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Abstract

This paper addresses the problem of 3D human pose es-

timation from single images. While for a long time human

skeletons were parameterized and fitted to the observation

by satisfying a reprojection error, nowadays researchers di-

rectly use neural networks to infer the 3D pose from the ob-

servations. However, most of these approaches ignore the

fact that a reprojection constraint has to be satisfied and are

sensitive to overfitting. We tackle the overfitting problem by

ignoring 2D to 3D correspondences. This efficiently avoids

a simple memorization of the training data and allows for

a weakly supervised training. One part of the proposed re-

projection network (RepNet) learns a mapping from a dis-

tribution of 2D poses to a distribution of 3D poses using

an adversarial training approach. Another part of the net-

work estimates the camera. This allows for the definition of

a network layer that performs the reprojection of the esti-

mated 3D pose back to 2D which results in a reprojection

loss function.

Our experiments show that RepNet generalizes well to

unknown data and outperforms state-of-the-art methods

when applied to unseen data. Moreover, our implementa-

tion runs in real-time on a standard desktop PC.

1. Introduction

Human pose estimation from monocular images is a very

active research field in computer vision with many appli-

cations e.g. in movies, medicine, surveillance, or human-

computer interaction. Recent approaches are able to infer

3D human poses from monocular images in good quality

[27, 8, 21, 23, 28, 32, 24, 20, 19, 31]. However, most re-

cent methods use neural networks that are straightforwardly

trained with a strict assignment from input to output data

e.g. [27, 8, 21, 23, 28, 32, 24, 19]. This leads to surprisingly

impressive results on similar data but usually the generaliza-

tion to unknown motions and camera positions is problem-

Figure 1. Our network predicts 3D human poses from noisy 2D

joint detections. We use weakly supervised adversarial training

without 2D to 3D point correspondences. Our critic networks en-

forces a plausible 3D pose while a reprojection layer projects the

3D pose back to 2D. Even strong deformations and unusal camera

poses can be reconstructed.

atic. This paper presents a method to overcome this problem

by using a neural network trained with a weakly supervised

adversarial learning approach. We relax the assumption that

a specific 3D pose is given for every image in the train-

ing data by training a discriminator network –widely used

in generative adversarial networks (GAN) [9]– to learn a

distribution of 3D human poses. A second neural network

learns a mapping from a distribution of detected 2D key-

points (obtained by [25]) to a distribution of 3D keypoints

which are valid 3D human poses according to the discrim-

inator network. From the generative adversarial network

point of view this can be seen as the generator network. To

force the generator network to generate matching 3D poses

to the 2D observations we propose to add a third neural net-

work that predicts camera parameters from the input data.

The inferred camera parameters are used to reproject the

estimated 3D pose back to 2D which gives this framework

its name: Reprojection Network (RepNet). Fig. 2 shows

an overview of the proposed network. Additionally, to fur-

ther enforce kinematic constraints we propose to employ an

easy to calculate and implement descriptor for joint lengths

and angles inspired by the kinematic chain space (KCS) of

Wandt et al. [41].
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In contrast to other works our proposed method is very

robust against overfitting to a specific dataset. This claim is

reinforced by our experiments where the network can even

infer human poses and camera positions that are not in the

training set. Even if there are strong deformations or un-

usual camera poses our network achieves good results as

can be seen in the rock climbing image in Fig. 1. This leads

to our conclusion that the discriminator network does not

memorize all poses from the training set but learns a mean-

ingful manifold of feasible human poses. As we will show

the inclusion of the KCS as a layer in the discriminator net-

work plays an important role for the quality of the discrim-

inator.

We evaluate our method on the three datasets Hu-

man3.6M [13], MPI-INF-3DHP [21], and Leeds Sports

Pose (LSP) [16]. On all the datasets our method achieves

state-of-the-art results and even outperforms most super-

vised approaches. Furthermore, the proposed network can

predict a human pose in less than 0.1 milliseconds on stan-

dard hardware which allows to build a real-time pose esti-

mation system when combining it with state-of-the-art 2D

joint detectors, such as OpenPose [5].

The code will be made available.

Summarizing, our contributions are:

• An adversarial training method for a 3D human pose

estimation neural network (RepNet) based on a 2D re-

projection.

• Weakly supervised training without 2D-3D correspon-

dences and unknown cameras.

• Simultaneous 3D skeletal keypoints and camera pose

estimation.

• A layer encoding a kinematic chain representation that

includes bone lengths and joint angle informations.

• A pose regression network that generalizes well to un-

known human poses and cameras.

2. Related Work

The most relevant approaches related to our work can be

roughly divided into two categories. The first group consists

of optimization-based approaches where a 3D human body

model is deformed such that it satisfies a reprojection error.

The second group contains the most recent approaches that

try to estimate 3D poses directly from images or detected

keypoints.

2.1. Reprojection Error Optimization

Early works on human pose estimation from single im-

ages date back to Lee and Chen [18] in 1985. They use

known bone lengths and a binary decision tree to recon-

struct a human pose. Some authors [15, 11, 6] propose

to search for 3D poses in large pose databases that ex-

plain the 2D observations the best. To compress the knowl-

edge from these databases a widely used method is to learn

an overcomplete dictionary of 3D human poses either us-

ing principal component analysis (PCA) or another dictio-

nary learning method. Commonly the best linear combi-

nation of bases obtained by a principal component analysis

is optimized [7, 43, 49, 50]. To constrain the optimization

several priors are proposed, such as joint angle limits [1],

physical plausibility [46], or anthropometric regularization

[30, 33, 42]. Other works enforce temporal coherence in

video sequences [40, 2, 41, 46] or use additional sensors

[37, 39, 38].

2.2. Direct Inference using Neural Networks

Recently, many researchers focus on directly regressing

the 3D pose from image data or from 2D detections using

deep neural networks. Several works try to build an end-

to-end system which extracts the 3D pose from the image

data [27, 8, 21, 23, 28, 32, 19, 17, 26, 29, 36, 45]. Moreno-

Noguer [24] learns a mapping from 2D to 3D distance ma-

trices. Martinez et al. [20] train a deep neural network on

2D joint detections to directly infer the 3D human pose.

They trained their network to achieve an impressive perfor-

mance on the benchmark dataset Human3.6M [13]. How-

ever, the network has significantly more parameters than

poses in the training set of Human3.6M which could in-

dicate a simple memorization of the training set. Although

our proposed pose estimation network has a similar num-

ber of parameters our experiments indicate that overfitting

is avoided by our adversarial training approach. Hossain et

al. [31] extended the approach of [20] by using a recurrent

neural network for sequences of human poses. The special

case of weak supervision is rarely considered. Kanazawa

et al. [17] propose a method that can also be trained with-

out 2D to 3D supervision. In contrast to our approach they

use the complete image information to train an end-to-end

model to reconstruct a volumetric mesh of a human body.

Yang et al. [45] train a multi-source discriminator network

to build an end-to-end model.

3. Method

The basic idea behind the proposed method is that 3D

poses are regressed from 2D observations by learning a

mapping from the input distribution (2D poses) to the out-

put distribution (3D poses).

In standard generative adversarial network (GAN) train-

ing [9] a generator network learns a mapping from an input

distribution to the an output distribution which is rated by

another neural network, called discriminator network. The

discriminator is trained to distinguish between real samples
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Figure 2. The proposed adversarial training structure for RepNet consist of three parts: a pose and camera estimation network (1), a critic

network (2), and a reprojection network (3). There are losses (green) for the critic, the camera, and the reprojection.

from a database and samples created from the generator net-

work. When training the generator to create samples that the

discriminator predicts as real samples the discriminator pa-

rameters are fixed. The generator and the discriminator are

trained alternatingly and therefore compete with each other

until they both converge to a minimum.

In standard GAN training the input is sampled from a

gaussian or uniform distribution. Here, we assume that the

input is sampled from a distribution of 2D observations of

human poses. Adopting the Wasserstein GAN naming [3]

we call the discriminator critic in the following. Without

knowledge about camera projections the network produces

random, yet feasible human 3D poses. However, these 3D

poses are very likely the incorrect 3D reconstructions of

the input 2D observations. To obtain matching 2D and 3D

poses we propose a camera estimation network followed

by a reprojection layer. As shown in Fig. 2 the proposed

network consists of three parts: The pose and camera esti-

mation network (1), the critic used in the adversarial train-

ing (2), and the reprojection part (3). The critic and the

complete adversarial model are trained alternatingly as de-

scribed above.

3.1. Pose and Camera Estimation

The pose and camera estimation network splits into two

branches, one for regression of the pose and the other for

the camera estimation. In the following X ∈ R
3×n de-

notes a 3D human pose where each column contains the

xyz-coordinates of a body joint. In the neural network this

matrix is written as a 3n dimensional vector. Correspond-

ingly, if n joints are reconstructed the input of the pose and

camera estimation network is a 2n dimensional vector con-

taining the coordinates of the detected joints in the image.

The pose estimation part consists of two consecutive

residual blocks, where each block has two hidden layers of

1000 densely connected neurons. For the activation func-

tions we use leaky ReLUs [12] which produced the best

results in our experiments. The last layer outputs a 3n di-

mensional vector which contains the 3D pose and can be

reshaped to X . The camera estimation branch has a simi-

lar structure as the pose estimation branch with the output

being a 6 dimensional vector containing the camera param-

eters. Here, we use a weak perspective camera model that

can be defined by only six variables. To obtain the camera

matrix the output vector is reshaped to K ∈ R
2×3.

3.2. Reprojection Layer

The reprojecting layer takes the output pose X of the 3D

generator network and the camera K of the camera estima-

tion network. The reprojecting into 2D coordinate space

can then be performed by

W ′ = KX, (1)

where W ′ is called the 2D reprojection in the following.

This allows for the definition of a reprojection loss function

Lrep(X,K) = ‖W −KX‖F , (2)

where W is the input 2D pose observation matrix which

has the same structure as W ′. ‖ · ‖F denotes the Frobe-

nius norm. Note that the reprojection layer is a single layer

which only performs the reprojection and does not have any

trainable parameters. To deal with occlusions columns in

W and X that correspond to not detected joints can be set

to zero. This means they will have no influence on the value

of the loss function. The missing joints will then be halluci-

nated by the pose generator network according to the critic

network. In fact, the stacked hourglass network that pro-

duces the 2D joint detections [25] that we use as the input
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Figure 3. Network structure of the critic network. In the upper path

the 3D pose is transformed into the KCS matrix and fed into a fully

connected (FC) network. The lower path is build from multiple FC

layers. The feature vectors of both paths are concatenated and fed

into another FC layer which outputs the critic value.

does not predict the spine joint. We therefore set the cor-

responding columns in W and X to zero in all our experi-

ments.

3.3. Critic Network

The complete network in Fig. 2 is trained alternatingly

with the critic network. The loss on the last layer of the

critic is a Wasserstein loss function [3]. The obvious choice

of a critic network is a fully connected network with a

structure similar to the pose regression network. However,

such networks struggle to detect properties of human poses

such as kinematic chains, symmetry and joint angle lim-

its. Therefore, we follow the idea of Wandt et al. [41] and

add their kinematic chain space (KCS) into our model. We

develop a KCS layer with a successive fully connected net-

work which is added in parallel to the fully connected path.

These two paths in the critic network are merged before the

output layer. Fig. 3 shows the network structure of the critic.

The KCS matrix is a representation of a human pose con-

taining joint angles and bone lenghts and can be computed

by only two matrix multiplications. A bone bk is defined as

the vector between the r-th and t-th joint

bk = pr − pt = Xc, (3)

where

c = (0, . . . , 0, 1, 0, . . . , 0,−1, 0, . . . , 0)T , (4)

with 1 at position r and −1 at position t. Note that the

length of the vector bk has the same direction and length as

the corresponding bone. By concatenating b bones a matrix

B ∈ R
3×b can be defined as

B = (b1, b2, . . . , bb). (5)

This leads to a matrix C ∈ R
j×b The matrix B is calculated

by concatenating the corresponding vectors c. It follows

B = XC. (6)

Multiplying B with its transpose we compute the so called

KCS matrix

Ψ = BTB =











l2
1

· · ·
· l2

2
· ·

· ·
. . . ·

· · · l2b











. (7)

Because each entry in Ψ is an inner product of two bone

vectors the KCS matrix has the bone lengths on its diago-

nal and a (scaled) angular representation on the other en-

tries. In contrast to an euclidean distance matrix [24] the

KCS matrix Ψ is easily calculated by two matrix multi-

plications. This allows for an efficient implementation as

an additional layer. By giving the discriminator network

an additional feature matrix it does not need to learn joint

lengths computation and angular constraints on its own. In

fact, in our experiments it was not possible to achieve an

acceptable symmetry between the left and right side of the

body without the KCS matrix. Section 4.1 shows how the

3D reconstruction benefits from adding the additional KCS

layer. In our experiments there was no difference between

adding convolutional layers or fully connected layers after

the KCS layer. In the following we will use two fully con-

nected layers, each containing 100 neurons, after the KCS

layer. Combined with the parallel fully connected network

this leads to the critic structure in Fig. 3.

3.4. Camera

Since the camera estimation sub-network in Fig. 2 can

produce any 6-dimensional vector we need to force the net-

work to produce matrices describing weak perspective cam-

eras. If the 3D poses and the 2D poses are centered at their

root joint the camera matrix K projects X to W ′ according

to Eq. 1. A weak perspective projection matrix K has the

property

KKT = s2I2, (8)

where s is the scale of the projection and I2 is the 2 × 2
indentity matrix. Since the scale s is unknown we derive a

computationally efficient method of calculating s. The scale

s equals to the largest singular value (or the ℓ2-norm) of K.

Both singular values are equal. Since the trace of KKT is

the sum of the squared singular values

s =
√

trace(KKT )/2. (9)

The loss function can now be defined as

Lcam = ‖
2

trace(KKT )
KKT − I2‖F , (10)

where ‖·‖F denotes the Frobenius norm. Note that only one

matrix multiplication is necessary to compute the quadratic

scale.
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3.5. Data Preprocessing

The camera estimation network infers the parameters of

the weak perspective camera. That means the camera ma-

trix contains a rotational and a scaling component. To avoid

ambiguities between the camera and 3D pose rotation all

the rotational and scaling components from the 3D poses

are removed. This is done by aligning every 3D pose to a

template pose. We do this by calculating the ideal rotation

and scale for the corresponding shoulder and hip joints via

procrustes alignment. The resulting transformation is ap-

plied to all joints.

Depending on the persons size in the image the 2D joint

detections can have arbitrary scale. To remove the scale

component we divide each 2D pose vector by its standard

deviation. Note that using this scaling technique the same

person can have different sized 2D pose representations de-

pending on the camera and 3D pose. However, the value for

all possible 2D poses is constrained. The remaining scale

variations are compensated by the cameras scale compo-

nent. In contrast to e.g. [20] we do not need to know the

mean and standard deviation of the training set. This allows

for an easy transfer of our method to a different domain of

2D poses.

3.6. Training

We implemented the Improved Wasserstein GAN train-

ing procedure of [10]. In our experience this results in

better and faster convergence compared to the traditional

Wasserstein GAN [3] and standard GAN training [9] using

binary cross entropy or similar loss functions. We use an

initial learning rate of 0.001 with exponential decay every

10 epochs.

4. Experiments

We perform experiments on the three datasets Hu-

man3.6M [13], MPI-INF-3DHP [21], and LSP [16]. Hu-

man3.6M is the largest benchmark dataset containing im-

ages temporally aligned to 2D and 3D correspondences.

Unless otherwise noted we use the training set of Hu-

man3.6M for training our networks. To show quantitative

results on unseen data we evaluate our method on MPI-

INF-3DHP. For unusual poses and camera angles subjective

results are shown on LSP. Matching most comparable meth-

ods we use stacked hourglass networks [25] for 2D joint es-

timations from the input images in most of the experiments.

4.1. Quantitative Evaluation on Human3.6M

In the literature there are two main evaluation protocols

on the Human3.6M dataset using subjects 1, 5, 6, 7, 8 for

training and subject 9, 11 for testing. Both protocols cal-

culate the mean per joint positioning error (MPJPE), i.e.

the mean euclidean distance between the reconstructed and

the ground truth joint coordinates. Protocol-I computes the

MPJPE directly whereas protocol-II first employs a rigid

alignment between the poses. For a sequence the MPJPE’s

are summed and divided by the number of frames.

Table 1 shows the results of protocol-I without a rigid

alignment. The rotation of the pose relative to the cam-

era can be directly calculated from the camera matrix es-

timated by the camera regression network. Rotating the

reconstructed pose in the world frame of the dataset gives

the final 3D pose. Table 2 shows the results of protocol-

II using a rigid alignment before calculating the error. The

row RepNet-noKCS shows the errors without using the KCS

layer. It can be seen that the additional KCS layer in the dis-

criminator significantly improves the pose estimation. We

are aware of the fact that our method will not be able to out-

perform supervised methods trained to perform exception-

ally well on Human3.6M, such as [20] and [19]. Instead,

in this section we show that even if we ignore the 2D-3D

correspondences and train weakly supervised our network

achieves comparable results to supervised state-of-the-art

methods and is even better than most of them. Comparing to

weakly supervised approaches [44, 35] we outperform the

best by about 30% on protocol-II. For subjective evaluation

the 1500th frame for every motion can be seen in Fig. 4.

For comparability we show the same frame from every mo-

tion sequence from the same viewing angle. Even difficult

poses, for instance sitting cross-legged, are reconstructed

well.

In our opinion, although widely used on Human3.6M,

the euclidean distance is not the only metric that should be

considered to evaluate the performance of a human pose es-

timation system. Since there are some single frames that

cannot be reconstructed well and can be seen as outliers

we also calculate the median of the MPJPE over all frames.

Additionally, we calculate the percentage of correctly posi-

tioned keypoints (PCK3D) as defined by [21] in Table 3.

In the following section we will show that although we

do not improve on all supervised state-of-the-art methods

directly trained on Human3.6M our approach outperforms

every other known method on MPI-INF-3DHP without ad-

ditional training.

4.2. Quantitative Evaluation on MPI-INF-3DHP

Our main contribution is a neural network that infers

even unseen human poses while maintaining a meaningful

3D pose. We compare our method against several state-of-

the-art approaches. Table 4 shows the results for different

metrics. We clearly outperform every other method with-

out having trained our model on this specific dataset. Even

approaches trained on the training set of MPI-INF-3DHP

perform worse than ours. This shows the generalization

capability of our network. The row RepNet 3DHP is the

result when training on the training set of MPI-INF-3DHP.
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Figure 4. One example reconstruction for every motion from the test set of Human3.6M. The left 3D skeleton is the ground truth (GT) and

the right shows our reconstruction (RepNet). Even difficult poses such as crossed legs or sitting on the floor are reconstructed well.

Table 1. Results for the reconstruction of the Human3.6M dataset compared to other state-of-the-art methods following Protocol-I (no ridig

alignment). All numbers are taken from the referenced papers. For comparison the row RepNet+2DGT shows the error when using the

ground truth 2D labels. The column WS denotes weakly supervised approaches. Note that there are no results available for other weakly

supervised works.
Protocol-I WS Direct. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD Smoke Wait Walk WalkD WalkT Avg.

LinKDE [14] 132.7 183.6 132.3 164.4 162.1 205.9 150.6 171.3 151.6 243.0 162.1 170.7 177.1 96.6 127.9 162.1

Tekin et al . [34] 102.4 147.2 88.8 125.3 118.0 182.7 112.4 129.2 138.9 224.9 118.4 138.8 126.3 55.1 65.8 125.0

Zhou et al . [50] 87.4 109.3 87.1 103.2 116.2 143.3 106.9 99.8 124.5 199.2 107.4 118.1 114.2 79.4 97.7 113.0

Du et al. [8] 85.1 112.7 104.9 122.1 139.1 135.9 105.9 166.2 117.5 226.9 120.0 117.7 137.4 99.3 106.5 126.5

Park et al. [27] 100.3 116.2 90.0 116.5 115.3 149.5 117.6 106.9 137.2 190.8 105.8 125.1 131.9 62.6 96.2 117.3

Zhou et al. [48] 91.8 102.4 96.7 98.8 113.4 125.2 90.0 93.8 132.2 159.0 107.0 94.4 126.0 79.0 99.0 107.3

Luo et al. [19] 68.4 77.3 70.2 71.4 75.1 86.5 69.0 76.7 88.2 103.4 73.8 72.1 83.9 58.1 65.4 76.0

Pavlakos et al. [28] 67.4 71.9 66.7 69.1 72.0 77.0 65.0 68.3 83.7 96.5 71.7 65.8 74.9 59.1 63.2 71.9

Zhou et al. [47] 54.8 60.7 58.2 71.4 62.0 65.5 53.8 55.6 75.2 111.6 64.2 66.1 63.2 51.4 55.3 64.9

Martinez et al. [20] 53.3 60.8 62.9 62.7 86.4 82.4 57.8 58.7 81.9 99.8 69.1 63.9 50.9 67.1 54.8 67.5

RepNet (Ours) X 77.5 85.2 82.7 93.8 93.9 101.0 82.9 102.6 100.5 125.8 88.0 84.8 72.6 78.8 79.0 89.9

RepNet+2DGT (Ours) X 50.0 53.5 44.7 51.6 49.0 58.7 48.8 51.3 51.1 66.0 46.6 50.6 42.5 38.8 60.4 50.9

There is only a minor improvement of the 3DPCK and AUC

and even a minor deterioration of the MPJPE compared to

the network trained on Human3.6M. This suggests that the

critic network converges to a similar distribution of feasible

human poses for both training sets.

4.3. Plausibility of the Reconstructions

The metrics used for evaluation in Sec. 4.1 and 4.2 com-

pare the estimated 3D pose to the ground truth. However, a

low error in this metrics is not necessarily an indication for a

plausible human pose since the reconstructed pose can still

violate joint angle limits or symmetries of the human body.

For this purpose we introduce a new metric based on bone

length symmetry. We calculate bone lengths of the lower

and upper arms and legs since there is the largest error per

joint. By summing the absolute differences of all matching

bones on the right and left side of the body we can calculate

a symmetry error. The mean symmetry error of the ground
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Table 2. Results for the reconstruction of the Human3.6M dataset compared to other state-of-the-art methods following Protocol-II (rigid

alignment). All numbers are taken from the referenced papers, except rows marked with * that are taken from [35]. Although we do not

improve over supervised methods on this specific dataset our method clearly outperforms all other weakly supervised approaches (column

WS). The best results for the weakly supervised methods are marked in bold. The second best approach that is not ours is underlined. For

comparison the last row RepNet+2DGT shows the error when using the ground truth 2D labels.
Protocol-II WS Direct. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD Smoke Wait Walk WalkD WalkT Avg.

Akther and Black [1] 199.2 177.6 161.8 197.8 176.2 186.5 195.4 167.3 160.7 173.7 177.8 181.9 198.6 176.2 192.7 181.1

Ramakrishna et al. [30] 37.4 149.3 141.6 154.3 157.7 158.9 141.8 158.1 168.6 175.6 160.4 161.7 174.8 150.0 150.2 157.3

Zhou et al. [49] 99.7 95.8 87.9 116.8 108.3 107.3 93.5 95.3 109.1 137.5 106.0 102.2 110.4 106.5 115.2 106.7

Bogo et al. [4] 62.0 60.2 67.8 76.5 92.1 77.0 73.0 75.3 100.3 137.3 83.4 77.3 79.7 86.8 87.7 82.3

Moreno-Noguer [24] 66.1 61.7 84.5 73.7 65.2 67.2 60.9 67.3 103.5 74.6 92.6 69.6 78.0 71.5 73.2 74.0

Martinez et al. [20] 44.8 52.0 44.4 50.5 61.7 59.4 45.1 41.9 66.3 77.6 54.0 58.8 35.9 49.0 40.7 52.1

Luo et al. [19] 40.8 44.6 42.1 45.1 48.3 54.6 41.2 42.9 55.5 69.9 46.7 42.5 36.0 48.0 41.4 46.6

3Dinterpreter* [44] X 78.6 90.8 92.5 89.4 108.9 112.4 77.1 106.7 127.4 139.0 103.4 91.4 79.1 - - 98.4

AIGN [35] X 77.6 91.4 89.9 88.0 107.3 110.1 75.9 107.5 124.2 137.8 102.2 90.3 78.6 - - 97.2

RepNet (Ours) X 53.0 58.3 59.6 66.5 72.8 71.0 56.7 69.6 78.3 95.2 66.6 58.5 63.2 57.5 49.9 65.1

RepNet-noKCS (Ours) X 63.1 67.4 71.5 78.5 85.9 82.6 70.8 82.7 92.2 116.6 77.6 72.2 65.3 73.2 69.6 77.9

RepNet+2DGT (Ours) X 33.6 38.8 32.6 37.5 36.0 44.1 37.8 34.9 39.2 52.0 37.5 39.8 34.1 40.3 34.9 38.2

Table 3. Performance of our method regarding the median and

PCK3D errors for the Human3.6M dataset.
mean median PCK3D

RepNet 65.1 60.0 93.0

RepNet+2DGT 38.2 36.0 98.6

Table 4. Results for the MPI-INF-3DHP dataset. All numbers are

taken from the referenced papers, except the row marked with *

which is taken from [22]. Without training on this dataset the pro-

posed method outperforms every other method. The row RepNet

3DHP shows the result when using the training set of MPI-INF-

3DHP. The column WS denotes weakly supervised approaches. A

higher value is better for 3DPCK and AUC while a lower value

is better for MPJPE. The best results are marked in bold and the

second best approach is underlined.
Method WS 3DPCK AUC MPJPE

Mehta et al. [21] 76.5 40.8 117.6

VNect [23] 76.6 40.4 124.7

LCR-Net[32]* 59.6 27.6 158.4

Zhou et al. [47] 69.2 32.5 137.1

Multi Person [22] 75.2 37.8 122.2

OriNet [19] 81.8 45.2 89.4

Kanazawa [17] X 77.1 40.7 113.2

Yang et al. [45] X 69.0 32.0 -

RepNet H36M (Ours) X 81.8 54.8 92.5

RepNet 3DHP (Ours) X 82.5 58.5 97.8

Table 5. Symmetry error in mm of the reconstructed 3D poses on

the different datasets with and without the KCS. Adding the KCS

layer to the critic networks results in significantly more plausible

poses.
Method mean std max

H36M noKCS 31.9 9.3 61.3

H36M KCS 8.2 3.8 20.5

3DHP noKCS 32.9 21.9 143.9

3DHP KCS 11.2 8.0 54.7

truth poses from the test set of Human3.6M and MPI-INF-

3DHP for all subjects is 0.7mm ± 0.8mm (max. 2.6mm)

and 2.1mm ± 1.3mm (max. 7.6mm), respectively. This

leads us to the conclusion that an equality between the left

and right side and therefore a low symmetry error is one rea-

sonable metric for the plausibility of a human pose. Table 5

compares several implementations of our network in terms

of the symmetry error. It can be clearly seen that the KCS

layer has a significant impact on this metric. The higher val-

ues for the MPI-INF-3DHP dataset can be explained by the

larger differences in symmetry of the ground truth data.

4.4. Noisy observations

Since the performance of our network appears to depend

a lot on the detections of the 2D pose detector we evalu-

ate our network on different levels of noise. Following [24]

we add gaussian noise N (0, σ) to the ground truth 2D joint

positions, where σ is the standard deviation in pixel. The

results for Human3.6M under protocol-II are shown in Ta-

ble 6. The error scales linearly with the standard deviation.

This indicates that the noise of the 2D joint detector has

a major impact on the results. Considering Tables 1 and

2 an improved detector will enhance the results to a level

where they outperform current state-of-the-art supervised

approaches.

Please note that the maximum person size from head to

toe is approximately 200px in the input data. Therefore,

gaussian noise with a standard deviation of σ = 20px can

be considered as extremely large. However, due to the critic

network using the KCS layer the output of the pose estima-

tion network is still a plausible human pose. To demonstrate

this we additionally investigated the average, standard devi-

ation and maximal symmetry error for the different noise

levels which is also shown in Table 6. As expected the er-

ror increases only slightly since the critic network enforces

plausible human poses. Even for noise levels as high as

N (0, 20) we achieve an average symmetry error of only

22.7mm± 4.5mm which can be considered as very low.

4.5. Qualitative Evaluation

For a subjective evaluation we use the Leeds Sports Pose

dataset (LSP) [16]. This dataset contains 2000 images of

different people doing sports. There is a large variety in

poses including stretched poses close to the limits of pos-
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Table 6. Evaluation results for protocol-II (rigid aligment) with different levels of gaussian noise N (0, σ) (σ is the standard deviation)

added to the ground truth 2D positions (GT). The 2D detector noise has large impact on the 3D reconstruction. The right three columns

show the mean, standard deviation, and maximal symmetry error in millimeter.
symmetry

Protocol-II Direct. Disc. Eat Greet Phone Photo Pose Purch. Sit SitD Smoke Wait Walk WalkD WalkT Avg. mean std max

GT 33.6 38.8 32.6 37.5 36.0 44.1 37.8 34.9 39.2 52.0 37.5 39.8 34.1 40.3 34.9 38.2 6.2 3.7 20.8

GT + N (0, 5) 54.0 56.8 52.7 56.5 54.4 59.7 55.7 54.1 56.3 68.5 56.1 58.7 57.6 56.7 55.3 56.9 9.6 4.0 25.0

GT + N (0, 10) 70.4 72.2 72.8 75.1 70.2 84.1 68.4 89.3 74.0 94.1 68.3 74.3 67.7 73.5 70.0 74.9 13.0 3.8 24.2

GT + N (0, 15) 86.3 88.0 87.5 89.9 84.0 98.1 84.0 104.2 87.4 107.7 82.3 89.3 85.1 89.0 86.0 89.9 17.6 4.2 32.1

GT + N (0, 20) 101.6 103.0 101.6 104.5 97.5 112.2 99.3 118.1 100.9 121.5 95.9 104.0 101.6 104.7 102.3 104.6 22.7 4.5 37.5

Figure 5. Example 3D pose estimations from the LSP dataset. Good reconstructions are in the left columns. The right column shows some

failure cases with very unusual poses or camera angles. Although not perfect the poses are still plausible and close to the correct poses.

sible joint angles. Some of these poses and camera angles

were never seen before by our network. Nevertheless, it is

able to predict plausible 3D poses for most of the images.

Fig. 5 shows some of the reconstructions achieved by our

method. There are many subjectively well reconstructed

poses, even if these are extremely stretched and captured

from uncommon camera angles. Note that our network was

only trained on the camera angles of Human3.6M. This un-

derlines that an understanding of plausible poses and 2D

projections is learned. The right column in Fig. 5 shows

some failure cases and emphasizes a limitation of this ap-

proach: poses or camera angles that are too different from

the training data cannot be reconstructed well. However, the

reconstructions are still plausible human poses and in most

cases at least near to the correct pose.

4.6. Computational Time

We see our method as a building block in a larger image-

to-3D points system. Current state-of-the-art 2D keypoint

detectors such as [5] achieve real-time performance (ap-

proximately 100ms per frame) on standard hardware. Our

network adds another 0.05ms per frame and therefore has

nearly no impact on the runtime. Assuming the 2D keypoint

detection takes no time we achieve a frame rate of 20000fps

on an Nvidia TITAN X.

5. Conclusion

This paper presented RepNet: a weakly supervised train-

ing method for a 3D human pose estimation neural network

that infers 3D poses from 2D joint detections in single im-

ages. We proposed to use an additional camera estimation

network and our novel reprojection layer that projects the

estimated 3D pose back to 2D. By exploiting state-of-the-

art techniques in neural network research, such as improved

Wasserstein GANs [10] and kinematic chain spaces [41],

we were able to develop a weakly supervised training proce-

dure that does not need 2D to 3D correspondences. This not

only outperforms previous weakly supervised methods but

also avoids overfitting of the network to a limited amount of

training data. We achieved state-of-the-art performance on

the benchmark dataset Human3.6M, even compared to most

supervised approaches. Using the network trained on Hu-

man3.6M to predict 3D poses from the unseen data of the

MPI-INF-3DHP dataset showed an improvement over all

other methods. We also performed a subjective evaluation

on the LSP dataset where we achieved good reconstructions

even on images with uncommon poses and perspectives.

7789



References

[1] I. Akhter and M. J. Black. Pose-conditioned joint angle lim-

its for 3D human pose reconstruction. In IEEE Conf. on

Computer Vision and Pattern Recognition (CVPR 2015),

pages 1446–1455, June 2015. 2, 7

[2] T. Alldieck, M. Kassubeck, B. Wandt, B. Rosenhahn, and

M. Magnor. Optical flow-based 3d human motion estimation

from monocular video. In German Conference on Pattern

Recognition (GCPR), Sept. 2017. 2

[3] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein gen-

erative adversarial networks. In D. Precup and Y. W. Teh,

editors, Proceedings of the 34th International Conference on

Machine Learning, volume 70 of Proceedings of Machine

Learning Research, pages 214–223, International Conven-

tion Centre, Sydney, Australia, 06–11 Aug 2017. PMLR. 3,

4, 5

[4] F. Bogo, A. Kanazawa, C. Lassner, P. Gehler, J. Romero,

and M. J. Black. Keep it SMPL: Automatic estimation of 3D

human pose and shape from a single image. In Computer

Vision – ECCV 2016, Lecture Notes in Computer Science.

Springer International Publishing, Oct. 2016. 7

[5] Z. Cao, T. Simon, S.-E. Wei, and Y. Sheikh. Realtime multi-

person 2d pose estimation using part affinity fields. In CVPR,

2017. 2, 8

[6] C. Chen and D. Ramanan. 3d human pose estimation =

2d pose estimation + matching. In 2017 IEEE Conference

on Computer Vision and Pattern Recognition, CVPR 2017,

pages 5759–5767, 2017. 2

[7] Y.-L. Chen and J. Chai. 3d reconstruction of human motion

and skeleton from uncalibrated monocular video. In H. Zha,

R. I. Taniguchi, and S. J. Maybank, editors, Asian Confer-

ence on Computer Vision (ACCV), volume 5994 of Lecture

Notes in Computer Science, pages 71–82. Springer, 2009. 2

[8] Y. Du, Y. Wong, Y. Liu, F. Han, Y. Gui, Z. Wang, M. Kankan-

halli, and W. Geng. Marker-less 3D human motion cap-

ture with monocular image sequence and height-maps. In

European Conference on Computer Vision, pages 20–36.

Springer, 2016. 1, 2, 6

[9] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,

D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-

erative adversarial nets. In Proceedings of the 27th Inter-

national Conference on Neural Information Processing Sys-

tems - Volume 2, NIPS’14, pages 2672–2680, Cambridge,

MA, USA, 2014. MIT Press. 1, 2, 5

[10] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and

A. C. Courville. Improved training of wasserstein gans. In

I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,

S. Vishwanathan, and R. Garnett, editors, Advances in Neu-

ral Information Processing Systems 30, pages 5767–5777.

Curran Associates, Inc., 2017. 5, 8

[11] A. Gupta, J. Martinez, J. J. Little, and R. J. Woodham. 3d

pose from motion for cross-view action recognition via non-

linear circulant temporal encoding. 2014 IEEE Conference

on Computer Vision and Pattern Recognition, pages 2601–

2608, 2014. 2

[12] K. He, X. Zhang, S. Ren, and J. Sun. Delving deep into

rectifiers: Surpassing human-level performance on imagenet

classification. In Proceedings of the 2015 IEEE International

Conference on Computer Vision (ICCV), ICCV ’15, pages

1026–1034, Washington, DC, USA, 2015. IEEE Computer

Society. 3

[13] C. Ionescu, D. Papava, V. Olaru, and C. Sminchisescu. Hu-

man3.6m: Large scale datasets and predictive methods for 3d

human sensing in natural environments. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 36(7):1325–

1339, jul 2014. 2, 5

[14] C. Ionescu, D. Papava, V. Olaru, and C. Sminchisescu. Hu-

man3.6m: Large scale datasets and predictive methods for 3d

human sensing in natural environments. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 36(7):1325–

1339, 2014. 6

[15] H. Jiang. 3d human pose reconstruction using millions of

exemplars. 2010 20th International Conference on Pattern

Recognition, pages 1674–1677, 2010. 2

[16] S. Johnson and M. Everingham. Clustered pose and nonlin-

ear appearance models for human pose estimation. In Pro-

ceedings of the British Machine Vision Conference, 2010.

doi:10.5244/C.24.12. 2, 5, 7

[17] A. Kanazawa, M. J. Black, D. W. Jacobs, and J. Malik. End-

to-end recovery of human shape and pose. In IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR).

IEEE Computer Society, 2018. 2, 7

[18] H.-J. Lee and Z. Chen. Determination of 3d human body

postures from a single view. Computer Vision, Graphics,

and Image Processing, 30(2):148 – 168, 1985. 2

[19] C. Luo, X. Chu, and A. L. Yuille. Orinet: A fully convolu-

tional network for 3d human pose estimation. In British Ma-

chine Vision Conference 2018, BMVC 2018, Northumbria

University, Newcastle, UK, September 3-6, 2018, page 92,

2018. 1, 2, 5, 6, 7

[20] J. Martinez, R. Hossain, J. Romero, and J. J. Little. A sim-

ple yet effective baseline for 3d human pose estimation. In

ICCV, 2017. 1, 2, 5, 6, 7

[21] D. Mehta, H. Rhodin, D. Casas, P. Fua, O. Sotnychenko,

W. Xu, and C. Theobalt. Monocular 3d human pose esti-

mation in the wild using improved cnn supervision. In 3D

Vision (3DV), 2017 Fifth International Conference on. IEEE,

2017. 1, 2, 5, 7

[22] D. Mehta, O. Sotnychenko, F. Mueller, W. Xu, S. Sridhar,

G. Pons-Moll, and C. Theobalt. Single-shot multi-person 3d

pose estimation from monocular rgb. In 3D Vision (3DV),

2018 Sixth International Conference on. IEEE, sep 2018. 7

[23] D. Mehta, S. Sridhar, O. Sotnychenko, H. Rhodin,

M. Shafiei, H.-P. Seidel, W. Xu, D. Casas, and C. Theobalt.

Vnect: Real-time 3d human pose estimation with a single

rgb camera. volume 36, 7 2017. 1, 2, 7

[24] F. Moreno-Noguer. 3d human pose estimation from a sin-

gle image via distance matrix regression. In Proceedings of

the Conference on Computer Vision and Pattern Recognition

(CVPR), 2017. 1, 2, 4, 7

[25] A. Newell, K. Yang, and J. Deng. Stacked hourglass net-

works for human pose estimation. In ECCV (8), volume

9912 of Lecture Notes in Computer Science, pages 483–499.

Springer, 2016. 1, 3, 5

7790



[26] M. Omran, C. Lassner, G. Pons-Moll, P. V. Gehler, and

B. Schiele. Neural body fitting: Unifying deep learning

and model-based human pose and shape estimation. In 3DV,

Sept. 2018. 2

[27] S. Park, J. Hwang, and N. Kwak. 3d human pose estimation

using convolutional neural networks with 2d pose informa-

tion. In Computer Vision - ECCV 2016 Workshops - Am-

sterdam, The Netherlands, October 8-10 and 15-16, 2016,

Proceedings, Part III, pages 156–169, 2016. 1, 2, 6

[28] G. Pavlakos, X. Zhou, K. G. Derpanis, and K. Daniilidis.

Coarse-to-fine volumetric prediction for single-image 3d hu-

man pose. 2017 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pages 1263–1272, 2017. 1, 2,

6

[29] G. Pavlakos, L. Zhu, X. Zhou, and K. Daniilidis. Learning

to estimate 3D human pose and shape from a single color

image. In CVPR, 2018. 2

[30] V. Ramakrishna, T. Kanade, and Y. A. Sheikh. Reconstruct-

ing 3d human pose from 2d image landmarks. In European

Conference on Computer Vision (ECCV), October 2012. 2, 7

[31] M. Rayat Imtiaz Hossain and J. J. Little. Exploiting temporal

information for 3d human pose estimation. In The European

Conference on Computer Vision (ECCV), September 2018.

1, 2

[32] G. Rogez, P. Weinzaepfel, and C. Schmid. LCR-Net:

Localization-Classification-Regression for Human Pose. In

CVPR 2017 - IEEE Conference on Computer Vision &

Pattern Recognition, pages 1216–1224, Honolulu, United

States, July 2017. IEEE. 1, 2, 7

[33] E. Simo-Serra, A. Ramisa, G. Aleny, C. Torras, and

F. Moreno-Noguer. Single image 3d human pose estimation

from noisy observations. In Conference on Computer Vision

and Pattern Recognition (CVPR), pages 2673–2680. IEEE,

2012. 2

[34] B. Tekin, A. Rozantsev, V. Lepetit, and P. Fua. Direct predic-

tion of 3d body poses from motion compensated sequences.

In 2016 IEEE Conference on Computer Vision and Pattern

Recognition, CVPR 2016, Las Vegas, NV, USA, June 27-30,

2016, pages 991–1000, 2016. 6

[35] H. F. Tung, A. W. Harley, W. Seto, and K. Fragkiadaki. Ad-

versarial inverse graphics networks: Learning 2d-to-3d lift-

ing and image-to-image translation from unpaired supervi-

sion. In 2017 IEEE International Conference on Computer

Vision (ICCV), pages 4364–4372, Oct 2017. 5, 7

[36] H.-Y. Tung, H.-W. Tung, E. Yumer, and K. Fragkiadaki.

Self-supervised learning of motion capture. In I. Guyon,

U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-

wanathan, and R. Garnett, editors, Advances in Neural In-

formation Processing Systems 30, pages 5236–5246. Curran

Associates, Inc., 2017. 2

[37] T. v. Marcard, G. Pons-Moll, and B. Rosenhahn. Human

pose estimation from video and imus. IEEE Transactions

on Pattern Analysis and Machine Intelligence, 38(8):1533–

1547, Aug 2016. 2

[38] T. von Marcard, R. Henschel, M. J. Black, B. Rosenhahn,

and G. Pons-Moll. Recovering accurate 3D human pose

in the wild using IMUs and a moving camera. In Euro-

pean Conference on Computer Vision (ECCV), volume Lec-

ture Notes in Computer Science, vol 11214, pages 614–631.

Springer, Cham, Sept. 2018. 2

[39] T. von Marcard, B. Rosenhahn, M. J. Black, and G. Pons-

Moll. Sparse inertial poser: Automatic 3d human pose

estimation from sparse imus. Computer Graphics Forum,

36(2):349–360, 2017. 2

[40] B. Wandt, H. Ackermann, and B. Rosenhahn. 3d reconstruc-

tion of human motion from monocular image sequences.

IEEE Transactions on Pattern Analysis and Machine Intel-

ligence, 38(8):1505–1516, 2016. 2

[41] B. Wandt, H. Ackermann, and B. Rosenhahn. A kinematic

chain space for monocular motion capture. In ECCV Work-

shops, Sept. 2018. 1, 2, 4, 8

[42] C. Wang, Y. Wang, Z. Lin, A. Yuille, and W. Gao. Robust es-

timation of 3d human poses from a single image. In Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

2014. 2

[43] X. K. Wei and J. Chai. Modeling 3d human poses from

uncalibrated monocular images. In 2009 IEEE 12th Inter-

national Conference on Computer Vision, pages 1873–1880,

Sept 2009. 2

[44] J. Wu, T. Xue, J. J. Lim, Y. Tian, J. B. Tenenbaum, A. Tor-

ralba, and W. T. Freeman. Single image 3d interpreter net-

work. In European Conference on Computer Vision (ECCV),

2016. 5, 7

[45] W. Yang, W. Ouyang, X. Wang, J. Ren, H. Li, and X. Wang.

3d human pose estimation in the wild by adversarial learning.

In CVPR, 2018. 2, 7

[46] P. Zell, B. Wandt, and B. Rosenhahn. Joint 3d human motion

capture and physical analysis from monocular videos. In The

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR) Workshops, July 2017. 2

[47] X. Zhou, Q. Huang, X. Sun, X. Xue, and Y. Wei. Towards 3d

human pose estimation in the wild: A weakly-supervised ap-

proach. In The IEEE International Conference on Computer

Vision (ICCV), Oct 2017. 6, 7

[48] X. Zhou, X. Sun, W. Zhang, S. Liang, and Y. Wei. Deep

kinematic pose regression. pages 186–201, 2016. 6

[49] X. Zhou, M. Zhu, S. Leonardos, and K. Daniilidis. Sparse

representation for 3d shape estimation: A convex relaxation

approach. IEEE Transactions on Pattern Analysis and Ma-

chine Intelligence, 39(8):1648–1661, Aug 2017. 2, 7

[50] X. Zhou, M. Zhu, S. Leonardos, K. G. Derpanis, and

K. Daniilidis. Sparseness meets deepness: 3d human pose

estimation from monocular video. In The IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), June

2016. 2, 6

7791


