training, generative model or class balanc-
ing [49]. Entropy minimization is also one of the successful
approaches used for semi-supervised learning [38].

In this work, we adapt the principle of entropy minimiza-
tion to the UDA task in semantic segmentation. We start
from a simple observation: models trained only on source
domain tend to produce over-confident, i.e., low-entropy,
predictions on source-like images and under-confident, i.e.,
high-entropy, predictions on target-like ones. Such a phe-
nomenon is illustrated in Figure 1. Prediction entropy maps
of scenes from the source domain look like edge detection
results with high entropy activations only along object bor-
ders. On the other hand, predictions on target images are
less certain, resulting in very noisy, high entropy outputs.
We argue that one possible way to bridge the domain gap
between source and target is by enforcing high prediction
certainty (low-entropy) on target predictions as well. To this
end, we propose two approaches: direct entropy minimiza-
tion using an entropy loss and indirect entropy minimization
using an adversarial loss. While the first approach imposes
the low-entropy constraint on independent pixel-wise pre-
dictions, the latter aims at globally matching source and tar-
get distributions in terms of weighted self-information.> We
summarize our contributions as follows:

e For semantic segmentation UDA, we propose to lever-
age an entropy loss to directly penalize low-confident
predictions on target domain. The use of this entropy
loss adds no significant overhead to existing semantic
segmentation frameworks.

e We introduce a novel entropy-based adversarial train-
ing approach targeting not only the entropy minimiza-
tion objective but also the structure adaptation from
source domain to target domain.

e To improve further the performance in specific set-
tings, we suggest two additional practices: (i) train-
ing on specific entropy ranges and (ii) incorporating
class-ratio priors. We discuss practical insights in the
experiments and ablation studies.

The entropy minimization objectives push the model’s de-
cision boundaries toward low-density regions of the tar-
get domain distribution in prediction space. This results
in “cleaner” semantic segmentation outputs, with more re-
fined object edges as well as large ambiguous image re-
gions being correctly recovered, as shown in Figure 1. The
proposed models outperform state-of-the-art approaches
on several UDA benchmarks for semantic segmentation,
in particular the two main synthetic-2-real benchmarks,
GTAS5—Cityscapes and SYNTHIA —Cityscapes.

2Connection to the entropy is discussed in Section 3.

2. Related works

Unsupervised Domain Adaptation is a well researched
topic for the task of classification and detection, with recent
advances in semantic segmentation also. A very appealing
application of domain adaptation is on using synthetic data
for real world tasks. This has encouraged the development
of several synthetic scene projects with associated datasets,
such as Carla [8], SYNTHIA [31], and others [35, 30].

The main approaches for UDA include discrepancy min-
imization between source and target feature distributions
[10, 24, 15, 25, 42], self-training with pseudo-labels [51]
and generative approaches [ 14, 34, 43]. In this work, we are
particularly interested in UDA for the task of semantic seg-
mentation. Therefore, we only review the UDA approaches
for semantic segmentation here (see [7] for a more general
literature review).

Adversarial training for UDA is the most explored ap-
proach for semantic segmentation. It involves two net-
works. One network predicts the segmentation maps for the
input image, which could be from source or target domain,
while another network acts as a discriminator which takes
the feature maps from the segmentation network and tries
to predict domain of the input. The segmentation network
tries to fool the discriminator, thus making the features from
the two domains have a similar distribution. Hoffman et al.
[15] are the first to apply the adversarial approach for UDA
on semantic segmentation. They also have a category spe-
cific adaptation by transferring the label statistics from the
source domain. A similar approach of global and class-wise
alignment is used in [5] with the class-wise alignment being
done using adversarial training on grid-wise soft pseudo-
labels. In [4], adversarial training is used for spatial-aware
adaptation along with a distillation loss to specifically ad-
dress synthetic-2-real domain shift. [16] uses a residual net
to make the source feature maps similar to target’s ones us-
ing adversarial training, the feature maps being then used
for the segmentation task. In [41], the adversarial approach
is used on the output space to benefit from the structural
consistency across domain. [32, 33] propose another inter-
esting way of using adversarial training: They get two pre-
dictions on the target domain image, this is done either by
two classifiers [33] or using dropout in the classifier [32].
Given the two predictions the classifier is trained to max-
imize the discrepancy between the distributions while the
feature extractor part of the network is trained to minimize
it.

Some methods build on generative networks to generate
target images conditioned on the source. Hoffman et al.
[14] propose Cycle-Consistent Adversarial Domain Adap-
tation (CyCADA), in which they adapt at both pixel-level
and feature-level representation. For pixel-level adaptation
they use Cycle-GAN [48] to generate target images condi-
tioned on the source images. In [34], a generative model is
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learned to reconstruct images from the feature space. Then,
for domain adaptation, the feature module is trained to pro-
duce target images on source features and vice-versa using
the generator module. In DCAN [43], channel-wise feature
alignment is used in the generator and segmentation net-
work. The segmentation network is learned on generated
images with the content of the source and style of the target
for which source segmentation map serves as the ground-
truth. The authors in [50] use generative adversarial net-
works (GAN) [11] to align the source and target embed-
dings. Also, they replace the cross-entropy loss by a con-
servative loss (CL) that penalizes the easy and hard cases of
source examples. The CL approach is orthogonal to most
of the UDA methods, including ours: it could benefit any
method that uses cross-entropy for source.

Another approach for UDA is self-training. The idea is
to use the prediction from an ensembled model or a previ-
ous state of model as pseudo-labels for the unlabeled data
to train the current model. Many semi-supervised methods
[20, 39] use self-training. In [51], self-training is employed
for UDA on semantic segmentation which is further ex-
tended with class balancing and spatial prior. Self-training
has an interesting connection to the proposed entropy mini-
mization approach as we discuss in Section 3.1.

Among some other approaches, [26] uses a combination
of adversarial and generative techniques through multiple
losses, [460] combines the generative approach for appear-
ance adaptation and adversarial training for representation
adaptation, and [45] proposes a curriculum-style learning
for UDA by enforcing the consistency on local (superpixel-
level) and global label distributions.

Entropy minimization has been shown to be useful for
semi-supervised learning [12, 38] and clustering [17, 18].
It has also been recently applied on domain adaptation for
classification task [25]. To our knowledge, we are first to
successfully apply entropy based UDA training to obtain
competitive performance on semantic segmentation task.

3. Approaches

In this section, we present our two proposed approaches
for entropy minimization using (i) an unsupervised entropy
loss and (ii) adversarial training. To build our models, we
start from existing semantic segmentation frameworks and
add an additional network branch used for domain adapta-
tion. Figure 2 illustrates our architectures.

Our models are trained with a supervised loss on source
domain. Formally, we consider a set X5 C RHEXWx3
of sources examples along with associated ground-truth
C-class segmentation maps, )V, C (1,C)#*W  Sam-

ple s is a H x W color image and entry y§h7w)

[yéh’“”“)] . of associated map y, provides the label of pixel

(h,w) as one-hot vector. Let F' be a semantic segmen-

tation network which takes an image a and predicts a
C-dimensional “soft-segmentation map” F(x) = P, =
[Pa(:hawvc)]

o By virtue of final softmax layer, each

C-dimensional pixel-wise vector [P,Eh’w’c)]c behaves as
a discrete distribution over classes. If one class stands
out, the distribution is picky (low entropy), if scores are
evenly spread, sign of uncertainty from the network stand-
point, the entropy is large. The parameters 6 of F' are
learned to minimize the segmentation loss Lseq(xs,Ys) =
—SH W ¢yl log P9 on source sam-
ples. In the case of training only on source domain without
domain adaptation, the optimization problem simply reads:

Eé b S 1
I{ol}?n|‘){|wz€;( egwsy) (1)

3.1. Direct entropy minimization

For the target domain, as we do not have the annotations
y; for image samples x; € X}, we cannot use (1) to learn
F. Some methods use the model’s prediction y; as a proxy
for y;. Also, this proxy is used only for pixels where pre-
diction is sufficiently confident. Instead of using the high-
confident proxy, we propose to constrain the model such
that it produces high-confident prediction. We realize this
by minimizing the entropy of the prediction.

We introduce the entropy loss Ly to directly maximize
prediction certainty in the target domain. In this work, we
use the Shannon Entropy [36]. Given a target input image
x4, the entropy map E,, € [0, 1]7*W is composed of the
independent pixel-wise entropies normalized to [0, 1] range:

(hyw) _

Tt

Z Pm(h,w,c) IOg Pw(h,'w,c)7 (2)
log ¢ ¢

at pixel (h,w). An example of entropy map is shown in
Figure 2. The entropy loss L., is defined as the sum of all
pixel-wise normalized entropies:

ZEhw) (3)

During training, we jointly optlmlze the supervised segmen-
tation loss L., on source samples and the unsupervised
entropy loss L., on target samples. The final optimization
problem is formulated as follows:

1 ent
min —— £se Lg, ys Een w 4)
0 |X5|; 9( |Xt| Z t t

with A+ as the weighting factor of the entropy term L.

ent CL’t

Connection to self-training. Pseudo-labeling is a sim-
ple yet efficient approach for semi-supervised learning [21].
Recently, the approach has been applied to UDA in seman-
tic segmentation task with an iterative self-training (ST)
procedure [51]. The ST method assumes that the set K C
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Figure 2: Approach overview. The figure shows our two approaches for UDA. First, direct entropy minimization minimizes the entropy
of the target P,, which is equivalent to minimizing the sum of weighted self-information maps I,. In the second, complementary
approach, we use adversarial training to enforce the consistency in I, across domains. Red arrows are used for target domain and blue

arrows for source. An example of entropy map is shown for illustration.

(1, H) x (1, W) of high-scoring pixel-wise predictions on
target samples are correct with high probability. Such an as-
sumption allows the use of cross-entropy loss with pseudo-
labels on target predictions. In practice, K is constructed
by selecting high-scoring pixels with a fixed or scheduled
threshold. To draw a link with entropy minimization, we
write the training problem of the ST approach as:

1 Apl
min — Ese Ls,Ys + BB ﬁse L, ] ) (5)
br || wzs g( Ys) EA ; g( t yt)

where y; is the one-hot class prediction for a; and with:

C
Lseg(Tt,Yt) = — Z Zﬁt(h’w’c)logPé?’w’c). (6)
(h,w)eK c=1

Comparing equations (2-3) and (6), we note that our entropy
loss Lent(x1) can be seen as a soft-assignment version of
the pseudo-label cross-entropy loss Lgseq(xs, Y:). Differ-
ent to ST [51], our entropy-based approach does not re-
quire a complex scheduling procedure for choosing thresh-
old. Even, contrary to ST assumption, we show in Sec-
tion 4.3 that, in some cases, training on the “hard” or “most-
confused” pixels produces better performance.

3.2. Minimizing entropy with adversarial learning

The entropy loss for an input image is defined in equa-
tion (3) as the sum of independent pixel-wise prediction en-
tropies. Therefore, a mere minimization of this loss neglects
the structural dependencies between local semantics. As
shown in [41], for UDA in semantic segmentation, adapta-
tion on structured output space is beneficial. It is based on
the fact that source and target domain share strong similari-
ties in semantic layout.

In this part, we introduce a unified adversarial train-
ing framework which indirectly minimizes the entropy by
having target’s entropy distribution similar to the source.
This allows the exploitation of the structural consistency be-
tween the domains. To this end, we formulate the UDA task
as minimizing distribution distance between source and tar-
get on the weighted self-information space. Figure 2 illus-
trates our adversarial learning procedure. Our adversarial
approach is motivated by the fact that the trained model nat-
urally produces low-entropy predictions on source-like im-
ages. By aligning weighted self-information distributions
of target and source domains, we indirectly minimize the
entropy of target predictions. Moreover, as the adaptation
is done on the weighted self-information space, our model
leverages structural information from source to target.

In detail, given a pixel-wise predicted class score
P9 the self-information or “surprisal” [40] is de-
fined as —log Pg(;h’w’c). Effectively, the entropy E;h’w)
in (2) is the expected value of the self-information
E.[—log P;Eh’w’c)]. We here perform adversarial adaptation
on weighted self-information maps I, composed of pixel-
level vectors IJ"") = — p{hw) -log P 3 Such vectors
can be seen as the disentanglement of the Shannon Entropy.
We then construct a fully-convolutional discriminator net-
work D with parameters 6 taking I, as input and that pro-
duces domain classification outputs, i.e., class label 1 (resp.
0) for the source (resp. target) domain. Similar to [11], we
train the discriminator to discriminate outputs coming from
source and target images, and at the same time, train the
segmentation network to fool the discriminator. In detail,

3 Abusing notations, -> and ’log’ stand for Hadamard product and
point-wise logarithm respectively.
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let Lp the cross-entropy domain classification loss. The
training objective of the discriminator is:

1
mln L — Lp(Ig,,0), (7
i \X|Z p( |Xt|; ol ), (D

and the adversarial objective to train the segmentation net-
work is:

Lp(I,,,1). 8
rg;n‘Xt|Z Dl 3

Combining (1) and (8), we derive the optimization problem

mmmzjﬁw s, Ys) ‘jjTZL:D L,.1), ©

with the weighting factor A4, for the adversarial term Lp.
During training, we alternatively optimize networks D and
F' using objective functions in (7) and (9).

3.3. Incorporating class-ratio priors

Entropy minimization can get biased towards some easy
classes. Therefore, sometimes it is beneficial to guide the
learning with some prior. To this end, we use a simple
class-prior based on the distribution of the classes over the
source labels. We compute the class-prior vector ps as a
{1-normalized histogram of number of pixels per class over
the source labels. Now based on the predicted P, , too large
discrepancy between the expected probability for any class
and class-prior p; is penalized, using

cp wt Zmax 0 Mp EC(P:I(::)))a (10)

where 11 € [0, 1] is used to relax the class prior constraint.
This addresses the fact that class distribution on a single
target image is not necessarily close to ps.

4. Experiments

In this section, we present our experimental results. Sec-
tion 4.1 introduces the used datasets as well as our training
parameters. In Section 4.2 and Section 4.3, we report and
discuss our main results. In Section 4.3, we discuss a pre-
liminary result on entropy-based UDA for detection.

4.1. Experimental details

Datasets. To evaluate our approaches, we use the chal-
lenging synthetic-2-real unsupervised domain adaptation
set-ups. Models are trained on fully-annotated synthetic
data and are validated on real-world data. In such set-ups,
the models have access to some unlabeled real images dur-
ing training. To train our models, we use either GTAS [30]
or SYNTHIA [31] as source domain synthetic data, along
with the training split of Cityscapes dataset [0] as target do-
main data. Similar set-ups have been previously used in
other works [15, 14, 41, 51]. In detail:

e GTA5—Cityscapes: The GTAS dataset consists of
24,966 synthesized frames captured from a video
game. Images are provided with pixel-level semantic
annotations of 33 classes. Similar to [15], we use the
19 classes in common with the Cityscapes dataset.

e SYNTHIA—Cityscapes: We use the SYNTHIA-
RAND-CITYSCAPES set* with 9,400 synthesized
images for training. We train our models with 16 com-
mon classes in SYNTHIA and Cityscapes. While eval-
uating we compare the performance on 16- and 13-
class subsets following the protocol used in [51].

In both set-ups, 2,975 unlabeled Cityscapes images are
used for training. We measure segmentation performance
with the standard mean-Intersection-over-Union (mloU)
metric [9]. Evaluation is done on the 500 validation images.

Network architectures. We use Deeplab-V2 [2] as the
base semantic segmentation architecture F'. To better cap-
ture the scene context, Atrous Spatial Pyramid Pooling
(ASPP) is applied on the last layer’s feature output. Sam-
pling rates are fixed as {6, 12, 18, 24}, similar to the ASPP-
L model in [2]. We experiment on the two different
base deep CNN architectures: VGG-16 [37] and ResNet-
101 [13]. Following [2], we modify the stride and dilation
rate of the last layers to produce denser feature maps with
larger field-of-views. To further improve performance on
ResNet-101, we perform adaptation on multi-level outputs
coming from both conv4 and conv5 features [41].

The adversarial network D introduced in Section 3.2
has the same architecture as the one used in DCGAN [28].
Weighted self-information maps I, are forwarded through 4
convolutional layers, each coupled with a leaky-ReLU layer
with a fixed negative slope of 0.2. At the end, a classifier
layer produces classification outputs, indicating if the inputs
correspond to source or target domain.

Implementation details. We employ PyTorch deep learn-
ing framework [27] in the implementations. All experi-
ments are done on a single NVIDIA 1080TI GPU with 11
GB memory. Our model, except the adversarial discrim-
inator mentioned in Section 3.2, is trained using Stochas-
tic Gradient Descent optimizer [ ] with learning rate 2.5 x
10~4, momentum 0.9 and weight decay 10~4. We use
Adam optimizer [19] with learning rate 10~* to train the
discriminator. To schedule the learning rate, we follow the
polynomial annealing procedure mentioned in [2].
Weighting factors of entropy and adversarial losses: To
set the weight for L., the training set performance pro-
vides important indications. If A.,,; is large then the entropy
drops too quickly and the model is strongly biased towards
a few classes. When ).+ is chosen in a suitable range how-
ever, the performance is better and not sensitive to the pre-

4A split of the SYNTHIA dataset [31] using compatible labels with the
Cityscapes dataset.
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(a) GTAS — Cityscapes

5 2 -
= = © g . o]
Models <& é {E _!é :§ g Lé. Eﬂ gﬂ éﬂ ﬂ..g) % é’. 'Fq'é § g é é é ﬁ; mloU
FCNs in the Wild [15] Adv | 704 324 621 149 54 109 142 27 792 213 646 441 42 704 80 73 00 35 0.0 |27.1
CyCADA [14] Adv | 835 383 764 206 165 222 262 219 804 287 657 494 42 746 160 2066 20 80 0.0 |348
Adapt-SegMap [41] Adv | 873 29.8 786 21.1 182 225 215 11.0 79.7 296 713 468 65 80.1 230 269 00 106 0.3 |350
Self-Training [51] ST | 838 174 721 143 29 165 160 6.8 814 242 472 407 76 717 102 76 05 11.1 09 |28.1
Self-Training + CB [51] | ST | 66.7 26.8 73.7 148 95 283 259 10.1 755 157 51.6 472 62 719 37 22 54 189 324|309
Ours (MinEnt) Ent | 85.1 189 763 324 197 199 210 89 763 262 63.1 428 59 808 202 98 00 148 0.6 |32.8
Ours (AdvEnt) Adv | 869 287 787 285 252 17.1 203 109 80.0 264 702 47.1 84 815 260 172 189 11.7 1.6 |36.1
Adapt-SegMap [41] Adv | 865 360 799 234 233 239 352 148 834 333 756 585 27.6 737 325 354 39 30.1 281|424
Adapt-SegMap* Adv | 855 184 808 29.1 246 279 331 209 838 312 750 575 286 773 323 309 1.1 287 359|422
Ours (MinEnt) Ent | 844 187 80.6 238 232 284 369 234 832 252 794 590 299 785 337 296 1.7 299 336|423
Ours (MinEnt + ER) Ent | 842 252 77.0 17.0 233 242 333 264 807 321 787 575 300 77.0 379 443 1.8 314 369 |43.1
Ours (AdvEnt) Adv | 89.9 365 81.6 292 252 285 323 224 839 340 77.1 574 279 837 294 39.1 15 284 233|438
Ours (AdvEnt+MinEnt) | A+E | 89.4 33.1 81.0 26.6 26.8 272 335 247 839 367 788 587 305 848 385 445 1.7 31.6 324|455
(b) SYNTHIA — Cityscapes
5 2
= : 5 - 3 . g 3 2

Models <& é '-qg) :5: § E‘ lé Eﬁ go c‘i’u Mj ?g % § é -g % mloU|mloU*

FCNs in the Wild [15] Adv | 115 196 308 44 00 203 01 117 423 687 512 38 540 32 02 06 [202] 221

Adapt-SegMap [41] Adv | 789 292 755 - - - 0.1 48 726 767 434 88 71.1 160 36 84 - 37.6

Self-Training [51] ST | 02 145 538 16 00 189 09 7.8 722 803 481 63 677 47 02 45 |239] 278

Self-Training + CB [51] | ST | 69.6 287 69.5 121 0.1 254 119 13.6 82.0 819 49.1 145 66.0 6.6 3.7 324 |354] 36.1

Ours (MinEnt) Ent | 378 182 658 20 00 155 00 00 76 739 457 113 666 133 15 13.1|275]| 325

Ours (MinEnt + CP) Ent | 459 196 658 53 02 207 21 82 744 767 475 122 711 228 45 92 |304| 354

Ours (AdvEnt + CP) Adv | 679 294 719 63 03 199 06 26 749 749 354 96 678 214 4.1 155|314 36.6

Adapt-SegMap [41] Adv | 843 427 715 - - - 47 70 779 825 543 210 723 322 189 323 | - 46.7

Adapt-SegMap* [41] Adv | 81.7 39.1 784 11.1 03 258 6.8 9.0 79.1 808 548 21.0 668 347 13.8 299 |39.6| 458

Ours (MinEnt) Ent | 735 292 771 77 02 270 7.1 114 767 821 572 213 694 292 129 279 |38.1| 442

Ours (AdvEnt) Adv | 87.0 441 797 96 0.6 243 48 72 80.1 836 564 237 727 326 128 33.7 |40.8| 47.6

Ours (AdvEnt+MinEnt) | A+E | 85.6 422 797 87 04 259 54 81 804 841 579 238 733 364 142 330|412 48.0

Table 1: Semantic segmentation performance mIoU (%) on Cityscapes validation set of models trained on GTAS5 (a) and SYNTHIA
(b). We show results of our approaches using the direct entropy loss (MinEnt) and using adversarial training (AdvEnt). In each subtable, top
and bottom parts correspond to VGG-16-based and ResNet-101-based models respectively. The “Adapt-SegMap*” denotes our retrained

model of [

cise value. Thus, we use the same A.,; = 0.001 for all
our experiments regardless of the network or the dataset.
Similar arguments hold for the weight A\,4, in (9). We fix
Aady = 0.001 in all experiments.

4.2. Results

We present experimental results of our approaches com-
pared to different baselines. Our models achieve state-of-
the-art performance in the two UDA benchmarks. In what
follows, we show different behaviors of our approaches in
different settings, i.e., training sets and base CNNss.

GTAS—Cityscapes: We report in Table l-a semantic
segmentation performance in terms of mloU (%) on
Cityscapes validation set. Our first approach of direct
entropy minimization, termed as MinEnt in Table 1-a,
achieves comparable performance to state-of-the-art base-

]. The abbreviations “Adv”, “ST” and “Ent” stand for adversarial training, self-training and entropy minimization approaches.

lines on both VGG-16 and ResNet-101-based CNNs. The
MinEnt outperforms Self-Training (ST) approach without
and with class-balancing [51]. Compared to [41], the
ResNet-101-based MinEnt shows similar results but with-
out resorting to the training of a discriminator network. The
light overhead of the entropy loss makes training time much
less for the MinEnt model. Another advantage of our en-
tropy approach is the ease of training. Indeed, training ad-
versarial networks is generally known as a difficult task due
to its instability. We observed a more stable behavior train-
ing models with the entropy loss.

Interestingly, we find that in some cases, only applying
entropy loss on certain ranges works best. Such a phe-
nomenon is observed with the ResNet-101-based models.
Indeed, we get a better model by training on pixels having
entropy values within the top 30% of each target sample.
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The model is termed as MinEnt+ER in Table 1-a. We obtain
43.1% mloU using this strategy on the GTA5—Cityscapes
set-up. More details are given in Section 4.3.

Our second approach using adversarial training on the
weighted self-information space, noted as AdvEnt, shows
consistent improvement to the baselines on the two base
networks. In general, AdvEnt works better than MinEnt.
On the GTAS—Cityscapes UDA set-up, AdvEnt achieves
state-of-the-art mIoU of 43.8. Such results confirm our in-
tuition on the importance of structural adaptation. With the
VGG-16-based network, adaptation on the weighted self-
information space brings +3.3% mloU improvement com-
pared to the direct entropy minimization. With the ResNet-
101-based network, the improvement is less, ie., +1.5%
mloU. We conjecture that, as GTAS semantic layouts are
very similar to ones in Cityscapes, the segmentation net-
work F' with high capacity base CNN like ResNet-101 is
capable of learning some spatial priors from the supervi-
sion on source samples. As for lower-capacity base model
like VGG-16, an additional regularization on the structured
space with adversarial training is more beneficial.

By combining results of the two models MinEnt and Ad-
vEnt, we observe a decent boost in performance, compared
to results of single models. The ensemble achieves 45.5%
mloU on the Cityscape validation set. Such a result indi-
cates that complementary information are learned by the
two models. Indeed, while the entropy loss penalizes in-
dependent pixel-level predictions, the adversarial loss oper-
ates more on the image-level, i.e., scene topology. Similar
to [41], for a more meaningful comparison to other UDA
approaches, in Table 2-a we show the performance gap be-
tween UDA models and the oracle, i.e., the model trained
with full supervision on the Cityscapes training set. Com-
pared to models trained by other methods, our single and
ensemble models have smaller mloU gaps to the oracle.

In Figure 3, we illustrate some qualitative results of our
models. Without domain adaptation, the model trained only
on source supervision produces noisy segmentation predic-
tions as well as high entropy activations, with a few excep-
tions on some classes like “building” and “car”. Still, there
exist many confident predictions (low entropy) which are
completely wrong. Our models, on the other hand, manage
to produce correct predictions at high level of confidence.
We observe that overall, the AdvEnt model achieves lower
prediction entropy compared to the MinEnt model.

SYNTHIA —Cityscapes: Table 1-b shows results on
the 16- and 13-class subsets of the Cityscapes validation
set. We notice that scene images in SYNTHIA cover more
diverse viewpoints than the ones in GTAS and Cityscape.
This results in different behaviors of our approaches.

On the VGG-16-based network, the MinEnt model
shows comparable results to state-of-the-art methods. Com-
pared to Self-Training [51], our model achieves +3.6%

(a) GTAS — Cityscapes

Method UDA Model  Oracle  mloU Gap (%)
FCNs in the Wild [15] 27.1 64.6 -37.5
CyCADA [14] 28.9 60.3 -31.4
Adapt-SegNet [41] 35.0 61.8 -26.8
Ours (single model) 36.1 61.8 -25.7
Adapt-SegNet [41] 424 65.1 -22.7
Ours (single model) 43.8 65.1 -21.3
Ours (two models) 45.5 65.1 -19.6
(b) SYNTHIA — Cityscapes
Method UDA Model  Oracle  mloU Gap (%)
FCNs in the Wild [15] 229 73.8 -50.9
Adapt-SegNet [41] 37.6 68.4 -30.8
Ours (single model) 36.6 68.4 -31.8
Adapt-SegNet [41] 46.7 71.7 -25.0
Ours (single model) 47.6 T1.7 -24.1
Ours (two models) 48 71.7 -23.7

Table 2: Performance gap between UDA models and the or-
acle in GTA5S—Cityscapes and SYNTHIA—Cityscapes setups.
Top and bottom parts of each table correspond to VGG-16-based
and ResNet-101-based models respectively.

and +4.7% on 16- and 13- class subsets respectively. How-
ever, compared to stronger baselines like the class-balanced
self-training, we observe a significant drop in class “road”.
We argue that it is due to the large layout gaps between
SYNTHIA and Cityscapes. To target this issue, we incor-
porate the class-ratio priors from source domain, as intro-
duced in Section 3.3. By constraining target output dis-
tribution using class-ratio priors, noted as CP in Table 1-
b, we improve MinEnt by +2.9% mlIoU on both 16- and
13- class subsets. With adversarial training, we have an
additional ~ +1% mloU. On the ResNet-101-based net-
work, the AdvEnt model achieves state-of-the-art perfor-
mance. Compared to the retrained model of [41], i.e.,
Adapt-SegMap*, the AdvEnt improves the mloUs on 16-
and 13- class subsets by +1.2% and +1.8%.

Consistent with the GTAS results above, the ensemble of
the two models MinEnt and AdvEnt trained on SYNTHIA
achieves the best mIoU of 41.2% and 48.0% on 16- and
13- class subsets respectively. According to Table 2-b, our
models have the smallest mloU gaps to the oracle.

4.3. Discussion

The experimental results shown in Section 4.2 have vali-
dated the advantages of our approaches. To further push the
performance, we proposed two different ways to regularize
the training in two particular settings. This section discusses
our experimental choices and explain the intuitions behind.

GTAS5—Cityscapes: Training on specific entropy
ranges. In this setup, we observe that the performance of
model MinEnt using ResNet-101-based network can be im-
proved by training on target pixels having entropy values in
a specific range. Interestingly, the best MinEnt model was
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(d) AdvEnt

Figure 3: Qualitative results in the GTA5— Cityscapes set-up. Column (a) shows a input image and the corresponding semantic
segmentation ground-truth. Column (b), (c) and (d) show segmentation results (bottom) along with prediction entropy maps produced by

different approaches (top). Best viewed in colors.

Cityscapes — Cityscapes Foggy

= ) 2]

z 5 . % 4 £ 3z 2
Models & ® § & 2 £ E 3 |map
SSD-300 150 174 272 57 151 91 110 167 | 147
Ours (MinEnt) 158 220 283 50 152 150 13.0 20.6 | 169
Ours (AdvEnt) 17.6 250 39.6 200 37.1 259 213 23.1 | 26.2

Table 3: Detection performance on Cityscapes Foggy.

trained on the top 30% highest-entropy pixels on each tar-
get sample — gaining 0.8% mloU over the vanilla model.
We note that high-entropy pixels are the “most confusing”
ones, i.e., where the segmentation model is indecisive be-
tween multiple classes. One reason is that the ResNet-101-
based model generalizes well in this particular setting. Ac-
cordingly, among the “most confusing” predictions, there is
a decent amount of correct but “low confident” ones. Mini-
mizing the entropy loss on such a set still drives the model
toward the desirable direction. This assumption, however,
does not hold for the VGG-16-based model.

SYNTHIA — Cityscapes: Using class-ratio prior. As
discussed before, SYNTHIA has significantly different lay-
out and viewpoints than Cityscapes. This disparity can
cause very bad prediction for some classes, which is then
further encouraged with minimization of entropy or their
use as label proxy in self-training. Thus, it can lead to strong
class biases or, in extreme cases, to missing some classes
completely in the target domain. Adding class-ratio prior
encourages the presence of all the classes and thus helps
avoid such degenerate solutions. As mentioned in Sec. 3.3,
we use u to relax the source class-ratio prior, for example
© = 0 means no prior while ;4 = 1 implies enforcing ex-
act class-ratio prior. Having 1 = 1 is not ideal as it means
that each target image should follow the class-ratio from the
source domain. We choose p = 0.5 to let the target class-
ratio to be somewhat different from the source.

Application on UDA for object detection. The proposed
entropy-based approaches are not limited to semantic seg-
mentation and can be applied to UDA for other recognition

(b) AdvEnt

Figure 4: Qualitative detection results on Cityscapes Foggy.

tasks like object detection. We conducted experiments in
the UDA object detection set-up Cityscapes— Cityscapes-
Foggy, similar to the one in [3]. A straight-forward appli-
cation of the entropy loss and of the adversarial loss to the
existing detection architecture SSD-300 [22] significantly
improves detection performance over the baseline model
trained only on source. In terms of mean-average-precision
(mAP), compared to the baseline performance of 14.7%,
the MinEnt and AdvEnt models attain mAPs of 16.9% and
26.2%. In [3], the authors report a slightly better perfor-
mance of 27.6% mAP, using Faster-RCNN [29], a more
complex detection architecture than ours. We note that our
detection system was trained and tested on images at lower
resolution, i.e., 300 x 300. Despite these unfavorable fac-
tors, our improvement to the baseline (+11.5% mAP us-
ing AdvEnt) is larger than the one reported in [3] (+8.8%).
Such a preliminary result suggests the possibility of apply-
ing entropy-based approaches on UDA for detection. Ta-
ble 3 reports the per-class IoU and Figure 4 shows qualita-
tive results of the approaches on Cityscapes Foggy.

5. Conclusion

In this work, we address the task of unsupervised domain
adaptation for semantic segmentation and propose two com-
plementary entropy-based approaches. Our models achieve
state-of-the-art on the two challenging “synthetic-2-real”
benchmarks. The ensemble of the two models improves
the performance further. On UDA for object detection, we
show a promising result and believe that the performance
can get better using more robust detection architectures.
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