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Abstract

Applications in virtual and augmented reality create a

demand for rapid creation and easy access to large sets

of 3D models. An effective way to address this demand is

to edit or deform existing 3D models based on a reference,

e.g., a 2D image which is very easy to acquire. Given such a

source 3D model and a target which can be a 2D image, 3D

model, or a point cloud acquired as a depth scan, we intro-

duce 3DN, an end-to-end network that deforms the source

model to resemble the target. Our method infers per-vertex

offset displacements while keeping the mesh connectivity of

the source model fixed. We present a training strategy which

uses a novel differentiable operation, mesh sampling op-

erator, to generalize our method across source and target

models with varying mesh densities. Mesh sampling opera-

tor can be seamlessly integrated into the network to handle

meshes with different topologies. Qualitative and quanti-

tative results show that our method generates higher qual-

ity results compared to the state-of-the art learning-based

methods for 3D shape generation.

1. Introduction

Applications in virtual and augmented reality and

robotics require rapid creation and access to a large num-

ber of 3D models. Even with the increasing availability of

large 3D model databases [1], the size and growth of such

databases pale when compared to the vast size of 2D im-

age databases. As a result, the idea of editing or deforming

existing 3D models based on a reference image or another

source of input such as an RGBD scan is pursued by the

research community.

Traditional approaches for editing 3D models to match

a reference target rely on optimization-based pipelines

which either require user interaction [32] or rely on the

existence of a database of segmented 3D model compo-

nents [9]. The development of 3D deep learning meth-

ods [17, 2, 31, 28, 10] inspire more efficient alternative ways

to handle 3D data. In fact, a multitude of approaches have
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Figure 1: 3DN deforms a given a source mesh to a new

mesh based on a reference target. The target can be a 2D

image or a 3D point cloud.

been presented over the past few years for 3D shape gener-

ation using deep learning. Many of these, however, utilize

voxel [33, 5, 37, 29, 24, 30, 34, 27] or point based repre-

sentations [3] since the representation of meshes and mesh

connectivity in a neural network is still an open problem.

The few recent methods which do use mesh representations

make assumptions about fixed topology [7, 25] which limits

the flexibility of their approach.

This paper describes 3DN, a 3D deformation network

that deforms a source 3D mesh based on a target 2D image,

3D mesh, or a 3D point cloud (e.g., acquired with a depth

sensor). Unlike previous work which assume a fixed topol-

ogy mesh for all examples, we utilize the mesh structure

of the source model. This means we can use any existing

high-quality mesh model to generate new models. Specifi-

cally, given any source mesh and a target, our network es-

timates vertex displacement vectors (3D offsets) to deform

the source model while maintaining its mesh connectivity.

In addition, the global geometric constraints exhibited by

many man-made objects are explicitly preserved during de-

formation to enhance the plausibility of the output model.

Our network first extracts global features from both the

source and target inputs. These are input to an offset de-

coder to estimate per-vertex offsets. Since acquiring ground

truth correspondences between the source and target is

very challenging, we use unsupervised loss functions (e.g.,

Chamfer and Earth Mover’s distances) to compute the sim-

ilarity of the deformed source model and the target. A dif-
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ficulty in measuring similarity between meshes is the vary-

ing mesh densities across different models. Imagine a pla-

nar surface represented by just 4 vertices and 2 triangles

as opposed to a dense set of planar triangles. Even though

these meshes represent the same shape, vertex-based sim-

ilarity computation may yield large errors. To overcome

this problem, we adopt a point cloud intermediate repre-

sentation. Specifically, we sample a set of points on both

the deformed source mesh and the target model and mea-

sure the loss between the resulting point sets. This measure

introduces a differentiable mesh sampling operator which

propagates features, e.g., offsets, from vertices to points in

a differentiable manner.

We evaluate our approach for various targets includ-

ing 3D shape datasets as well as real images and par-

tial points scans. Qualitative and quantitative comparisons

demonstrate that our network learns to perform higher qual-

ity mesh deformation compared to previous learning based

methods. We also show several applications, such as shape

interpolation. In conclusion, our contributions are as fol-

lows:

• We propose an end-to-end network to predict 3D de-

formation. By keeping the mesh topology of the source

fixed and preserving properties such as symmetries, we

are able to generate plausible deformed meshes.

• We propose a differentiable mesh sampling operator

in order to make our network architecture resilient to

varying mesh densities in the source and target models.

2. Related Work

2.1. 3D Mesh Deformation

3D mesh editing and deformation has received a lot of at-

tention from the graphics community where a multitude of

interactive editing systems based on preserving local Lapla-

cian properties [20] or more global features [4] have been

presented. With easy access to growing 2D image repos-

itories and RGBD scans, editing approaches that utilize a

reference target have been introduced. Given source and

target pairs, such methods use interactive [32] or heavy pro-

cessing pipelines [9] to establish correspondences to drive

the deformation. The recent success of deep learning has

inspired alternative methods for handling 3D data. Yumer

and Mitra[36] propose a volumetric CNN that generates

a deformation field based on a high level editing intent.

This method relies on the existence of model editing re-

sults based on semantic controllers. Kurenkov et al. present

DeformNet [14] which employs a free-form deformation

(FFD) module as a differentiable layer in their network.

This network, however, outputs a set of points rather than

a deformed mesh.Furthermore, the deformation space lacks

smoothness and points move randomly. Groueix et al. [6]

present an approach to compute correspondences across de-

formable models such as humans. However, they use an in-

termediate common template representation which is hard

to acquire for man-made objects. Pontes et al. [16] and

Jack et al. [11] introduce methods to learn FFD. Yang

et al. propose Foldingnet [35] which deforms a 2D grid

into a 3D point cloud while preserving locality informa-

tion. Compared to these existing methods, our approach

is able to generate higher quality deformed meshes by han-

dling source meshes with different topology and preserving

details in the original mesh.

2.2. Single View 3D Reconstruction

Our work is also related to single-view 3D reconstruc-

tion methods which have received a lot of attention from

the deep learning community recently. These approaches

have used various 3D representations including voxels [33,

2, 5, 37, 29, 24, 30, 34], point clouds [3], octrees [23, 8, 26],

and primitives [38, 15]. Sun et al. [21] present a dataset for

3D modeling from single-images. However, pose ambigu-

ity and artifacts widely occur in this dataset. More recently,

Sinha et al. [19] propose a method to generate the surface of

an object using a representation based on geometry images.

In a similar approach, Groueix et al. [7] present a method

to generate surfaces of 3D shapes using a set of paramet-

ric surface elements. The more recent method of Hiro-

haro et al. [13] and Kanazawa et al. [12] also uses differen-

tiable renderer and per-vertex displacements as a deforma-

tion method to generate meshes from image sets. Wang et

al. [25] introduce a graph-based network to reconstruct 3D

manifold shapes from input images. These recent methods,

however, are limited to generating manifolds and require 3D

output to be topology invariant for all examples.

3. Method

Given a source 3D mesh and a target model (represented

as a 2D image or a 3D model), our goal is to deform the

source mesh such that it resembles the target model as

close as possible. Our deformation model keeps the triangle

topology of the source mesh fixed and only updates the ver-

tex positions. We introduce an end-to-end 3D deformation

network (3DN) to predict such per-vertex displacements of

the source mesh.

We represent the source mesh as S = (V,E), where V ∈
R

NV ×3 is the (x, y, z) positions of vertices and E ∈ Z
NE×3

is the set of triangles and encodes each triangle with the in-

dices of vertices. NV and NE denote the number of vertices

and triangles respectively. The target model T is either a

H ×W × 3 image or a 3D model. In case T is a 3D model,

we represent it as a set of 3D points T ∈ R
NT×3, where NT

denotes the number of points in T .

As shown in Figure 2, 3DN takes S and T as input and

outputs per-vertex displacements, i.e., offsets, O ∈ R
NV ×3.
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Figure 2: 3DN extracts global features from both the source and target. ‘MLP’ denotes the ‘1× 1’ conv as in PointNet [17].

These features are then input to an offset decoder which predicts per-vertex offsets to deform the source. We utilize loss

functions to preserve geometric details in the source (LLap, LLPI , LSym) and to ensure deformation output is similar to the

target (LCD, LEMD).

The final deformed mesh is S′ = (V ′, E), where V ′ =
V + O. Moreover, 3DN can be extended to produce per-

point displacements when we replace the input source ver-

tices with a sampled point cloud on the source. 3DN is

composed of a target and a source encoder which extract

global features from the source and target models respec-

tively, and an offset decoder which utilizes such features to

estimate the shape deformation. We next describe each of

these components in detail.

3.1. Shape Deformation Network (3DN)

Source and Target Encoders. Given the source model S,

we first uniformly sample a set of points on S and use the

PointNet [17] architecture to encode S into a source global

feature vector. Similar to the source encoder, the target en-

coder extracts a target global feature vector from the tar-

get model. In case the target model is a 2D image, we use

VGG [18] to extract features. If the target is a 3D model, we

sample points on T and use PointNet. We concatenate the

source and target global feature vectors into a single global

shape feature vector and feed into the offset decoder.

Offset Decoder. Given the global shape feature vector ex-

tracted by the source and target encoders, the offset de-

coder learns a function F (·) which predicts per-vertex dis-

placements, for S. In other words, given a vertex v =
(xv, yv, zv) in S, the offset decoder predicts F (v) = ov =
(xov , yov , zov ) updating the deformed vertex in S′ to be

v′ = v + ov.

Offset decoder is easily extended to perform point cloud

deformations. When we replace the input vertex locations

to point locations, say given a point p = (xp, yp, zp) in

the point cloud sampled form S, the offset decoder predicts

a displacement F (p) = op, and similarly, the deformed

point is p′ = p+ op.

The offset decoder has an architecture similar to the

PointNet segmentation network [17]. However, unlike

the original PointNet architecture which concatenates the

global shape feature vector with per-point features, we con-

catenate the original point positions to the global shape fea-

ture. We find this enables to better capture the vertex and

point locations distribution in the source, and results in ef-

fective deformation results. We study the importance of this

architecture in Section 4.3. Finally we note that, our net-

work is flexible to handle source and target models with

varying number of vertices.

3.2. Learning Shape Deformations

Given a deformed mesh S′ produced by 3DN and the

3D mesh corresponding to the target model T = (VT , ET ),
where VT ∈ R

NVT
×3(NVT

6= NV ) and ET 6= E, the

remaining task is to design a loss function that measures

the similarity between S′ and T . Since it is not trivial to

establish ground truth correspondences between S′ and T ,

our method instead utilizes the Chamfer and Earth Mover’s

losses introduced by Fan et al. [3]. In order to make

these losses robust to different meshing densities across

source and target models, we operate on set of points uni-

formly sampled on S′ and T by introducing the differen-

tiable mesh sampling operator (DMSO). DMSO is seam-

lessly integrated in 3DN and bridges the gap between han-

dling meshes and loss computation with point sets.

Differentiable Mesh Sampling Operator. As is illus-

trated in Figure 3, DMSO is used to sample a uniform set of

points from a 3D mesh. Suppose a point p is sampled on the

face e = (v1,v2,v3) enclosed by the vertices v1,v2,v3.

The position of p is then

p = w1v1 + w2v2 + w3v3,
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Figure 3: Differentiable mesh sampling operator (best

viewed in color). Given a face e = (v1,v2,v3), p is sam-

pled on e in the network forward pass using barycentric co-

ordinates w1, w2, w3. Sampled points are used during loss

computation. When performing back propagation, gradient

of p is passed back to (v1,v2,v3) with the stored weights

w1, w2, w3. This process is differentiable.

where w1 + w2 + w3 = 1 are the barycentric coordinates

of p. Given any typical feature for the original vertices, the

per-vertex offsets in our case, ov1
,ov2

,ov3
, the offset of p

is

op = w1ov1
+ w2ov2

+ w3ov3
.

To perform back-propogation, the gradient for each origi-

nal per-vertex offsets ovi
is calculated simply by govi

=
wigovp

, where g denotes the gradient.

We train 3DN using a combination of different losses as

we discuss next.

Shape Loss. Given a target model, T , inspired by [3],

we use Chamfer and Earth Mover’s distances to measure

the similarity between the deformed source and the tar-

get. Specifically, given the point cloud PC sampled on the

deformed output and PCT sampled on the target model,

Chamfer loss is defined as

LMesh
CD (PC,PCT ) =

∑

p1∈PC

min
p2∈PCT

‖p1 − p2‖
2

2

+
∑

p2∈PCT

min
p1∈PC

‖p1 − p2‖
2

2
, (1)

and Earth Mover’s loss is defined as

LMesh
EMD (PC,PCT ) = min

φ:PC→PCT

∑

p∈PC

‖p− φ(p)‖2, (2)

where φ : PC → PCT is a bijection.

We compute these distances between point sets sampled

both on the source (using the DMSO) and target models.

Moreover, computing the above losses on point sets sam-

pled on source and target models further helps for robust-

ness to different mesh densities. In practice, for each (S, T )
source-target model pair, we also pass a point cloud sam-

pled on S together with T through the decoder offset in a

second pass to help the network cope with sparse meshes.

Specifically, given a point set sampled on S, we predict

per-point offsets and compute the above Chamfer and Earth

Mover’s losses between the resulting deformed point cloud

and T . We denote these two losses as LPoints
CD and LPoints

EMD .

During testing, this second pass is not necessary and we

only predict per-vertex offsets for S.

We note that we train our model with synthetic data

where we always have access to 3D models. Thus, even

if the target is a 2D image, we use the corresponding 3D

model to compute the point cloud shape loss. During test-

ing, however, we do not need access to any 3D target mod-

els, since the global shape features required for offset pre-

diction are extracted from the 2D image only.

Symmetry Loss. Many man-made models exhibit global

reflection symmetry and our goal is to preserve this during

deformation. However, the mesh topology itself does not

always guarantee to be symmetric, i.e., a symmetric chair

does not always have symmetric vertices. Therefore, we

propose to preserve shape symmetry by sampling a point

cloud, M(PC), on the mirrored deformed output and mea-

sure the point cloud shape loss with this mirrored point

cloud as

Lsym(PC,PCT ) = LCD(M(PC), PCT )

+ LEMD(M(PC), PCT ). (3)

We note that we assume the reflection symmetry plane of a

source model to be known. In our experiments, we use 3D

models from ShapeNet [1] which are already aligned such

that the reflection plane coincides with the xz− plane.

Mesh Laplacian Loss. To preserve the local geometric

details in the source mesh and enforce smooth deformation

across the mesh surface, we desire the Laplacian coordi-

nates of the deformed mesh to be the same as the original

source mesh. We define this loss as

Llap =
∑

i

||Lap(S)− Lap(S′)||2. (4)

where Lap is the mesh Laplacian operator, S and S′ are the

original and deformed meshes respectively.

Local Permutation Invariant Loss. Most traditional de-

formation methods (such as FFD) are prone to suffer from

possible self-intersections that can occur during deforma-

tion (see Figure 4). To prevent such self-intersections, we

present a novel local permutation invariant loss. Specifi-

cally, given a point p and a neighboring point at a distance

δ to p, we would like to preserve the distance between these

two neighboring points after deformation as well. Thus, we

define

LLPI = −min (F (V + δ)− F (V ),0). (5)
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(a) (b) (c)

Figure 4: Self intersection. The red arrow is the deforma-

tion handle. (a) Original Mesh. (b) Deformation with self-

intersection. (c) Plausible deformation.

where δ is a vector with a small magnitude and

0 = (0, 0, 0). In our experiments we define δ ∈
{(ǫ, 0, 0), (0, ǫ, 0), (0, 0, ǫ)} where ǫ = 0.05. The intuition

behind of this is to preserve the local ordering of points in

the source. We observe that the local permutation invariant

loss helps to achieve smooth deformation across 3D space.

Given all the losses defined above, we train 3DN with a

combined loss of

L = ωL1
LMesh
CD + ωL2

LMesh
EMD + ωL3

LPoints
CD + ωL4

LPoints
EMD +

ωL5
Lsym + ωL6

Llap + ωL7
LLPI,

(6)

where ωL1
, ωL2

, ωL3
, ωL4

, ωL5
, ωL6

, ωL7
denote the rela-

tive weighting of the losses.

4. Experiments

In this section, we perform qualitative and quantitative

comparisons on shape reconstruction from 3D target mod-

els (Section 4.1) as well as single-view reconstruction (Sec-

tion 4.2). We also conduct ablation studies of our method to

demonstrate the effectiveness of the offset decoder architec-

ture and the different loss functions employed. Finally, we

provide several applications to demonstrate the flexibility of

our method. More qualitative results and implementation

details can be found in supplementary material.

Dataset. In our experiments, we use the ShapeNet Core

dataset [1] which includes 13 shape categories and an offi-

cial traning/testing split. We use the same template set of

models as in [11] for potential source meshes. There are 30

shapes for each category in this template set. When train-

ing the 2D image-based target model, we use the rendered

views provided by Choy et al. [2]. We note that we train a

single network across all categories.

Template Selection. In order to sample source and tar-

get model pairs for 3DN, we train a PointNet based auto-

encoder to learn an embedding of the 3D shapes. Specifi-

cally, we represent each 3D shape as a uniformly sampled

set of points. The encoder encodes the points as a feature

vector and the decoder predicts the point positions from this

feature vector (please refer to the supplementary material

for details). Given the embedding composed of the fea-

tures extracted by the encoder, for each target model can-

didate, we choose the nearest neighbor in this embedding

as the source model. Source models are chosen from the

aforementioned template set. No class label information is

required during this procedure, however, the nearest neigh-

bors are queried within the same category. When given a

target 2D image for testing, if no desired source model is

given, we use the point set generation network, PSGN [3],

to generate an initial point cloud, and use its nearest neigh-

bor in our embedding as the source model.

Evaluation Metrics. Given a source and target model

pair (S, T ), we utilize three metrics in our quantitative eval-

uations to compare the deformation output S′ and the tar-

get T : 1) Chamfer Distance (CD) between the point clouds

sampled on S′ and T , 2) Earth Mover’s Distance (EMD) be-

tween the point clouds sampled on S′ and T , 3) Intersection

over Union (IoU) between the solid voxelizations of S′ and

T . We normalize the outputs of our method and previous

work into a unit cube before computing these metrics. We

also evaluate the visual plausibility of our results by provid-

ing a large set of qualitative examples.

Comparison We compare our approach with state-of-the-

art reconstruction methods. Specifically, we compare to

three categories of methods: 1) learning-based surface gen-

eration, 2) learning-based deformation prediction, and 3)

traditional surface reconstruction methods. We would like

to note that we are solving a fundamentally different prob-

lem than surface generation methods. Even though, hav-

ing a source mesh to start with might seem advantageous,

our problem at hand is not easier since our goal is not only

to generate a mesh similar to the target but also preserve

certain properties of the source. Furthermore, our source

meshes are obtained from a fixed set of templates which

contain only 30 models per category.

4.1. Shape Reconstruction from Point Cloud

For this experiment, we define each 3D model in the

testing split as target and identify a source model in the

testing split based on the autoencoder embedding described

above. 3DN computes per-vertex displacements to deform

the source and keeps the source mesh topology fixed. We

evaluate the quality of this mesh with alternative meshing

techniques. Specifically, given a set of points sampled on

the desired target model, we reconstruct a 3D mesh using

Poisson surface reconstruction. As shown in Figure 5, this

comparison demonstrates that even with a ground truth set

of points, generating a mesh that preserves sharp features

is not trivial. Instead, our method utilizes the source mesh

connectivity to output a plausible mesh. Furthermore, we

apply the learning-based surface generation technique of

AtlasNet [7] on the uniformly sampled points on the tar-

get model. Thus, we expect AtlasNet only to perform sur-

face generation without any deformation. We also compare
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(a) Source Template (b) Target Mesh (c) Target Point Cloud (d)Poisson (e)FFD (f)AtlasNet (g) Ours

Figure 5: Given a source (a) and a target (b) model from the ShapeNet dataset, we show the deformed meshes obtained by

our method (g). We also show Poisson surface reconstruction (d) from a set of points sampled on the target (c). We also show

comparisons to previous methods of Jack et al. (e) and AtlasNet (f).

plane bench box car chair displaylamp speakerrifle sofa table phone boat Mean

EMD

AtlasNet 3.46 3.18 4.20 2.84 3.47 3.97 3.79 3.83 2.44 3.19 3.76 3.87 2.99 3.46

FFD 1.88 2.02 2.50 2.11 2.13 2.69 2.42 3.06 1.55 2.44 2.44 1.88 2.00 2.24

Ours 0.79 1.98 3.57 1.24 1.12 3.08 3.44 3.40 1.79 2.06 1.34 3.27 2.27 2.26

CD

AtlasNet 2.16 2.91 6.62 3.97 3.65 3.65 4.48 6.29 0.98 4.34 6.01 2.44 2.73 3.86

FFD 3.22 4.53 6.94 4.45 4.99 5.98 8.72 11.97 1.97 6.29 6.89 3.61 4.41 5.69

Ours 0.38 2.40 5.26 0.90 0.82 5.59 8.74 9.27 1.52 2.55 0.97 2.66 2.77 3.37

IoU

AtlasNet 56.9 53.3 31.3 44.0 47.9 48.0 41.6 33.2 63.4 44.7 43.8 58.7 50.9 46.7

FFD 29.0 42.3 28.4 21.1 42.2 27.9 38.9 52.5 31.9 34.7 43.3 22.9 47.7 35.6

Ours 71.0 40.7 43.6 75.8 66.3 40.4 25.1 49.2 40.0 60.6 57.9 50.1 42.6 51.1

Table 1: Point cloud reconstruction results on ShapeNet core dataset. Metrics are mean Chamfer distance (×0.001, CD) on

points, Earth Mover’s distance (×100, EMD) on points and Intersection over Union (%, IoU) on solid voxelized grids. For

both CD and EMD, the lower the better. For IoU, the higher the better.

to the method of Jack et al. [11] (FFD) which introduces a

learning based method to apply free form deformation to a

given template model to match an input image. This net-

work consists of a module which predicts FFD parameters

based on the features extracted from the input image. We

retrain this module such that it uses the features extracted

from the points sampled on the 3D target model. As shown

in Figure 5, the deformed meshes generated by our method

are higher quality than the previous methods. We also report

quantitative numbers in Table 1. While AtlastNet achieves

lower error based on Chamfer Distance, we observe certain

artifacts such as holes and disconnected surfaces in their

results. We also observe that our deformation results are

smoother than FFD.

4.2. Singleview Reconstruction

We also compare our method to recent state-of-the-art

single view image based reconstruction methods including

Pixel2Mesh [25], AtlasNet [7] and FFD [11]. Specifically,

we choose a target rendered image from the testing split and

input to the previous methods. For our method, in addition

to this target image, we also provide a source model selected

from the template set. We note that the scope of our work

is not single-view reconstruction, thus the comparison with

Pixel2Mesh and AtlasNet is not entirely fair. However, both

quantitative (see Table 2) and qualitative (Figure 6) results

still provide useful insights. Though the rendered output of

AtlasNet and Pixel2Mesh in Figure 6 are visually plausi-

ble, self-intersections and disconnected surfaces often exist

in their results. Figure 7 illustrates this by rendering the

output meshes in wireframe mode. Furthermore, as shown

in Figure 7, while surface generation methods struggle to

capture shape details such as chair handles and car wheels,

our method preserves these details that reside in the source

mesh.
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plane bench box car chair displaylamp speakerrifle sofa table phone boat Mean

EMD

AtlasNet 3.39 3.22 3.36 3.72 3.86 3.12 5.29 3.75 3.35 3.14 3.98 3.19 4.39 3.67

Pxel2mesh 2.98 2.58 3.44 3.43 3.52 2.92 5.15 3.56 3.04 2.70 3.52 2.66 3.94 3.34

FFD 2.63 3.96 4.87 2.98 3.38 4.88 7.19 5.04 3.58 3.70 3.56 4.11 3.86 4.13

Ours 3.30 2.98 3.21 3.28 4.45 3.91 3.99 4.47 2.78 3.31 3.94 2.70 3.92 3.56

CD

AtlasNet 5.98 6.98 13.76 17.04 13.21 7.18 38.21 15.96 4.59 8.29 18.08 6.35 15.85 13.19

Pixel2mesh 6.10 6.20 12.11 13.45 11.13 6.39 31.41 14.52 4.51 6.54 15.61 6.04 12.66 11.28

FFD 3.41 13.73 29.23 5.35 7.75 24.03 45.86 27.57 6.45 11.89 13.74 16.93 11.31 16.71

Ours 6.75 7.96 8.34 7.09 17.53 8.35 12.79 17.28 3.26 8.27 14.05 5.18 10.20 9.77

IoU

AtlasNet 39.2 34.2 20.7 22.0 25.7 36.4 21.3 23.2 45.3 27.9 23.3 42.5 28.1 30.0

Pixel2mesh 51.5 40.7 43.4 50.1 40.2 55.9 29.1 52.3 50.9 60.0 31.2 69.4 40.1 47.3

FFD 30.3 44.8 30.1 22.1 38.7 31.6 35.0 52.5 29.9 34.7 45.3 22.0 50.8 36.7

Ours 54.3 39.8 49.4 59.4 34.4 47.2 35.5 45.3 57.62 60.7 31.3 71.5 46.5 48.7

Table 2: Quantitative comparison on ShapeNet rendered images. Metrics are CD (×0.001), EMD (×100) and IoU (%).

Target Source GT FFD AtlasNet P2M 3DN

Figure 6: Given a target image and a source, we show de-

formation results of FFD, AtlasNet, Pixel2Mesh (P2M), and

3DN. We also show the ground truth target model (GT).
Evaluation on real images. We further evaluate our

method on real product images that can be found online.

For each input image, we select a source model as described

before and provide the deformation result. Even though

our method has been trained only on synthetic images, we

observe that it generalizes to real images as seen in Fig-

ure 8. AtlasNet and Pixel2Mesh fail in most cases, while

Target Source GT P2M AtlasNet 3DN

Figure 7: For a given target image and source model, we

show ground truth model and results of Pixel2Mesh (P2M),

AtlasNet, and our method (3DN) rendered in wire-frame

mode to better judge the quality of the meshes. Please zoom

into the PDF for details.

our method is able to generate plausible results by taking

advantages of source meshes.

4.3. Ablation Study

We study the importance of different losses and the off-

set decoder architecture on ShapeNet chair category. We

compare our final model to variants including 1) 3DN with-

out the symmetry loss, 2) 3DN without the mesh Laplacian

loss, 3) 3DN without the local permutation invariance loss,

and 4) fusing global features with midlayer features instead

of the original point positions (see the supplemental mate-

rial for details).

We provide quantitative results in Table 3. Symmetry

loss helps the deformation to produce plausible symmet-

ric shapes. Local permutation and Laplacian losses help

to obtain smoothness in the deformation field across 3D
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Figure 8: Qualitative results on online product images. The

first row shows the images scrapped online. Second and

third row are results of AtlasNet and Pixel2Mesh respec-

tively. Last row is our results.

CD EMD IoU

3DN 4.50 2.06 41.0

-Symmetry 4.78 2.73 36.7

-Mesh Laplacian 4.55 2.08 39.8

-Local Permutation 5.31 2.96 35.4

Midlayer Fusion 6.63 3.03 30.9

Table 3: Quantitative comparison on ShapeNet rendered

images. ’-x’ denotes without x loss. Metrics are CD

(×1000), EMD (×0.01) and IoU (%).

space and along the mesh surface. However, midlayer fu-

sion makes the network hard to converge to a valid defor-

mation space.

4.4. Applications

Random Pair Deformation. In Figure 9 we show de-

formation results for randomly selected source and target

model pairs. While the first column of each row is the

source mesh, the first row of each column is the target. Each

grid cell shows deformation results for the corresponding

source-target pair.

Shape Interpolation. Figure 10 shows shape interpola-

tion results. Each row shows interpolated shapes generated

from the two targets and the source mesh. Each intermedi-

ate shape is generated using a weighted sum of the global

feature representations of the target shapes. Notice how the

interpolated shapes gradually deform from the first to the

second target.

Shape Inpainting. We test our model trained in Sec-

tion 4.1 on targets in the form of partial scans produced by

RGBD data [22]. We provide results in Figure 11 with dif-

ferent selection of source models. We note that AtlastNet

fails on such partial scan input.

S
T

Figure 9: Deformation with different source-target pairs.

‘S’ and ‘T’ denote source meshes and target meshes respec-

tively.

Source Target1 Interpolation Target2

Figure 10: Shape interpolation.

Scan Src1 Out1 Src2 Out2 Src3 Out3 AtlasNet

Figure 11: Shape inpainting with real point cloud scan as

input. Src means source mesh and ’out’ is the correspond-

ing deformed mesh.

5. Conclusion

We have presented 3DN, an end-to-end network archi-

tecture for mesh deformation. Given a source mesh and a

target which can be in the form of a 2D image, 3D mesh, or

3D point clouds, 3DN deforms the source by inferring per-

vertex displacements while keeping the source mesh con-

nectivity fixed. We compare our method with recent learn-

ing based surface generation and deformation networks and

show superior results. Our method is not without limi-

tations, however. Certain deformations indeed require to

change the source mesh topology, e.g., when deforming a

chair without handles to a chair with handles. If large holes

exist either in the source or target models, Chamfer and

Earth Mover’s distances are challenging to compute since it

is possible to generate many wrong point correspondences.

In addition to addressing the above limitations, our

future work include extending our method to predict

mesh texture by taking advantages of differentiable ren-

derer [13].
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