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Abstract

Semantic segmentation is a key problem for many com-

puter vision tasks. While approaches based on convolu-

tional neural networks constantly break new records on dif-

ferent benchmarks, generalizing well to diverse testing en-

vironments remains a major challenge. In numerous real

world applications, there is indeed a large gap between

data distributions in train and test domains, which results

in severe performance loss at run-time. In this work, we

address the task of unsupervised domain adaptation in se-

mantic segmentation with losses based on the entropy of the

pixel-wise predictions. To this end, we propose two novel,

complementary methods using (i) an entropy loss and (ii) an

adversarial loss respectively. We demonstrate state-of-the-

art performance in semantic segmentation on two challeng-

ing “synthetic-2-real” set-ups1 and show that the approach

can also be used for detection.

1. Introduction

Semantic segmentation is the task of assigning class la-

bels to all pixels in an image. In practice, segmentation

models often serve as the backbone in complex computer

vision systems like autonomous vehicles, which demand

high accuracy in a large variety of urban environments. For

example, under adverse weathers, the system must be able

to recognize roads, lanes, sideways or pedestrians despite

their appearances being largely different from ones in the

training set. A more extreme and important example is

so-called “synthetic-2-real” set-up [31, 30] – training sam-

ples are synthesized by game engines and test samples are

real scenes. Current fully-supervised approaches [23, 47, 2]

have not yet guaranteed a good generalization to arbitrary

test cases. Thus a model trained on one domain, named

as source, usually undergoes a drastic drop in performance

when applied on another domain, named as target.

1Code available at https://github.com/valeoai/ADVENT.

Figure 1: Proposed entropy-based unsupervised domain

adaptation for semantic segmentation. The top two rows show

results on source and target domain scenes of the model trained

without adaptation. The bottom row shows the result on the same

target domain scene of the model trained with entropy-based adap-

tation. The left and right columns visualize respectively the se-

mantic segmentation outputs and the corresponding prediction en-

tropy maps (see text for details).

Unsupervised domain adaptation (UDA) is the field of

research that aims at learning only from source supervi-

sion a well performing model on target samples. Among

the recent methods for UDA, many address the problem by

reducing cross-domain discrepancy, along with the super-

vised training on the source domain. They approach UDA

by minimizing the difference between the distributions of

the intermediate features or of the final outputs for source

and target data respectively. It is done at single [15, 32, 44]

or multiple levels [24, 25] using maximum mean discrep-

ancies (MMD) or adversarial training [10, 42]. Other ap-

proaches include self-training [51] to provide pseudo labels

or generative networks to produce target data [14, 34, 43].

Semi-supervised learning addresses a closely related
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problem of learning from the data of which only a subset

is annotated. Thus, it inspires several approaches for UDA,

for example, self-training, generative model or class balanc-

ing [49]. Entropy minimization is also one of the successful

approaches used for semi-supervised learning [38].

In this work, we adapt the principle of entropy minimiza-

tion to the UDA task in semantic segmentation. We start

from a simple observation: models trained only on source

domain tend to produce over-confident, i.e., low-entropy,

predictions on source-like images and under-confident, i.e.,

high-entropy, predictions on target-like ones. Such a phe-

nomenon is illustrated in Figure 1. Prediction entropy maps

of scenes from the source domain look like edge detection

results with high entropy activations only along object bor-

ders. On the other hand, predictions on target images are

less certain, resulting in very noisy, high entropy outputs.

We argue that one possible way to bridge the domain gap

between source and target is by enforcing high prediction

certainty (low-entropy) on target predictions as well. To this

end, we propose two approaches: direct entropy minimiza-

tion using an entropy loss and indirect entropy minimization

using an adversarial loss. While the first approach imposes

the low-entropy constraint on independent pixel-wise pre-

dictions, the latter aims at globally matching source and tar-

get distributions in terms of weighted self-information.2 We

summarize our contributions as follows:

• For semantic segmentation UDA, we propose to lever-

age an entropy loss to directly penalize low-confident

predictions on target domain. The use of this entropy

loss adds no significant overhead to existing semantic

segmentation frameworks.

• We introduce a novel entropy-based adversarial train-

ing approach targeting not only the entropy minimiza-

tion objective but also the structure adaptation from

source domain to target domain.

• To improve further the performance in specific set-

tings, we suggest two additional practices: (i) train-

ing on specific entropy ranges and (ii) incorporating

class-ratio priors. We discuss practical insights in the

experiments and ablation studies.

The entropy minimization objectives push the model’s de-

cision boundaries toward low-density regions of the tar-

get domain distribution in prediction space. This results

in “cleaner” semantic segmentation outputs, with more re-

fined object edges as well as large ambiguous image re-

gions being correctly recovered, as shown in Figure 1. The

proposed models outperform state-of-the-art approaches

on several UDA benchmarks for semantic segmentation,

in particular the two main synthetic-2-real benchmarks,

GTA5→Cityscapes and SYNTHIA→Cityscapes.

2Connection to the entropy is discussed in Section 3.

2. Related works

Unsupervised Domain Adaptation is a well researched

topic for the task of classification and detection, with recent

advances in semantic segmentation also. A very appealing

application of domain adaptation is on using synthetic data

for real world tasks. This has encouraged the development

of several synthetic scene projects with associated datasets,

such as Carla [8], SYNTHIA [31], and others [35, 30].

The main approaches for UDA include discrepancy min-

imization between source and target feature distributions

[10, 24, 15, 25, 42], self-training with pseudo-labels [51]

and generative approaches [14, 34, 43]. In this work, we are

particularly interested in UDA for the task of semantic seg-

mentation. Therefore, we only review the UDA approaches

for semantic segmentation here (see [7] for a more general

literature review).

Adversarial training for UDA is the most explored ap-

proach for semantic segmentation. It involves two net-

works. One network predicts the segmentation maps for the

input image, which could be from source or target domain,

while another network acts as a discriminator which takes

the feature maps from the segmentation network and tries

to predict domain of the input. The segmentation network

tries to fool the discriminator, thus making the features from

the two domains have a similar distribution. Hoffman et al.

[15] are the first to apply the adversarial approach for UDA

on semantic segmentation. They also have a category spe-

cific adaptation by transferring the label statistics from the

source domain. A similar approach of global and class-wise

alignment is used in [5] with the class-wise alignment being

done using adversarial training on grid-wise soft pseudo-

labels. In [4], adversarial training is used for spatial-aware

adaptation along with a distillation loss to specifically ad-

dress synthetic-2-real domain shift. [16] uses a residual net

to make the source feature maps similar to target’s ones us-

ing adversarial training, the feature maps being then used

for the segmentation task. In [41], the adversarial approach

is used on the output space to benefit from the structural

consistency across domain. [32, 33] propose another inter-

esting way of using adversarial training: They get two pre-

dictions on the target domain image, this is done either by

two classifiers [33] or using dropout in the classifier [32].

Given the two predictions the classifier is trained to max-

imize the discrepancy between the distributions while the

feature extractor part of the network is trained to minimize

it.

Some methods build on generative networks to generate

target images conditioned on the source. Hoffman et al.

[14] propose Cycle-Consistent Adversarial Domain Adap-

tation (CyCADA), in which they adapt at both pixel-level

and feature-level representation. For pixel-level adaptation

they use Cycle-GAN [48] to generate target images condi-

tioned on the source images. In [34], a generative model is
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learned to reconstruct images from the feature space. Then,

for domain adaptation, the feature module is trained to pro-

duce target images on source features and vice-versa using

the generator module. In DCAN [43], channel-wise feature

alignment is used in the generator and segmentation net-

work. The segmentation network is learned on generated

images with the content of the source and style of the target

for which source segmentation map serves as the ground-

truth. The authors in [50] use generative adversarial net-

works (GAN) [11] to align the source and target embed-

dings. Also, they replace the cross-entropy loss by a con-

servative loss (CL) that penalizes the easy and hard cases of

source examples. The CL approach is orthogonal to most

of the UDA methods, including ours: it could benefit any

method that uses cross-entropy for source.

Another approach for UDA is self-training. The idea is

to use the prediction from an ensembled model or a previ-

ous state of model as pseudo-labels for the unlabeled data

to train the current model. Many semi-supervised methods

[20, 39] use self-training. In [51], self-training is employed

for UDA on semantic segmentation which is further ex-

tended with class balancing and spatial prior. Self-training

has an interesting connection to the proposed entropy mini-

mization approach as we discuss in Section 3.1.

Among some other approaches, [26] uses a combination

of adversarial and generative techniques through multiple

losses, [46] combines the generative approach for appear-

ance adaptation and adversarial training for representation

adaptation, and [45] proposes a curriculum-style learning

for UDA by enforcing the consistency on local (superpixel-

level) and global label distributions.

Entropy minimization has been shown to be useful for

semi-supervised learning [12, 38] and clustering [17, 18].

It has also been recently applied on domain adaptation for

classification task [25]. To our knowledge, we are first to

successfully apply entropy based UDA training to obtain

competitive performance on semantic segmentation task.

3. Approaches

In this section, we present our two proposed approaches

for entropy minimization using (i) an unsupervised entropy

loss and (ii) adversarial training. To build our models, we

start from existing semantic segmentation frameworks and

add an additional network branch used for domain adapta-

tion. Figure 2 illustrates our architectures.

Our models are trained with a supervised loss on source

domain. Formally, we consider a set Xs ⊂ R
H×W×3

of sources examples along with associated ground-truth

C-class segmentation maps, Ys ⊂ (1, C)H×W . Sam-

ple xs is a H × W color image and entry y
(h,w)
s =

[

y
(h,w,c)
s

]

c
of associated map ys provides the label of pixel

(h,w) as one-hot vector. Let F be a semantic segmen-

tation network which takes an image x and predicts a

C-dimensional “soft-segmentation map” F (x) = Px =
[

P
(h,w,c)
x

]

h,w,c
. By virtue of final softmax layer, each

C-dimensional pixel-wise vector
[

P
(h,w,c)
x

]

c
behaves as

a discrete distribution over classes. If one class stands

out, the distribution is picky (low entropy), if scores are

evenly spread, sign of uncertainty from the network stand-

point, the entropy is large. The parameters θF of F are

learned to minimize the segmentation loss Lseg(xs,ys) =

−
∑H

h=1

∑W

w=1

∑C

c=1 y
(h,w,c)
s logP

(h,w,c)
xs

on source sam-

ples. In the case of training only on source domain without

domain adaptation, the optimization problem simply reads:

min
θF

1

|Xs|

∑

xs∈Xs

Lseg(xs,ys). (1)

3.1. Direct entropy minimization

For the target domain, as we do not have the annotations

yt for image samples xt ∈ Xt, we cannot use (1) to learn

F . Some methods use the model’s prediction ŷt as a proxy

for yt. Also, this proxy is used only for pixels where pre-

diction is sufficiently confident. Instead of using the high-

confident proxy, we propose to constrain the model such

that it produces high-confident prediction. We realize this

by minimizing the entropy of the prediction.

We introduce the entropy loss Lent to directly maximize

prediction certainty in the target domain. In this work, we

use the Shannon Entropy [36]. Given a target input image

xt, the entropy map Ext
∈ [0, 1]H×W is composed of the

independent pixel-wise entropies normalized to [0, 1] range:

E(h,w)
xt

=
−1

log(C)

C
∑

c=1

P (h,w,c)
xt

logP (h,w,c)
xt

, (2)

at pixel (h,w). An example of entropy map is shown in

Figure 2. The entropy loss Lent is defined as the sum of all

pixel-wise normalized entropies:

Lent(xt) =
∑

h,w

E(h,w)
xt

. (3)

During training, we jointly optimize the supervised segmen-

tation loss Lseg on source samples and the unsupervised

entropy loss Lent on target samples. The final optimization

problem is formulated as follows:

min
θF

1

|Xs|

∑

xs

Lseg(xs,ys) +
λent

|Xt|

∑

xt

Lent(xt), (4)

with λent as the weighting factor of the entropy term Lent.

Connection to self-training. Pseudo-labeling is a sim-

ple yet efficient approach for semi-supervised learning [21].

Recently, the approach has been applied to UDA in seman-

tic segmentation task with an iterative self-training (ST)

procedure [51]. The ST method assumes that the set K ⊂
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Figure 2: Approach overview. The figure shows our two approaches for UDA. First, direct entropy minimization minimizes the entropy

of the target Pxt
, which is equivalent to minimizing the sum of weighted self-information maps Ixt

. In the second, complementary

approach, we use adversarial training to enforce the consistency in Ix across domains. Red arrows are used for target domain and blue

arrows for source. An example of entropy map is shown for illustration.

(1, H) × (1,W ) of high-scoring pixel-wise predictions on

target samples are correct with high probability. Such an as-

sumption allows the use of cross-entropy loss with pseudo-

labels on target predictions. In practice, K is constructed

by selecting high-scoring pixels with a fixed or scheduled

threshold. To draw a link with entropy minimization, we

write the training problem of the ST approach as:

min
θF

1

|Xs|

∑

xs

Lseg(xs,ys) +
λpl

|Xt|

∑

xt

Lseg(xt, ŷt), (5)

where ŷt is the one-hot class prediction for xt and with:

Lseg(xt, ŷt) = −
∑

(h,w)∈K

C
∑

c=1

ŷ
(h,w,c)
t logP (h,w,c)

xt
. (6)

Comparing equations (2-3) and (6), we note that our entropy

loss Lent(xt) can be seen as a soft-assignment version of

the pseudo-label cross-entropy loss Lseg(xt, ŷt). Differ-

ent to ST [51], our entropy-based approach does not re-

quire a complex scheduling procedure for choosing thresh-

old. Even, contrary to ST assumption, we show in Sec-

tion 4.3 that, in some cases, training on the “hard” or “most-

confused” pixels produces better performance.

3.2. Minimizing entropy with adversarial learning

The entropy loss for an input image is defined in equa-

tion (3) as the sum of independent pixel-wise prediction en-

tropies. Therefore, a mere minimization of this loss neglects

the structural dependencies between local semantics. As

shown in [41], for UDA in semantic segmentation, adapta-

tion on structured output space is beneficial. It is based on

the fact that source and target domain share strong similari-

ties in semantic layout.

In this part, we introduce a unified adversarial train-

ing framework which indirectly minimizes the entropy by

having target’s entropy distribution similar to the source.

This allows the exploitation of the structural consistency be-

tween the domains. To this end, we formulate the UDA task

as minimizing distribution distance between source and tar-

get on the weighted self-information space. Figure 2 illus-

trates our adversarial learning procedure. Our adversarial

approach is motivated by the fact that the trained model nat-

urally produces low-entropy predictions on source-like im-

ages. By aligning weighted self-information distributions

of target and source domains, we indirectly minimize the

entropy of target predictions. Moreover, as the adaptation

is done on the weighted self-information space, our model

leverages structural information from source to target.

In detail, given a pixel-wise predicted class score

P
(h,w,c)
x , the self-information or “surprisal” [40] is de-

fined as − logP
(h,w,c)
x . Effectively, the entropy E

(h,w)
x

in (2) is the expected value of the self-information

Ec[− logP
(h,w,c)
x ]. We here perform adversarial adaptation

on weighted self-information maps Ix composed of pixel-

level vectors I
(h,w)
x = −P

(h,w)
x · logP

(h,w)
x .3 Such vectors

can be seen as the disentanglement of the Shannon Entropy.

We then construct a fully-convolutional discriminator net-

work D with parameters θD taking Ix as input and that pro-

duces domain classification outputs, i.e., class label 1 (resp.

0) for the source (resp. target) domain. Similar to [11], we

train the discriminator to discriminate outputs coming from

source and target images, and at the same time, train the

segmentation network to fool the discriminator. In detail,

3Abusing notations, ’·’ and ’log’ stand for Hadamard product and

point-wise logarithm respectively.
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let LD the cross-entropy domain classification loss. The

training objective of the discriminator is:

min
θD

1

|Xs|

∑

xs

LD(Ixs
, 1) +

1

|Xt|

∑

xt

LD(Ixt
, 0), (7)

and the adversarial objective to train the segmentation net-

work is:

min
θF

1

|Xt|

∑

xt

LD(Ixt
, 1). (8)

Combining (1) and (8), we derive the optimization problem

min
θF

1

|Xs|

∑

xs

Lseg(xs,ys) +
λadv

|Xt|

∑

xt

LD(Ixt
, 1), (9)

with the weighting factor λadv for the adversarial term LD.

During training, we alternatively optimize networks D and

F using objective functions in (7) and (9).

3.3. Incorporating class­ratio priors

Entropy minimization can get biased towards some easy

classes. Therefore, sometimes it is beneficial to guide the

learning with some prior. To this end, we use a simple

class-prior based on the distribution of the classes over the

source labels. We compute the class-prior vector ps as a

ℓ1-normalized histogram of number of pixels per class over

the source labels. Now based on the predicted Pxt
, too large

discrepancy between the expected probability for any class

and class-prior ps is penalized, using

Lcp(xt) =

C
∑

c=1

max
(

0, µp(c)
s − Ec(P

(c)
xt

)
)

, (10)

where µ ∈ [0, 1] is used to relax the class prior constraint.

This addresses the fact that class distribution on a single

target image is not necessarily close to ps.

4. Experiments

In this section, we present our experimental results. Sec-

tion 4.1 introduces the used datasets as well as our training

parameters. In Section 4.2 and Section 4.3, we report and

discuss our main results. In Section 4.3, we discuss a pre-

liminary result on entropy-based UDA for detection.

4.1. Experimental details

Datasets. To evaluate our approaches, we use the chal-

lenging synthetic-2-real unsupervised domain adaptation

set-ups. Models are trained on fully-annotated synthetic

data and are validated on real-world data. In such set-ups,

the models have access to some unlabeled real images dur-

ing training. To train our models, we use either GTA5 [30]

or SYNTHIA [31] as source domain synthetic data, along

with the training split of Cityscapes dataset [6] as target do-

main data. Similar set-ups have been previously used in

other works [15, 14, 41, 51]. In detail:

• GTA5→Cityscapes: The GTA5 dataset consists of

24, 966 synthesized frames captured from a video

game. Images are provided with pixel-level semantic

annotations of 33 classes. Similar to [15], we use the

19 classes in common with the Cityscapes dataset.

• SYNTHIA→Cityscapes: We use the SYNTHIA-

RAND-CITYSCAPES set4 with 9, 400 synthesized

images for training. We train our models with 16 com-

mon classes in SYNTHIA and Cityscapes. While eval-

uating we compare the performance on 16- and 13-

class subsets following the protocol used in [51].

In both set-ups, 2, 975 unlabeled Cityscapes images are

used for training. We measure segmentation performance

with the standard mean-Intersection-over-Union (mIoU)

metric [9]. Evaluation is done on the 500 validation images.

Network architectures. We use Deeplab-V2 [2] as the

base semantic segmentation architecture F . To better cap-

ture the scene context, Atrous Spatial Pyramid Pooling

(ASPP) is applied on the last layer’s feature output. Sam-

pling rates are fixed as {6, 12, 18, 24}, similar to the ASPP-

L model in [2]. We experiment on the two different

base deep CNN architectures: VGG-16 [37] and ResNet-

101 [13]. Following [2], we modify the stride and dilation

rate of the last layers to produce denser feature maps with

larger field-of-views. To further improve performance on

ResNet-101, we perform adaptation on multi-level outputs

coming from both conv4 and conv5 features [41].

The adversarial network D introduced in Section 3.2

has the same architecture as the one used in DCGAN [28].

Weighted self-information maps Ix are forwarded through 4
convolutional layers, each coupled with a leaky-ReLU layer

with a fixed negative slope of 0.2. At the end, a classifier

layer produces classification outputs, indicating if the inputs

correspond to source or target domain.

Implementation details. We employ PyTorch deep learn-

ing framework [27] in the implementations. All experi-

ments are done on a single NVIDIA 1080TI GPU with 11

GB memory. Our model, except the adversarial discrim-

inator mentioned in Section 3.2, is trained using Stochas-

tic Gradient Descent optimizer [1] with learning rate 2.5 ×
10−4, momentum 0.9 and weight decay 10−4. We use

Adam optimizer [19] with learning rate 10−4 to train the

discriminator. To schedule the learning rate, we follow the

polynomial annealing procedure mentioned in [2].

Weighting factors of entropy and adversarial losses: To

set the weight for Lent, the training set performance pro-

vides important indications. If λent is large then the entropy

drops too quickly and the model is strongly biased towards

a few classes. When λent is chosen in a suitable range how-

ever, the performance is better and not sensitive to the pre-

4A split of the SYNTHIA dataset [31] using compatible labels with the

Cityscapes dataset.

52521



(a) GTA5 → Cityscapes
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mIoU

FCNs in the Wild [15] Adv 70.4 32.4 62.1 14.9 5.4 10.9 14.2 2.7 79.2 21.3 64.6 44.1 4.2 70.4 8.0 7.3 0.0 3.5 0.0 27.1

CyCADA [14] Adv 83.5 38.3 76.4 20.6 16.5 22.2 26.2 21.9 80.4 28.7 65.7 49.4 4.2 74.6 16.0 26.6 2.0 8.0 0.0 34.8

Adapt-SegMap [41] Adv 87.3 29.8 78.6 21.1 18.2 22.5 21.5 11.0 79.7 29.6 71.3 46.8 6.5 80.1 23.0 26.9 0.0 10.6 0.3 35.0

Self-Training [51] ST 83.8 17.4 72.1 14.3 2.9 16.5 16.0 6.8 81.4 24.2 47.2 40.7 7.6 71.7 10.2 7.6 0.5 11.1 0.9 28.1

Self-Training + CB [51] ST 66.7 26.8 73.7 14.8 9.5 28.3 25.9 10.1 75.5 15.7 51.6 47.2 6.2 71.9 3.7 2.2 5.4 18.9 32.4 30.9

Ours (MinEnt) Ent 85.1 18.9 76.3 32.4 19.7 19.9 21.0 8.9 76.3 26.2 63.1 42.8 5.9 80.8 20.2 9.8 0.0 14.8 0.6 32.8

Ours (AdvEnt) Adv 86.9 28.7 78.7 28.5 25.2 17.1 20.3 10.9 80.0 26.4 70.2 47.1 8.4 81.5 26.0 17.2 18.9 11.7 1.6 36.1

Adapt-SegMap [41] Adv 86.5 36.0 79.9 23.4 23.3 23.9 35.2 14.8 83.4 33.3 75.6 58.5 27.6 73.7 32.5 35.4 3.9 30.1 28.1 42.4

Adapt-SegMap* Adv 85.5 18.4 80.8 29.1 24.6 27.9 33.1 20.9 83.8 31.2 75.0 57.5 28.6 77.3 32.3 30.9 1.1 28.7 35.9 42.2

Ours (MinEnt) Ent 84.4 18.7 80.6 23.8 23.2 28.4 36.9 23.4 83.2 25.2 79.4 59.0 29.9 78.5 33.7 29.6 1.7 29.9 33.6 42.3

Ours (MinEnt + ER) Ent 84.2 25.2 77.0 17.0 23.3 24.2 33.3 26.4 80.7 32.1 78.7 57.5 30.0 77.0 37.9 44.3 1.8 31.4 36.9 43.1

Ours (AdvEnt) Adv 89.9 36.5 81.6 29.2 25.2 28.5 32.3 22.4 83.9 34.0 77.1 57.4 27.9 83.7 29.4 39.1 1.5 28.4 23.3 43.8

Ours (AdvEnt+MinEnt) A+E 89.4 33.1 81.0 26.6 26.8 27.2 33.5 24.7 83.9 36.7 78.8 58.7 30.5 84.8 38.5 44.5 1.7 31.6 32.4 45.5

(b) SYNTHIA → Cityscapes

Models A
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n
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o
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p
er

so
n
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ca
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b
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m
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b
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mIoU mIoU*

FCNs in the Wild [15] Adv 11.5 19.6 30.8 4.4 0.0 20.3 0.1 11.7 42.3 68.7 51.2 3.8 54.0 3.2 0.2 0.6 20.2 22.1

Adapt-SegMap [41] Adv 78.9 29.2 75.5 - - - 0.1 4.8 72.6 76.7 43.4 8.8 71.1 16.0 3.6 8.4 - 37.6

Self-Training [51] ST 0.2 14.5 53.8 1.6 0.0 18.9 0.9 7.8 72.2 80.3 48.1 6.3 67.7 4.7 0.2 4.5 23.9 27.8

Self-Training + CB [51] ST 69.6 28.7 69.5 12.1 0.1 25.4 11.9 13.6 82.0 81.9 49.1 14.5 66.0 6.6 3.7 32.4 35.4 36.1

Ours (MinEnt) Ent 37.8 18.2 65.8 2.0 0.0 15.5 0.0 0.0 76 73.9 45.7 11.3 66.6 13.3 1.5 13.1 27.5 32.5

Ours (MinEnt + CP) Ent 45.9 19.6 65.8 5.3 0.2 20.7 2.1 8.2 74.4 76.7 47.5 12.2 71.1 22.8 4.5 9.2 30.4 35.4

Ours (AdvEnt + CP) Adv 67.9 29.4 71.9 6.3 0.3 19.9 0.6 2.6 74.9 74.9 35.4 9.6 67.8 21.4 4.1 15.5 31.4 36.6

Adapt-SegMap [41] Adv 84.3 42.7 77.5 - - - 4.7 7.0 77.9 82.5 54.3 21.0 72.3 32.2 18.9 32.3 - 46.7

Adapt-SegMap* [41] Adv 81.7 39.1 78.4 11.1 0.3 25.8 6.8 9.0 79.1 80.8 54.8 21.0 66.8 34.7 13.8 29.9 39.6 45.8

Ours (MinEnt) Ent 73.5 29.2 77.1 7.7 0.2 27.0 7.1 11.4 76.7 82.1 57.2 21.3 69.4 29.2 12.9 27.9 38.1 44.2

Ours (AdvEnt) Adv 87.0 44.1 79.7 9.6 0.6 24.3 4.8 7.2 80.1 83.6 56.4 23.7 72.7 32.6 12.8 33.7 40.8 47.6

Ours (AdvEnt+MinEnt) A+E 85.6 42.2 79.7 8.7 0.4 25.9 5.4 8.1 80.4 84.1 57.9 23.8 73.3 36.4 14.2 33.0 41.2 48.0

Table 1: Semantic segmentation performance mIoU (%) on Cityscapes validation set of models trained on GTA5 (a) and SYNTHIA

(b). We show results of our approaches using the direct entropy loss (MinEnt) and using adversarial training (AdvEnt). In each subtable, top

and bottom parts correspond to VGG-16-based and ResNet-101-based models respectively. The “Adapt-SegMap*” denotes our retrained

model of [41]. The abbreviations “Adv”, “ST” and “Ent” stand for adversarial training, self-training and entropy minimization approaches.

cise value. Thus, we use the same λent = 0.001 for all

our experiments regardless of the network or the dataset.

Similar arguments hold for the weight λadv in (9). We fix

λadv = 0.001 in all experiments.

4.2. Results

We present experimental results of our approaches com-

pared to different baselines. Our models achieve state-of-

the-art performance in the two UDA benchmarks. In what

follows, we show different behaviors of our approaches in

different settings, i.e., training sets and base CNNs.

GTA5→Cityscapes: We report in Table 1-a semantic

segmentation performance in terms of mIoU (%) on

Cityscapes validation set. Our first approach of direct

entropy minimization, termed as MinEnt in Table 1-a,

achieves comparable performance to state-of-the-art base-

lines on both VGG-16 and ResNet-101-based CNNs. The

MinEnt outperforms Self-Training (ST) approach without

and with class-balancing [51]. Compared to [41], the

ResNet-101-based MinEnt shows similar results but with-

out resorting to the training of a discriminator network. The

light overhead of the entropy loss makes training time much

less for the MinEnt model. Another advantage of our en-

tropy approach is the ease of training. Indeed, training ad-

versarial networks is generally known as a difficult task due

to its instability. We observed a more stable behavior train-

ing models with the entropy loss.

Interestingly, we find that in some cases, only applying

entropy loss on certain ranges works best. Such a phe-

nomenon is observed with the ResNet-101-based models.

Indeed, we get a better model by training on pixels having

entropy values within the top 30% of each target sample.
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The model is termed as MinEnt+ER in Table 1-a. We obtain

43.1% mIoU using this strategy on the GTA5→Cityscapes

set-up. More details are given in Section 4.3.

Our second approach using adversarial training on the

weighted self-information space, noted as AdvEnt, shows

consistent improvement to the baselines on the two base

networks. In general, AdvEnt works better than MinEnt.

On the GTA5→Cityscapes UDA set-up, AdvEnt achieves

state-of-the-art mIoU of 43.8. Such results confirm our in-

tuition on the importance of structural adaptation. With the

VGG-16-based network, adaptation on the weighted self-

information space brings +3.3% mIoU improvement com-

pared to the direct entropy minimization. With the ResNet-

101-based network, the improvement is less, i.e., +1.5%
mIoU. We conjecture that, as GTA5 semantic layouts are

very similar to ones in Cityscapes, the segmentation net-

work F with high capacity base CNN like ResNet-101 is

capable of learning some spatial priors from the supervi-

sion on source samples. As for lower-capacity base model

like VGG-16, an additional regularization on the structured

space with adversarial training is more beneficial.

By combining results of the two models MinEnt and Ad-

vEnt, we observe a decent boost in performance, compared

to results of single models. The ensemble achieves 45.5%
mIoU on the Cityscape validation set. Such a result indi-

cates that complementary information are learned by the

two models. Indeed, while the entropy loss penalizes in-

dependent pixel-level predictions, the adversarial loss oper-

ates more on the image-level, i.e., scene topology. Similar

to [41], for a more meaningful comparison to other UDA

approaches, in Table 2-a we show the performance gap be-

tween UDA models and the oracle, i.e., the model trained

with full supervision on the Cityscapes training set. Com-

pared to models trained by other methods, our single and

ensemble models have smaller mIoU gaps to the oracle.

In Figure 3, we illustrate some qualitative results of our

models. Without domain adaptation, the model trained only

on source supervision produces noisy segmentation predic-

tions as well as high entropy activations, with a few excep-

tions on some classes like “building” and “car”. Still, there

exist many confident predictions (low entropy) which are

completely wrong. Our models, on the other hand, manage

to produce correct predictions at high level of confidence.

We observe that overall, the AdvEnt model achieves lower

prediction entropy compared to the MinEnt model.

SYNTHIA→Cityscapes: Table 1-b shows results on

the 16- and 13-class subsets of the Cityscapes validation

set. We notice that scene images in SYNTHIA cover more

diverse viewpoints than the ones in GTA5 and Cityscape.

This results in different behaviors of our approaches.

On the VGG-16-based network, the MinEnt model

shows comparable results to state-of-the-art methods. Com-

pared to Self-Training [51], our model achieves +3.6%

(a) GTA5 → Cityscapes

Method UDA Model Oracle mIoU Gap (%)

FCNs in the Wild [15] 27.1 64.6 -37.5

CyCADA [14] 28.9 60.3 -31.4

Adapt-SegNet [41] 35.0 61.8 -26.8

Ours (single model) 36.1 61.8 -25.7

Adapt-SegNet [41] 42.4 65.1 -22.7

Ours (single model) 43.8 65.1 -21.3

Ours (two models) 45.5 65.1 -19.6

(b) SYNTHIA → Cityscapes

Method UDA Model Oracle mIoU Gap (%)

FCNs in the Wild [15] 22.9 73.8 -50.9

Adapt-SegNet [41] 37.6 68.4 -30.8

Ours (single model) 36.6 68.4 -31.8

Adapt-SegNet [41] 46.7 71.7 -25.0

Ours (single model) 47.6 71.7 -24.1

Ours (two models) 48 71.7 -23.7

Table 2: Performance gap between UDA models and the or-

acle in GTA5→Cityscapes and SYNTHIA→Cityscapes setups.

Top and bottom parts of each table correspond to VGG-16-based

and ResNet-101-based models respectively.

and +4.7% on 16- and 13- class subsets respectively. How-

ever, compared to stronger baselines like the class-balanced

self-training, we observe a significant drop in class “road”.

We argue that it is due to the large layout gaps between

SYNTHIA and Cityscapes. To target this issue, we incor-

porate the class-ratio priors from source domain, as intro-

duced in Section 3.3. By constraining target output dis-

tribution using class-ratio priors, noted as CP in Table 1-

b, we improve MinEnt by +2.9% mIoU on both 16- and

13- class subsets. With adversarial training, we have an

additional ∼ +1% mIoU. On the ResNet-101-based net-

work, the AdvEnt model achieves state-of-the-art perfor-

mance. Compared to the retrained model of [41], i.e.,

Adapt-SegMap*, the AdvEnt improves the mIoUs on 16-

and 13- class subsets by +1.2% and +1.8%.

Consistent with the GTA5 results above, the ensemble of

the two models MinEnt and AdvEnt trained on SYNTHIA

achieves the best mIoU of 41.2% and 48.0% on 16- and

13- class subsets respectively. According to Table 2-b, our

models have the smallest mIoU gaps to the oracle.

4.3. Discussion

The experimental results shown in Section 4.2 have vali-

dated the advantages of our approaches. To further push the

performance, we proposed two different ways to regularize

the training in two particular settings. This section discusses

our experimental choices and explain the intuitions behind.

GTA5→Cityscapes: Training on specific entropy

ranges. In this setup, we observe that the performance of

model MinEnt using ResNet-101-based network can be im-

proved by training on target pixels having entropy values in

a specific range. Interestingly, the best MinEnt model was
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(a) Input image + GT (b) Without adaptation (c) MinEnt (d) AdvEnt

Figure 3: Qualitative results in the GTA5→Cityscapes set-up. Column (a) shows a input image and the corresponding semantic

segmentation ground-truth. Column (b), (c) and (d) show segmentation results (bottom) along with prediction entropy maps produced by

different approaches (top). Best viewed in colors.

Cityscapes → Cityscapes Foggy

Models p
er

so
n

ri
d
er

ca
r

tr
u
ck

b
u
s

tr
ai

n

m
cy

cl
e

b
ic

y
cl

e

mAP

SSD-300 15.0 17.4 27.2 5.7 15.1 9.1 11.0 16.7 14.7

Ours (MinEnt) 15.8 22.0 28.3 5.0 15.2 15.0 13.0 20.6 16.9

Ours (AdvEnt) 17.6 25.0 39.6 20.0 37.1 25.9 21.3 23.1 26.2

Table 3: Detection performance on Cityscapes Foggy.

trained on the top 30% highest-entropy pixels on each tar-

get sample – gaining 0.8% mIoU over the vanilla model.

We note that high-entropy pixels are the “most confusing”

ones, i.e., where the segmentation model is indecisive be-

tween multiple classes. One reason is that the ResNet-101-

based model generalizes well in this particular setting. Ac-

cordingly, among the “most confusing” predictions, there is

a decent amount of correct but “low confident” ones. Mini-

mizing the entropy loss on such a set still drives the model

toward the desirable direction. This assumption, however,

does not hold for the VGG-16-based model.

SYNTHIA→Cityscapes: Using class-ratio prior. As

discussed before, SYNTHIA has significantly different lay-

out and viewpoints than Cityscapes. This disparity can

cause very bad prediction for some classes, which is then

further encouraged with minimization of entropy or their

use as label proxy in self-training. Thus, it can lead to strong

class biases or, in extreme cases, to missing some classes

completely in the target domain. Adding class-ratio prior

encourages the presence of all the classes and thus helps

avoid such degenerate solutions. As mentioned in Sec. 3.3,

we use µ to relax the source class-ratio prior, for example

µ = 0 means no prior while µ = 1 implies enforcing ex-

act class-ratio prior. Having µ = 1 is not ideal as it means

that each target image should follow the class-ratio from the

source domain. We choose µ = 0.5 to let the target class-

ratio to be somewhat different from the source.

Application on UDA for object detection. The proposed

entropy-based approaches are not limited to semantic seg-

mentation and can be applied to UDA for other recognition

(a) Without adaptation (b) AdvEnt

Figure 4: Qualitative detection results on Cityscapes Foggy.

tasks like object detection. We conducted experiments in

the UDA object detection set-up Cityscapes→Cityscapes-

Foggy, similar to the one in [3]. A straight-forward appli-

cation of the entropy loss and of the adversarial loss to the

existing detection architecture SSD-300 [22] significantly

improves detection performance over the baseline model

trained only on source. In terms of mean-average-precision

(mAP), compared to the baseline performance of 14.7%,

the MinEnt and AdvEnt models attain mAPs of 16.9% and

26.2%. In [3], the authors report a slightly better perfor-

mance of 27.6% mAP, using Faster-RCNN [29], a more

complex detection architecture than ours. We note that our

detection system was trained and tested on images at lower

resolution, i.e., 300 × 300. Despite these unfavorable fac-

tors, our improvement to the baseline (+11.5% mAP us-

ing AdvEnt) is larger than the one reported in [3] (+8.8%).

Such a preliminary result suggests the possibility of apply-

ing entropy-based approaches on UDA for detection. Ta-

ble 3 reports the per-class IoU and Figure 4 shows qualita-

tive results of the approaches on Cityscapes Foggy.

5. Conclusion

In this work, we address the task of unsupervised domain

adaptation for semantic segmentation and propose two com-

plementary entropy-based approaches. Our models achieve

state-of-the-art on the two challenging “synthetic-2-real”

benchmarks. The ensemble of the two models improves

the performance further. On UDA for object detection, we

show a promising result and believe that the performance

can get better using more robust detection architectures.
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